1
|
Nielsen CU, Jakobsen S, Pedersen ML. Non-Steroidal Anti-Inflammatory Drugs Are Inhibitors of the Intestinal Proton-Coupled Amino Acid Transporter (PAT1): Ibuprofen and Diclofenac Are Non-Translocated Inhibitors. Pharmaceutics 2025; 17:49. [PMID: 39861697 PMCID: PMC11768184 DOI: 10.3390/pharmaceutics17010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. Methods: The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in X. laevis oocytes injected with hPAT1 cRNA, measuring induced currents using the two-electrode voltage clamp technique. The molecular interaction between NSAIDs and hPAT1 was investigated using an AlphaFold2 model and molecular docking. Results: NSAIDs such as ibuprofen, diclofenac, and flurbiprofen inhibited proline uptake via hPAT1, with IC50 values of 954 (logIC50 2.98 ± 0.1) µM, 272 (logIC50 2.43 ± 0.1) µM, and 280 (logIC50 2.45 ± 0.1) µM, respectively. Ibuprofen acted as a non-competitive inhibitor of hPAT1-mediated proline transport. In hPAT1-expressing oocytes, ibuprofen and diclofenac did not induce inward currents, and inhibited inward currents caused by proline. Molecular modeling pointed to a binding mode involving an allosteric site. Conclusions: NSAIDs interact with hPAT1 as non-translocated non-competitive inhibitors, and molecular modeling points to a binding mode involving an allosteric site distinct from the substrate binding site. The present findings could be used as a starting point for developing specific hPAT1 inhibitors.
Collapse
Affiliation(s)
- Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (S.J.); (M.L.P.)
| | | | | |
Collapse
|
2
|
Mlynarski SN, Aquila BM, Cantin S, Cook S, Doshi A, Finlay MRV, Gangl ET, Grebe T, Gu C, Kawatkar SP, Petersen J, Pop-Damkov P, Schuller AG, Shao W, Shields JD, Simpson I, Tavakoli S, Tentarelli S, Throner S, Wang H, Wang J, Wu D, Ye Q. Discovery of (2 R,4 R)-4-(( S)-2-Amino-3-methylbutanamido)-2-(4-boronobutyl)pyrrolidine-2-carboxylic Acid (AZD0011), an Actively Transported Prodrug of a Potent Arginase Inhibitor to Treat Cancer. J Med Chem 2024; 67:20827-20841. [PMID: 39572889 DOI: 10.1021/acs.jmedchem.4c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Arginase is a promising immuno-oncology target that can restore the innate immune response. However, it's highly polar active site often requires potent inhibitors to mimic amino acids, leading to poor passive permeability and low oral exposure. Using structure-based drug design, we discovered a novel proline-based arginase inhibitor (10) that was potent but had low oral bioavailability in rat. This issue was addressed by incorporating amino acids to target PepT1/2 active transport, followed by in vivo hydrolysis post absorption. The hydrolysis rate was highly tunable, and the valine prodrug (19) showed the best balance of stability and exposure of the potent payload. Dosing of 19 in mouse xenograft models significantly increased arginine in the tumor microenvironment, resulting in tumor growth inhibition as a monotherapy and in combination with an anti-PD-L1 antibody. Compound 19 (AZD0011) displays good pharmacokinetics and was selected as a clinical drug candidate for cancer.
