1
|
Aboelhadid SM, Ibrahium SM, Abdel-Tawab H, Hassan AO, Al-Quraishy S, Saleh FEZR, Abdel-Baki AAS. Toxicity and Repellency Efficacy of Benzyl Alcohol and Benzyl Benzoate as Eco-Friendly Choices to Control the Red Flour Beetle Tribolium castaneum (Herbst. 1797). Molecules 2023; 28:7731. [PMID: 38067462 PMCID: PMC10707955 DOI: 10.3390/molecules28237731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Tribolium castaneum is a damaging pest of stored grains, causing significant losses and secreting lethal quinones, which render the grains unfit for human consumption. Chemical insecticides are the most commonly used approach for control; however, they create insecticide resistance and affect the health of humans, animals, and the environment. As a result, it is critical to find an environmentally friendly pest-management strategy. In this study, two naturally occurring chemicals, benzyl alcohol (BA) and benzoyl benzoate (BB), were investigated for insecticidal activity against T. castaneum using different assays (impregnated-paper, contact toxicity, fumigant, and repellency assays). The results showed that BA had a significant insecticidal effect, with the LC50 achieved at a lower concentration in the direct-contact toxicity test (1.77%) than in the impregnated-paper assay (2.63%). BB showed significant effects in the direct-contact toxicity test, with an LC50 of 3.114%, and a lower toxicity in the impregnated-paper assay, with an LC50 of 11.75%. Furthermore, BA exhibited significant fumigant toxicity against T. castaneum, with an LC50 of 6.72 µL/L, whereas BB exhibited modest fumigant toxicity, with an LC50 of 464 µL/L. Additionally, at different concentrations (0.18, 0.09, 0.045, and 0.0225 µL/cm2), BA and BB both showed a notable and potent repelling effect. BA and BB significantly inhibited acetylcholinesterase, reduced glutathione (GSH), and increased malondialdehyde (MDA) in treated T. castaneum. This is the first report of BA insecticidal activity against the red flour beetle. Also, the outcomes of various assays demonstrated that the application of BA induces a potent bio-insecticidal effect. BA may be a promising eco-friendly alternative to control T. castaneum due to its safety and authorization by the EFSA (European Food Safety Authority).
Collapse
Affiliation(s)
- Shawky M. Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Samar M. Ibrahium
- Parasitology Department, Animal Health Research Institute, Fayum Branch, Fayum 16101, Egypt;
| | - Heba Abdel-Tawab
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt (A.-A.S.A.-B.)
| | - Ahmed O. Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
2
|
Bai X, Yang Q, Guo Y, Hao B, Zhang R, Duan R, Li J. Alkyl halide formation from degradation of carboxylic acids in the presence of Fe(III) and halides under light irradiation. WATER RESEARCH 2023; 235:119842. [PMID: 36921357 DOI: 10.1016/j.watres.2023.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Advanced oxidation processes (AOPs) have been widely used in water and wastewater treatment and have shown excellent performance in remediating contaminated water. However, their oxidation byproducts, including halogenated organics, have recently attracted increasing attention. Alkyl halides are among the most important environmental pollutants in nature. Here, we report a Fenton-like reaction in which alkyl halides can form during the photodegradation of aliphatic carboxylic acids in the presence of Fe(III) and halides. Chloromethane, chloroethane, and 1-chloropropane were produced from the degradation of acetic acid, propionic acid and n-butyric acid, respectively. CH3Cl, CH2Cl2 and CHCl3 were all identified as the products of acetic acid with the yields of approximately 5.1%, 0.2% and 0.005%, respectively. It was demonstrated that hydroxyl radicals, halogen radicals and alkyl radicals were involved in the formation of alkyl halides. A possible mechanism of chloromethane formation was proposed based on the results. In real samples of saline water, the addition of carboxylic acid and Fe(III) significantly promoted the generation of CH3Cl under xenon lamp irradiation. The results indicated that the coexistence of Fe(III), halides and carboxylic acids enhanced the photochemical release of alkyl halides. The reactions described in this paper may contribute to knowledge on the mechanism of halogenated byproduct formation during AOPs.
