1
|
Li J, Lu J, Wang Z. Non-equilibrium decomposition dynamics and fluctuation-dissipation analysis of structure I methane hydrate in confined space. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
2
|
Li Y, Chen M, Liu C, Song H, Yuan P, Zhang B, Liu D, Du P. Effects of Layer-Charge Distribution of 2:1 Clay Minerals on Methane Hydrate Formation: A Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3323-3335. [PMID: 32109063 DOI: 10.1021/acs.langmuir.0c00183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular dynamics simulations were used to investigate the effects of the external surface of a 2:1 clay mineral with different charge amounts and charge locations on CH4 hydrate formation. The results showed that 512, 51262, 51263, and 51264 were formed away from the clay mineral surface. The surface of the clay mineral with high- and low-charge layers was occupied by Na+ to form various distributions of outer- and inner-sphere hydration structures, respectively. The adsorbed Na+ on the high-charge layer surface reduced the H2O activity by disturbing the hydrogen bond network, resulting in low tetrahedral arrangement of H2O molecules near the layer surface, which inhibited CH4 hydrate formation. However, more CH4 molecules were adsorbed onto the vacancy in the Si-O rings of a neutral-charge layer to form semicage structures. Thus, the order parameter of H2O molecules near this surface indicated that the arrangement of H2O molecules resulted in a more optimal tetrahedral structure for CH4 hydrate formation than that near the negatively charged layer surface. Different nucleation mechanisms of the CH4 hydrate on external surfaces of clay mineral models were observed. For clay minerals with negatively charged layers (i.e., high and low charge), the homogeneous nucleation of the CH4 hydrate occurred away from the surface. For a clay mineral with a neutral-charge layer, the CH4 hydrate could nucleate either in the bulk-like solution homogeneously or at the clay mineral-H2O interface heterogeneously.
Collapse
Affiliation(s)
- Yun Li
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Chen
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Chanjuan Liu
- CAS Key Laboratory of Gas Hydrate, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Center for Gas Hydrate Research, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongzhe Song
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yuan
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Baifa Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Peixin Du
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| |
Collapse
|
3
|
Kvenvolden KA, Lorenson TD. The Global Occurrence of Natural Gas Hydrate. NATURAL GAS HYDRATES 2013. [DOI: 10.1029/gm124p0003] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Ferré B, Mienert J, Feseker T. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jc008300] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL. Man and the last great wilderness: human impact on the deep sea. PLoS One 2011; 6:e22588. [PMID: 21829635 PMCID: PMC3148232 DOI: 10.1371/journal.pone.0022588] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 06/30/2011] [Indexed: 11/19/2022] Open
Abstract
The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.
Collapse
Affiliation(s)
- Eva Ramirez-Llodra
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Paul A. Tyler
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Maria C. Baker
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | | | - Malcolm R. Clark
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Elva Escobar
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, México, D.F., Mexico
| | - Lisa A. Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | | | - Ashley A. Rowden
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Cindy L. Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, United States of America
| |
Collapse
|
6
|
|
7
|
Barone G, Chianese E. Hydrates of natural gases and small molecules: structures, properties, and exploitation perspectives. CHEMSUSCHEM 2009; 2:992-1008. [PMID: 19921692 DOI: 10.1002/cssc.200900076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Starting from the discovery, in the mid-1930s, that petroleum pipelines in the colder regions of the Northern hemisphere contained crusts of some crystals, and were often blocked by them, a short history of the development of research on the structures, properties, and possible exploitation of the class of inclusion compounds known as gas hydrates is given. The state of the assessment of the natural reservoirs and their perspectives for exploitation are presented, together with an analysis of the hypotheses on the origins of the hydrates. Finally, the phase diagrams are shown in relation to environmental problems arising from the instability of the hydrate fields due to global warming or geological activity.
Collapse
Affiliation(s)
- Guido Barone
- Department of Chemistry, Federico II University of Naples, Complesso Monte S. Angelo Via Cintia, Naples, Italy.
| | | |
Collapse
|
8
|
Abstract
Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.
Collapse
Affiliation(s)
- Keith C Hester
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA.
| | | |
Collapse
|
9
|
Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddall M. Climate change and trace gases. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2007; 365:1925-54. [PMID: 17513270 DOI: 10.1098/rsta.2007.2052] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.
