1
|
Hatami S, Hefler J, Freed DH. Inflammation and Oxidative Stress in the Context of Extracorporeal Cardiac and Pulmonary Support. Front Immunol 2022; 13:831930. [PMID: 35309362 PMCID: PMC8931031 DOI: 10.3389/fimmu.2022.831930] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Extracorporeal circulation (ECC) systems, including cardiopulmonary bypass, and extracorporeal membrane oxygenation have been an irreplaceable part of the cardiothoracic surgeries, and treatment of critically ill patients with respiratory and/or cardiac failure for more than half a century. During the recent decades, the concept of extracorporeal circulation has been extended to isolated machine perfusion of the donor organ including thoracic organs (ex-situ organ perfusion, ESOP) as a method for dynamic, semi-physiologic preservation, and potential improvement of the donor organs. The extracorporeal life support systems (ECLS) have been lifesaving and facilitating complex cardiothoracic surgeries, and the ESOP technology has the potential to increase the number of the transplantable donor organs, and to improve the outcomes of transplantation. However, these artificial circulation systems in general have been associated with activation of the inflammatory and oxidative stress responses in patients and/or in the exposed tissues and organs. The activation of these responses can negatively affect patient outcomes in ECLS, and may as well jeopardize the reliability of the organ viability assessment, and the outcomes of thoracic organ preservation and transplantation in ESOP. Both ECLS and ESOP consist of artificial circuit materials and components, which play a key role in the induction of these responses. However, while ECLS can lead to systemic inflammatory and oxidative stress responses negatively affecting various organs/systems of the body, in ESOP, the absence of the organs that play an important role in oxidant scavenging/antioxidative replenishment of the body, such as liver, may make the perfused organ more susceptible to inflammation and oxidative stress during extracorporeal circulation. In the present manuscript, we will review the activation of the inflammatory and oxidative stress responses during ECLP and ESOP, mechanisms involved, clinical implications, and the interventions for attenuating these responses in ECC.
Collapse
Affiliation(s)
- Sanaz Hatami
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H. Freed
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Darren H. Freed,
| |
Collapse
|
2
|
Zhang X, Xuan W, Yin P, Wang L, Wu X, Wu Q. Gastric tonometry guided therapy in critical care patients: a systematic review and meta-analysis. Crit Care 2015; 19:22. [PMID: 25622724 PMCID: PMC4350856 DOI: 10.1186/s13054-015-0739-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/13/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction The value of gastric intramucosal pH (pHi) can be calculated from the tonometrically measured partial pressure of carbon dioxide (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {P}_{C{O}_2} $$\end{document}PCO2) in the stomach and the arterial bicarbonate content. Low pHi and increase of the difference between gastric mucosal and arterial \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {P}_{C{O}_2} $$\end{document}PCO2 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {P}_{C{O}_2} $$\end{document}PCO2 gap) reflect splanchnic hypoperfusion and are good indicators of poor prognosis. Some randomized controlled trials (RCTs) were performed based on the theory that normalizing the low pHi or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {P}_{C{O}_2} $$\end{document}PCO2 gap could improve the outcomes of critical care patients. However, the conclusions of these RCTs were divergent. Therefore, we performed a systematic review and meta-analysis to assess the effects of this goal directed therapy on patient outcome in Intensive Care Units (ICUs). Methods We searched PubMed, EMBASE, the Cochrane Library and ClinicalTrials.gov for randomized controlled trials comparing gastric tonometry guided therapy with control groups. Baseline characteristics of each included RCT were extracted and displayed in a table. We calculated pooled odds ratios (ORs) with 95% confidence intervals (CIs) for dichotomous outcomes. Another measure of effect (risk difference, RD) was used to reassess the effects of gastric tonometry on total mortality. We performed sensitivity analysis for total mortality. Continuous outcomes were presented as standardised mean differences (SMDs) together with 95% CIs. Results The gastric tonometry guided therapy significantly reduced total mortality (OR, 0.732; 95% CI, 0.536 to 0.999, P = 0.049; I2 = 0%; RD, −0.056; 95% CI, −0.109 to −0.003, P = 0.038; I2 = 0%) when compared with control groups. However, after excluding the patients with normal pHi on admission, the beneficial effects of this therapy did not exist (OR, 0.736; 95% CI 0.506 to 1.071, P = 0.109; I2 = 0%). ICU length of stay, hospital length of stay and days intubated were not significantly improved by this therapy. Conclusions In critical care patients, gastric tonometry guided therapy can reduce total mortality. Patients with normal pHi on admission contributed to the ultimate result of this outcome; it may indicate that these patients may be more sensitive to this therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Surgery Building, Union Hospital, No. 1277, Jiefang Road, Wuhan City, Hubei Province, 430022, China.
| | - Wei Xuan
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Surgery Building, Union Hospital, No. 1277, Jiefang Road, Wuhan City, Hubei Province, 430022, China.