Collapse
Affiliation(s)
- Xueling Bai
- Department of Chemistry, China Agricultural University, Beijing, 100193 China
| | - Qian Yang
- Department of Chemistry, China Agricultural University, Beijing, 100193 China
| | - Yang Guo
- Department of Chemistry, China Agricultural University, Beijing, 100193 China
| | - Baoqiang Hao
- Department of Chemistry, China Agricultural University, Beijing, 100193 China
| | - Renyuan Zhang
- Department of Chemistry, China Agricultural University, Beijing, 100193 China
| | - Ran Duan
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Li
- Department of Chemistry, China Agricultural University, Beijing, 100193 China.
| |
Collapse
|
3
|
Deb M, Kumar D. Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium casteneum (Herbst. 1797) (Coleoptera: Tenebrionidae): An eco-friendly approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109988. [PMID: 31767459 DOI: 10.1016/j.ecoenv.2019.109988] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
Tribolium casteneum is a major stored grains pest causing huge loss by secreting toxic quinones' which make the grains unfit for human consumption. Increasing concern about the fast-growing resistance in T. casteneum against fumigants has evoked more intense research worldwide. Therefore, finding an eco-friendly alternative for the management of the pest is of great importance. In this study, the insecticidal activity of the essential oils (EOs) of Artemisia annua is evaluated. Chemical composition of the EOs eluted with methanol and petroleum ether was analysed through Gas chromatography-mass spectrometry (GC-MS). The result has reported a total of 13 & 16 compounds in the methanol and petroleum ether EOs respectively. In contact toxicity studies, adults were found more susceptible to the petroleum ether EOs (LD50 = 0.43 mg adult-1) than the methanolic EOs (LD50 = 1.87 mg adult-1). Petroleum ether EOs was also superior in fumigant assays against both the adults (0.81 mg L air-1) and larvae (0.65 mg L air-1). Moreover, the same was also recorded as a strong repellent. The bio-molecular studies conducted to gain an insight into the extent of metabolic disturbances inflicted in the treatment sets has shown a significant increase in Lipid peroxidase and decrease (p˂0.01) in protein, Acetylcholinesterase, Glutathione S Transferees, Reduced Glutathione level. This indicates the major signs of oxidative stress in the treatment sets. The Results ascertain the knowledge to develop natural insecticides from Artemisia annua using a potential solvent to be used in the future as an efficient management tool against T. casteneum.
Collapse
Affiliation(s)
- Mamata Deb
- Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India.
| | - Dolly Kumar
- Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India.
| |
Collapse
|
4
|
Arney G, Domagal-Goldman SD, Meadows VS. Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres. ASTROBIOLOGY 2018; 18:311-329. [PMID: 29189040 PMCID: PMC5867516 DOI: 10.1089/ast.2017.1666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/20/2017] [Indexed: 05/21/2023]
Abstract
Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30× the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1× the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1× the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 ∼ 0.2, but at 30× the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 μm, likely the most accessible CO2 feature on an Archean-like exoplanet. Key Words: Organic haze-Organic sulfur gases-Biosignatures-Archean Earth. Astrobiology 18, 311-329.