Collapse
Affiliation(s)
- Scott N Mlynarski
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Brian M Aquila
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Susan Cantin
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Steve Cook
- Advanced Drug Delivery, Pharmaceutical Sciences, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Aatman Doshi
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | | | - Eric T Gangl
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Tyler Grebe
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Chungang Gu
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Sameer P Kawatkar
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Jens Petersen
- Discovery Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| | - Petar Pop-Damkov
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Alwin G Schuller
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Wenlin Shao
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Jason D Shields
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Iain Simpson
- Early Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Siavash Tavakoli
- Discovery Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal SE-431 83, Sweden
| | - Sharon Tentarelli
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Scott Throner
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Haixia Wang
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Jianyan Wang
- Advanced Drug Delivery, Pharmaceutical Sciences, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Dedong Wu
- Advanced Drug Delivery, Pharmaceutical Sciences, AstraZeneca, Waltham 02451, Massachusetts, United States
| | - Qing Ye
- Early Oncology R&D, AstraZeneca, Waltham 02451, Massachusetts, United States
| |
Collapse
|
3
|
Gzik A, Borek B, Chrzanowski J, Jedrzejczak K, Dziegielewski M, Brzezinska J, Nowicka J, Grzybowski MM, Rejczak T, Niedzialek D, Wieczorek G, Olczak J, Golebiowski A, Zaslona Z, Blaszczyk R. Novel orally bioavailable piperidine derivatives as extracellular arginase inhibitors developed by a ring expansion. Eur J Med Chem 2024; 264:116033. [PMID: 38096651 DOI: 10.1016/j.ejmech.2023.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Arginase is a multifaced enzyme that plays an important role in health and disease being regarded as a therapeutic target for the treatment of various pathological states such as malignancies, asthma, and cardiovascular disease. The discovery of boronic acid-based arginase inhibitors in 1997 revolutionized attempts of medicinal chemistry focused on development of drugs targeting arginase. Unfortunately, these very polar compounds had limitations such as analysis and purification without chromophores, synthetically challenging space, and poor oral bioavailability. Herein, we present a novel class of boronic acid-based arginase inhibitors which are piperidine derivatives exhibiting a different pharmacological profile compared to our drug candidate in cancer immunotherapy -OATD-02 - dual ARG1/2 inhibitor with high intracellular activity. Compounds from this new series show low intracellular activity, hence they can inhibit mainly extracellular arginase, providing different therapeutic space compared to a dual intracellular ARG1/2 inhibitor. The disclosed series showed good inhibitory potential towards arginase enzyme in vitro (IC50 up to 160 nM), favorable pharmacokinetics in animal models, and encouraging preliminary in vitro and in vivo tolerability. Compounds from the new series have moderate-to-high oral bioavailability (up to 66 %) and moderate clearance in vivo. Herein we describe the development and optimization of the synthesis of the new class of boronic acid-based arginase inhibitors via a ring expansion approach starting from the inexpensive chirality source (d-hydroxyproline). This upgraded methodology facilitated a gram-scale delivery of the final compound and eliminated the need for costly and time-consuming chiral resolution.
Collapse
Affiliation(s)
- Anna Gzik
- Molecure S.A., Zwirki i Wigury 101, Warsaw, 02-089, Poland
| | | | | | | | | | | | - Julita Nowicka
- Molecure S.A., Zwirki i Wigury 101, Warsaw, 02-089, Poland
| | | | - Tomasz Rejczak
- Molecure S.A., Zwirki i Wigury 101, Warsaw, 02-089, Poland
| | | | | | - Jacek Olczak
- Molecure S.A., Zwirki i Wigury 101, Warsaw, 02-089, Poland
| | | | | | | |
Collapse
|
4
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
5
|
Dawson DE, Lau C, Pradeep P, Sayre RR, Judson RS, Tornero-Velez R, Wambaugh JF. A Machine Learning Model to Estimate Toxicokinetic Half-Lives of Per- and Polyfluoro-Alkyl Substances (PFAS) in Multiple Species. TOXICS 2023; 11:98. [PMID: 36850973 PMCID: PMC9962572 DOI: 10.3390/toxics11020098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse group of man-made chemicals that are commonly found in body tissues. The toxicokinetics of most PFAS are currently uncharacterized, but long half-lives (t½) have been observed in some cases. Knowledge of chemical-specific t½ is necessary for exposure reconstruction and extrapolation from toxicological studies. We used an ensemble machine learning method, random forest, to model the existing in vivo measured t½ across four species (human, monkey, rat, mouse) and eleven PFAS. Mechanistically motivated descriptors were examined, including two types of surrogates for renal transporters: (1) physiological descriptors, including kidney geometry, for renal transporter expression and (2) structural similarity of defluorinated PFAS to endogenous chemicals for transporter affinity. We developed a classification model for t½ (Bin 1: <12 h; Bin 2: <1 week; Bin 3: <2 months; Bin 4: >2 months). The model had an accuracy of 86.1% in contrast to 32.2% for a y-randomized null model. A total of 3890 compounds were within domain of the model, and t½ was predicted using the bin medians: 4.9 h, 2.2 days, 33 days, and 3.3 years. For human t½, 56% of PFAS were classified in Bin 4, 7% were classified in Bin 3, and 37% were classified in Bin 2. This model synthesizes the limited available data to allow tentative extrapolation and prioritization.