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan City, Hubei Province, 430030, China.
| | - Linlin Wang
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Surgery Building, Union Hospital, No. 1277, Jiefang Road, Wuhan City, Hubei Province, 430022, China.
| | - Xiaodan Wu
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Surgery Building, Union Hospital, No. 1277, Jiefang Road, Wuhan City, Hubei Province, 430022, China.
| | - Qingping Wu
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Surgery Building, Union Hospital, No. 1277, Jiefang Road, Wuhan City, Hubei Province, 430022, China.
| |
Collapse
|
3
|
Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014; 35:195-233. [PMID: 24311737 PMCID: PMC3963262 DOI: 10.1210/er.2013-1053] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases.
Collapse
Affiliation(s)
- Monalisa F Azevedo
- Section on Endocrinology Genetics (M.F.A., F.R.F., E.B., A.H., I.L., R.B.d.A., C.A.S.), Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892; Section of Endocrinology (M.F.A.), University Hospital of Brasilia, Faculty of Medicine, University of Brasilia, Brasilia 70840-901, Brazil; Group for Advanced Molecular Investigation (F.R.F., R.B.d.A.), Graduate Program in Health Science, Medical School, Pontificia Universidade Catolica do Paraná, Curitiba 80215-901, Brazil; Cardiovascular Pulmonary Branch (F.A., V.M.), National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892; and Pediatric Endocrinology Inter-Institute Training Program (C.A.S.), NICHD, NIH, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hall R. Identification of Inflammatory Mediators and Their Modulation by Strategies for the Management of the Systemic Inflammatory Response During Cardiac Surgery. J Cardiothorac Vasc Anesth 2013; 27:983-1033. [DOI: 10.1053/j.jvca.2012.09.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 12/21/2022]
|
5
|
Mokra D, Drgova A, Pullmann R, Calkovska A. Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury. Pulm Pharmacol Ther 2012; 25:216-22. [PMID: 22387424 DOI: 10.1016/j.pupt.2012.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 11/17/2022]
Abstract
Since inflammation and oxidation play a key role in the pathophysiology of neonatal meconium aspiration syndrome, various anti-inflammatory drugs have been tested in the treatment. This study evaluated whether the phosphodiesterase (PDE) 3 inhibitor olprinone can alleviate meconium-induced inflammation and oxidative lung injury. Oxygen-ventilated rabbits intratracheally received 4 ml/kg of meconium (25 mg/ml) or saline. Thirty minutes after meconium/saline instillation, meconium-instilled animals were treated by intravenous olprinone (0.2 mg/kg) or were left without treatment. All animals were oxygen-ventilated for an additional 5 h. A bronchoalveolar lavage (BAL) of the left lungs was performed and differential leukocyte count in the sediment was estimated. The right lungs were used to determine lung edema by wet/dry weight ratio, as well as to detect oxidative damage to the lungs. In the lung tissue homogenate, total antioxidant status (TAS) was determined. In isolated lung mitochondria, the thiol group content, conjugated dienes, thiobarbituric acid-reactive substances (TBARS), dityrosine, lysine-lipid peroxidation products, and activity of cytochrome c oxidase (COX) were estimated. To evaluate the effects of meconium instillation and olprinone treatment on the systemic level, TBARS and TAS were determined in the blood plasma, as well. Meconium instillation increased the relative numbers of neutrophils and eosinophils in the BAL fluid, increased edema formation and concentrations of oxidation markers, and decreased TAS. Treatment with olprinone reduced the numbers of polymorphonuclears in the BAL fluid, decreased the formation of most oxidation markers in the lungs, reduced lung edema and prevented a decrease in TAS in the lung homogenate compared to non-treated animals. In the blood plasma, olprinone decreased TBARS and increased TAS compared to the non-treated group. Conclusion, the selective PDE3 inhibitor olprinone has shown potent antioxidative and anti-inflammatory effects in the meconium-induced oxidative lung injury.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University and Martin University Hospital, Mala Hora 4, SK-03601 Martin, Slovakia.