Collapse
Affiliation(s)
- Giada Arney
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Shawn D. Domagal-Goldman
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Victoria S. Meadows
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, Seattle, Washington
- Astronomy Department, University of Washington, Seattle, Washington
- University of Washington Astrobiology Program, Seattle, Washington
| |
Collapse
|
5
|
Li Y, Liu C, Cui Y, Walse SS, Olver R, Zilberman D, Mitch WA. Development of an Activated Carbon-Based Electrode for the Capture and Rapid Electrolytic Reductive Debromination of Methyl Bromide from Postharvest Fumigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11200-11208. [PMID: 27611209 DOI: 10.1021/acs.est.6b03489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to concerns surrounding its ozone depletion potential, there is a need for technologies to capture and destroy methyl bromide (CH3Br) emissions from postharvest fumigations applied to control agricultural pests. Previously, we described a system in which CH3Br fumes vented from fumigation chambers could be captured by granular activated carbon (GAC). The GAC was converted to a cathode by submergence in a high ionic strength solution and connection to the electrical grid, resulting in reductive debromination of the sorbed CH3Br. The GAC bed was drained and dried for reuse to capture and destroy CH3Br fumes from the next fumigation. However, the loose GAC particles and slow kinetics of this primitive electrode necessitated improvements. Here, we report the development of a cathode containing a thin layer of small GAC particles coating carbon cloth as a current distributor. Combining the high sorption potential of GAC for CH3Br with the conductivity of the carbon cloth current distributor, the cathode significantly lowered the total cell resistance and achieved 96% reductive debromination of CH3Br sorbed at 30% by weight to the GAC within 15 h at -1 V applied potential vs standard hydrogen electrode, a time scale and efficiency suitable for postharvest fumigations. The cathode exhibited stable performance over 50 CH3Br capture and destruction cycles. Initial cost estimates indicate that this technique could treat CH3Br fumes at ∼$5/kg, roughly one-third of the cost of current alternatives.
Collapse
Affiliation(s)
- Yuanqing Li
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| | - Chong Liu
- Department of Materials Science and Engineering, Stanford University , McCullough Building, Stanford, California 94305, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University , McCullough Building, Stanford, California 94305, United States
| | - Spencer S Walse
- Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, USDA , 9611 South Riverbend Avenue, Parlier, California 93648-9757, United States
| | - Ryan Olver
- Department of Agricultural and Resource Economics, Giannini Hall, University of California at Berkeley , Berkeley, California 94720, United States
| | - David Zilberman
- Department of Agricultural and Resource Economics, Giannini Hall, University of California at Berkeley , Berkeley, California 94720, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
6
|
Torgasheva NA, Menzorova NI, Sibirtsev YT, Rasskazov VA, Zharkov DO, Nevinsky GA. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius. MOLECULAR BIOSYSTEMS 2016; 12:2247-56. [PMID: 27158700 DOI: 10.1039/c5mb00906e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.
Collapse
Affiliation(s)
- Natalya A Torgasheva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Natalya I Menzorova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Yurii T Sibirtsev
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Valery A Rasskazov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Adluri ANS, Murphy JN, Tozer T, Rowley CN. Polarizable Force Field with a σ-Hole for Liquid and Aqueous Bromomethane. J Phys Chem B 2015; 119:13422-32. [DOI: 10.1021/acs.jpcb.5b09041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Archita N. S. Adluri
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| | - Jennifer N. Murphy
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| | - Tiffany Tozer
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| | - Christopher N. Rowley
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| |
Collapse
|
8
|
Ooki A, Tsuda A, Kameyama S, Takeda S, Itoh S, Suga T, Tazoe H, Okubo A, Yokouchi Y. Methyl halides in surface seawater and marine boundary layer of the northwest Pacific. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jc005703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Atsushi Ooki
- National Institute for Environmental Studies Ibaraki Japan
| | - Atsushi Tsuda
- Atmosphere and Ocean Research Institute University of Tokyo Tokyo Japan
| | - Sohiko Kameyama
- National Institute for Environmental Studies Ibaraki Japan
- Now at Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan
| | - Shigenobu Takeda
- Graduate School of Agricultural and Life Sciences University of Tokyo Tokyo Japan