Collapse
Affiliation(s)
- James Hansen
- NASA Goddard Institute for Space Studies and Columbia University Earth Institute, New York, NY 10025, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Nihous GC, Masutani SM. Notes on the dissolution rate of gas hydrates in undersaturated water. Chem Eng Sci 2006. [DOI: 10.1016/j.ces.2005.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Abstract
AbstractMarine sediment cores are the fundamental data source for information on seabed character, depositional history and environmental change. They provide raw data for a wide range of research including studies of global climate change, palaeoceanography, slope stability, oil exploration, pollution assessment and control, and sea-floor surveys for laying cables, pipelines and siting of sea-floor structures. During the last three decades, a varied suite of new technologies have been developed to analyse cores, often non-destructively, to produce high-quality, closely spaced, co-located downcore measurements, characterizing sediment physical properties, geochemistry and composition in unprecedented detail. Distributions of a variety of palaeoenvironmentally significant proxies can now be logged at decadal and, in some cases, even annual or subannual scales, allowing detailed insights into the history of climate and associated environmental change. These advances have had a profound effect on many aspects of the Earth Sciences, particularly palaeoceanography. In this paper, we review recent advances in analytical and logging technology, and their application to the analysis of sediment cores. Developments in providing access to core data and associated datasets, and data-mining technology, in order to integrate and interpret new and legacy datasets within the wider context of sea-floor studies, are also discussed. Despite the great advances in this field, however, challenges remain, particularly in the development of standard measurement and calibration methodologies and in the development of data analysis methods. New data visualization tools and techniques need to be developed to optimize the interpretation process and maximize scientific value. Amplified collaboration environments and tools are needed in order to capitalize on our analysis and interpretation capability of large, multi-parameter datasets. Sophisticated, yet simple to use, searchable Internet databases, with universal access and secure long-term funding, and data products resulting in user-defined data-mining query and display, so far pioneered in the USA and Australia, provide robust models for efficient and effective core data stewardship.
Collapse
Affiliation(s)
- R. Guy Rothwell
- National Oceanography Centre, Empress Dock
Southampton SO14 3ZH, UK
| | - Frank R. Rack
- Joint Oceanographic Institutions
1201 New York Avenue, NW, Suite 400, Washington, DC 2005, USA
| |
Collapse
|
12
|
|
13
|
Nisbet EG. Have sudden large releases of methane from geological reservoirs occurred since the Last Glacial Maximum, and could such releases occur again? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2002; 360:581-607. [PMID: 12804295 DOI: 10.1098/rsta.2001.0958] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Methane emissions from geological reservoirs may have played a major role in the sudden events terminating glaciation, both at the start of the Bølling/Allerød and also at the end of the Younger Dryas. These reservoirs include Arctic methane hydrates and also methane hydrate stored in offshore marine sediments in tropical and temperate latitudes. Emissions from hydrate stores may have resonated with tropical wetland emissions, each reinforcing the other. Because methane is such a powerful greenhouse gas, much smaller emissions of methane, compared with carbon dioxide, are required in order to have the same short-term impact by climate forcing. The methane-linked hypothesis has much geological support from sea-floor evidence of emission. However, Greenland ice-core records have been interpreted as showing methane as a consequential factor, rather than the leader, of change. This interpretation can be challenged on the grounds that temperature gradients in Greenland ice record local changes and local timing of a step-like shift in weather fronts, while methane concentrations record changes on a hemispheric and global scale. There are large remaining hydrate reservoirs in the Arctic and in shelf sediments globally, and there is substantial risk of further emissions.