| | | | | | | |
Collapse
|
6
|
Koike T, Nadeen Qutab M, Tsuchida M, Takekubo M, Saito M, Hayashi JI. Pretreatment with olprinone hydrochloride, a phosphodiesterase III inhibitor, attenuates lipopolysaccharide-induced lung injury via an anti-inflammatory effect. Pulm Pharmacol Ther 2007; 21:166-71. [PMID: 17434327 DOI: 10.1016/j.pupt.2007.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 12/26/2006] [Accepted: 01/20/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Acute respiratory distress syndrome is characterized by neutrophil accumulation in the lungs and the activation of several cytokines produced by macrophages. Olprinone hydrochloride, a specific phosphodiesterase III inhibitor, has anti-inflammatory effects and inhibits the activation of macrophages, in addition to its inotropic and vasodilatory effects. The purpose of this study was to examine the beneficial effects of olprinone on lipopolysaccharide (LPS)-induced pulmonary inflammation. MATERIALS AND METHODS Lung inflammation was produced by intravenous LPS injection into rats. The rats were divided into four groups: a vehicle group in which normal saline was injected, an olprinone group in which olprinone was injected at a dose of 0.2mg/kg, a dexamethasone group in which dexamethasone was injected at a dose of 5mg/kg, and a control group. In each group, drug was injected intraperitoneally 30 min before the intravenous administration of LPS. The blood was obtained at 1h and then animals were sacrificed at 6h and blood and lung specimen were obtained for cytokine analysis and pathological examination. On another set of experiment, bronchioloalveolar lavage (BAL) was performed for cytokine analysis of BAL fluid. The macrophages isolated from normal rat by BAL were cultured in vitro with the presence of LPS and olprinone or dexamethasone, and supernatant was collected. The levels of several cytokines in the serum, in the BAL fluid, and in the culture supernatant were determined. RESULTS The animals injected with LPS were found to have an influx of neutrophils in the lungs, and inflammatory cytokines, such as TNF-alpha and IL-6, and anti-inflammatory cytokine IL-10 were produced. Pretreatment with olprinone or dexamethasone significantly inhibited the LPS-induced neutrophil influx into the lungs, suppressed inflammatory cytokines TNF-alpha and IL-6. The level of anti-inflammatory cytokine IL-10 increased in an olprinone group. The inhibition of TNF-alpha and IL-6, and the augmentation of IL-10 release were also observed in in vitro culture of isolated rat alveolar macrophages when olprinone (10(-5)mol/ml) and LPS (10 microg/ml) were cultured together. However, the level of IL-10 in serum and culture supernatant was suppressed in a dexamesathone group. CONCLUSION LPS-induced lung inflammation is strongly inhibited by olprinone accompanying the enhancement of IL-10 and the inhibition of inflammatory cytokines. Results of the in vitro experiment suggest that alveolar macrophages may play an important role in ameliorating LPS-induced lung inflammation and the mechanism of its effect is different from that of steroid.
Collapse
Affiliation(s)
- Terumoto Koike
- Division of Thoracic and Cardiovascular Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Chong AJ, Hampton CR, Verrier ED. Microvascular Inflammatory Response in Cardiac Surgery. Semin Cardiothorac Vasc Anesth 2003. [DOI: 10.1177/108925320300700308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac surgical procedures, with or without cardiopulmonary bypass, elicit a systemic inflammatory response in patients that induces the elaboration of multiple cytokines, chemokines, adhesion molecules, and destructive enzymes. This inflammatory reaction involves multiple interdependent and redundant cell types and humoral cascades, which allows for amplification and positive feedback at numerous steps. This systemic inflammatory response ultimately results in a broad spectrum of clinical manifestations, with multiple organ failure being the most severe form. Investigative efforts have focused on understanding the mechanism of this systemic inflammatory response syndrome in order to develop potential therapeutic targets to inhibit it, thereby possibly decreasing postoperative morbidity and mortality. Multiple therapeutic methods have been investigated, including pharmacologic inhibitors and modifications of surgical technique and the cardiopulmonary bypass circuit. Although studies have demonstrated that the use of these therapies in experimental and clinical settings has attenuated the systemic inflammatory response, they have failed to conclusively show clinical benefit from these therapies. These therapies may be too specific to minimize the deleterious effects of a systemic inflammatory response that results from the activation of multiple, interdependent, and redundant inflammatory cascades and cell types. Hence, further studies that investigate the molecular and cellular events underlying the systemic inflammatory response syndrome and the resultant effects of anti-inflammatory therapies are warranted to ultimately achieve improvements in clinical outcome after cardiac surgical procedures.
Collapse
Affiliation(s)
| | | | - Edward D. Verrier
- Division of Cardiothoracic Surgery, The University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, University of California, San Francisco, School of Medicine, 94115, USA
| | | | | | | |
Collapse
|
9
|
Abstract
It is generally accepted that cardiac surgery is frequently associated with the development of systemic inflammatory response. This phenomenon is very variable clinically, and can be detected by measuring plasma concentrations of certain inflammatory markers. Complement component, cytokines and adhesion molecules are examples of these markers. Systemic inflammation can be potentially damaging to major organs. Several anti-inflammatory strategies have been used in recent years, aiming to attenuate the development of systemic inflammatory response. This article summarizes recently published literature concerning the use of anti-inflammatory techniques and pharmacological agents in cardiac surgery. In particular, the anti-inflammatory effects of off-pump surgery, leukocyte filtration, corticosteroids, aprotinin, phosphodiesterase inhibitors, dpoexamine, H2 antagonists and ACE inhibitors are reviewed. The overall conclusion is that although certain strategies reduce plasma levels of inflammatory mediators, convincing evidence of significant clinical benefits is yet to come.
Collapse
|