- Now at Faculty of Fisheries, Nagasaki University, Nagasaki, Japan
| | - Sachihiko Itoh
- Atmosphere and Ocean Research Institute University of Tokyo Tokyo Japan
| | - Toshio Suga
- Department of Geophysics, Graduate School of Science Tohoku University Miyagi Japan
- Now at Institute of Observational Research for Global Change, Japan Agency for Marine Earth Science and Technology, Kanagawa, Japan
| | - Hirofumi Tazoe
- College of Humanities and Sciences Nihon University Tokyo Japan
| | - Ayako Okubo
- Atmosphere and Ocean Research Institute University of Tokyo Tokyo Japan
- Now at Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yoko Yokouchi
- National Institute for Environmental Studies Ibaraki Japan
| |
Collapse
|
9
|
Substrate-specific clades of active marine methylotrophs associated with a phytoplankton bloom in a temperate coastal environment. Appl Environ Microbiol 2008; 74:7321-8. [PMID: 18849453 DOI: 10.1128/aem.01266-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine microorganisms that consume one-carbon (C(1)) compounds are poorly described, despite their impact on global climate via an influence on aquatic and atmospheric chemistry. This study investigated marine bacterial communities involved in the metabolism of C(1) compounds. These communities were of relevance to surface seawater and atmospheric chemistry in the context of a bloom that was dominated by phytoplankton known to produce dimethylsulfoniopropionate. In addition to using 16S rRNA gene fingerprinting and clone libraries to characterize samples taken from a bloom transect in July 2006, seawater samples from the phytoplankton bloom were incubated with (13)C-labeled methanol, monomethylamine, dimethylamine, methyl bromide, and dimethyl sulfide to identify microbial populations involved in the turnover of C(1) compounds, using DNA stable isotope probing. The [(13)C]DNA samples from a single time point were characterized and compared using denaturing gradient gel electrophoresis (DGGE), fingerprint cluster analysis, and 16S rRNA gene clone library analysis. Bacterial community DGGE fingerprints from (13)C-labeled DNA were distinct from those obtained with the DNA of the nonlabeled community DNA and suggested some overlap in substrate utilization between active methylotroph populations growing on different C(1) substrates. Active methylotrophs were affiliated with Methylophaga spp. and several clades of undescribed Gammaproteobacteria that utilized methanol, methylamines (both monomethylamine and dimethylamine), and dimethyl sulfide. rRNA gene sequences corresponding to populations assimilating (13)C-labeled methyl bromide and other substrates were associated with members of the Alphaproteobacteria (e.g., the family Rhodobacteraceae), the Cytophaga-Flexibacter-Bacteroides group, and unknown taxa. This study expands the known diversity of marine methylotrophs in surface seawater and provides a comprehensive data set for focused cultivation and metagenomic analyses in the future.
Collapse
|
10
|
Colomb A, Yassaa N, Williams J, Peeken I, Lochte K. Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS). ACTA ACUST UNITED AC 2008; 10:325-30. [DOI: 10.1039/b715312k] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
|
12
|
Saltzman ES. Methyl bromide in preindustrial air: Measurements from an Antarctic ice core. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004157] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
|
14
|
|
15
|
Williams J, Wang NY, Cicerone RJ. Methyl bromide emissions from agricultural field fumigations in California. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999jd900825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Lee-Taylor JM, Doney SC, Brasseur GP, Müller JF. A global three-dimensional atmosphere-ocean model of methyl bromide distributions. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98jd00970] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Bassford MR, Simmonds PG, Nickless G. An Automated System for Near-Real-Time Monitoring of Trace Atmospheric Halocarbons. Anal Chem 1998; 70:958-65. [DOI: 10.1021/ac970861z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew R. Bassford
- School of Chemistry, Cantocks Close, University of Bristol, Bristol BS8 1TS, U.K
| | - Peter G. Simmonds
- School of Chemistry, Cantocks Close, University of Bristol, Bristol BS8 1TS, U.K
| | - Graham Nickless
- School of Chemistry, Cantocks Close, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
18
|
Ristaino JB, Thomas W. Agriculture, Methyl Bromide, and the Ozone Hole: Can We Fill the Gaps? PLANT DISEASE 1997; 81:964-977. [PMID: 30861981 DOI: 10.1094/pdis.1997.81.9.964] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
| | - William Thomas
- Stratospheric Protection Division, Office of Atmospheric Programs, United States Environmental Protection Agency, Washington, DC
| |
Collapse
|
19
|
King DB, Saltzman ES. Removal of methyl bromide in coastal seawater: Chemical and biological rates. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97jc01214] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|