Collapse
Affiliation(s)
- Euan G Nisbet
- Department of Geology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
14
|
Xu W, Lowell RP, Peltzer ET. Effect of seafloor temperature and pressure variations on methane flux from a gas hydrate layer: Comparison between current and late Paleocene climate conditions. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jb000420] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Davie MK, Buffett BA. A numerical model for the formation of gas hydrate below the seafloor. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jb900363] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Abstract
For almost 30 years. serious interest has been directed toward natural gas hydrate, a crystalline solid composed of water and methane, as a potential (i) energy resource, (ii) factor in global climate change, and (iii) submarine geohazard. Although each of these issues can affect human welfare, only (iii) is considered to be of immediate importance. Assessments of gas hydrate as an energy resource have often been overly optimistic, based in part on its very high methane content and on its worldwide occurrence in continental margins. Although these attributes are attractive, geologic settings, reservoir properties, and phase-equilibria considerations diminish the energy resource potential of natural gas hydrate. The possible role of gas hydrate in global climate change has been often overstated. Although methane is a "greenhouse" gas in the atmosphere, much methane from dissociated gas hydrate may never reach the atmosphere, but rather may be converted to carbon dioxide and sequestered by the hydrosphere/biosphere before reaching the atmosphere. Thus, methane from gas hydrate may have little opportunity to affect global climate change. However, submarine geohazards (such as sediment instabilities and slope failures on local and regional scales, leading to debris flows, slumps, slides, and possible tsunamis) caused by gas-hydrate dissociation are of immediate and increasing importance as humankind moves to exploit seabed resources in ever-deepening waters of coastal oceans. The vulnerability of gas hydrate to temperature and sea level changes enhances the instability of deep-water oceanic sediments, and thus human activities and installations in this setting can be affected.
Collapse
Affiliation(s)
- K A Kvenvolden
- U.S. Geological Survey, 345 Middlefield Road, MS999, Menlo Park, CA 94025, USA.
| |
Collapse
|
17
|
Wuebbles DJ, Jain A, Edmonds J, Harvey D, Hayhoe K. Global change: state of the science. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 1999; 100:57-86. [PMID: 15093113 DOI: 10.1016/s0269-7491(99)00088-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/1998] [Accepted: 03/22/1999] [Indexed: 05/24/2023]
Abstract
Only recently, within a few decades, have we realized that humanity significantly influences the global environment. In the early 1980s, atmospheric measurements confirmed basic concepts developed a decade earlier. These basic concepts showed that human activities were affecting the ozone layer. Later measurements and theoretical analyses have clearly connected observed changes in ozone to human-related increases of chlorine and bromine in the stratosphere. As a result of prompt international policy agreements, the combined abundances of ozone-depleting compounds peaked in 1994 and ozone is already beginning a slow path to recovery. A much more difficult problem confronting humanity is the impact of increasing levels of carbon dioxide and other greenhouse gases on global climate. The processes that connect greenhouse gas emissions to climate are very complex. This complexity has limited our ability to make a definitive projection of future climate change. Nevertheless, the range of projected climate change shows that global warming has the potential to severely impact human welfare and our planet as a whole. This paper evaluates the state of the scientific understanding of the global change issues, their potential impacts, and the relationships of scientific understanding to policy considerations.
Collapse
Affiliation(s)
- D J Wuebbles
- Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
18
|
Haq BU. Natural gas hydrates: searching for the long-term climatic and slope-stability records. ACTA ACUST UNITED AC 1998. [DOI: 10.1144/gsl.sp.1998.137.01.24] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Lashof DA, DeAngelo BJ, Saleska SR, Harte J. TERRESTRIAL ECOSYSTEM FEEDBACKS TO GLOBAL CLIMATE CHANGE. ACTA ACUST UNITED AC 1997. [DOI: 10.1146/annurev.energy.22.1.75] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
▪ Abstract Anthropogenic greenhouse gases are expected to induce changes in global climate that can alter ecosystems in ways that, in turn, may further affect climate. Such climate-ecosystem interactions can generate either positive or negative feedbacks to the climate system, thereby either enhancing or diminishing the magnitude of global climate change. Important terrestrial feedback mechanisms include CO2 fertilization (negative feedbacks), carbon storage in vegetation and soils (positive and negative feedbacks), vegetation albedo (positive feedbacks), and peatland methane emissions (positive and negative feedbacks). While the processes involved are complex, not readily quantifiable, and demonstrate both positive and negative feedback potential, we conclude that the combined effect of the feedback mechanisms reviewed here will likely amplify climate change relative to current projections that have not yet adequately incorporated these mechanisms.
Collapse
Affiliation(s)
| | | | - Scott R. Saleska
- University of California at Berkeley, Berkeley, California 94720;,
| | - John Harte
- University of California at Berkeley, Berkeley, California 94720;,
| |
Collapse
|
20
|
Thorpe RB, Law KS, Bekki S, Pyle JA, Nisbet EG. Is methane-driven deglaciation consistent with the ice core record? ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96jd02547] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|