Collapse
Affiliation(s)
- Daniel E. Dawson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
| | - Christopher Lau
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 T.W. Alexander Drive, Research Triangle Park, NC 277011, USA
| | - Prachi Pradeep
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
- Oak Ridge Institutes for Science and Education, Oak Ridge, TN 37830, USA
| | - Risa R. Sayre
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
| | - Richard S. Judson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
| | - Rogelio Tornero-Velez
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
| |
Collapse
|
6
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022; 21:1732-1776. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Food-derived bioactive peptides (BAPs) are recently utilized as functional food raw materials owing to their potential health benefits. Although there is a huge amount of scientific research about BAPs' identification, purification, characterization, and physiological functions, and subsequently, many BAPs have been marketed, there is a paucity of review on the regulatory requirements, bioavailability, and safety of BAPs. Thus, this review focuses on the toxic peptides that could arise from their primary proteins throughout protein extraction, protein pretreatment, and BAPs' formulation. Also, the influences of BAPs' length and administration dosage on safety are summarized. Lastly, the challenges and possibilities in BAPs' bioavailability and regulatory requirements in different countries were also presented. Results revealed that the human studies of BAPs are essential for approvals as healthy food and to prevent the consumers from misinformation and false promises. The BAPs that escape the gastrointestinal tract epithelium and move to the stomach are considered good peptides and get circulated into the blood using different pathways. In addition, the hydrophobicity, net charge, molecular size, length, amino acids composition/sequences, and structural characteristics of BAPs are critical for bioavailability, and appropriate food-grade carriers can enhance it. The abovementioned features are also vital to optimize the solubility, water holding capacity, emulsifying ability, and foaming property of BAPs in food products. In the case of safety, the possible allergenic and toxic peptides often exhibit physiological functions and could be produced during the hydrolysis of food proteins. It was also noted that the production of iso-peptides bonds and undesirable Maillard reaction might occur during protein extraction, sample pretreatments, and peptide synthesis.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Mingchun Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
Killer M, Wald J, Pieprzyk J, Marlovits TC, Löw C. Structural snapshots of human PepT1 and PepT2 reveal mechanistic insights into substrate and drug transport across epithelial membranes. SCIENCE ADVANCES 2021; 7:eabk3259. [PMID: 34730990 PMCID: PMC8565842 DOI: 10.1126/sciadv.abk3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The uptake of peptides in mammals plays a crucial role in nutrition and inflammatory diseases. This process is mediated by promiscuous transporters of the solute carrier family 15, which form part of the major facilitator superfamily. Besides the uptake of short peptides, peptide transporter 1 (PepT1) is a highly abundant drug transporter in the intestine and represents a major route for oral drug delivery. PepT2 also allows renal drug reabsorption from ultrafiltration and brain-to-blood efflux of neurotoxic compounds. Here, we present cryogenic electron microscopy (cryo-EM) structures of human PepT1 and PepT2 captured in four different states throughout the transport cycle. The structures reveal the architecture of human peptide transporters and provide mechanistic insights into substrate recognition and conformational transitions during transport. This may support future drug design efforts to increase the bioavailability of different drugs in the human body.
Collapse
Affiliation(s)
- Maxime Killer
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Faculty of Biosciences, Im Neuenheimer Feld 234, D-69120 Heidelberg, Germany
| | - Jiri Wald
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestrasse 85, D-22607 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Joanna Pieprzyk
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Thomas C. Marlovits
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestrasse 85, D-22607 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Corresponding author.
| |
Collapse
|
9
|
Expression, purification and characterization of human proton-coupled oligopeptide transporter 1 hPEPT1. Protein Expr Purif 2021; 190:105990. [PMID: 34637915 DOI: 10.1016/j.pep.2021.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
The human peptide transporter hPEPT1 (SLC15A1) is responsible for uptake of dietary di- and tripeptides and a number of drugs from the small intestine by utilizing the proton electrochemical gradient, and hence an important target for peptide-like drug design and drug delivery. hPEPT1 belongs to the ubiquitous major facilitator superfamily that all contain a 12TM core structure, with global conformational changes occurring during the transport cycle. Several bacterial homologues of these transporters have been characterized, providing valuable insight into the transport mechanism of this family. Here we report the overexpression and purification of recombinant hPEPT1 in a detergent-solubilized state. Thermostability profiling of hPEPT1 at different pH values revealed that hPEPT1 is more stable at pH 6 as compared to pH 7 and 8. Micro-scale thermophoresis (MST) confirmed that the purified hPEPT1 was able to bind di- and tripeptides respectively. To assess the in-solution oligomeric state of hPEPT1, negative stain electron microscopy was performed, demonstrating a predominantly monomeric state.
Collapse
|
10
|
Intestinal membrane transporter-mediated approaches to improve oral drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00515-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Amezcua M, Cruz RS, Ku A, Moran W, Ortega ME, Salzameda NT. Discovery of Dipeptides as Potent Botulinum Neurotoxin A Light-Chain Inhibitors. ACS Med Chem Lett 2021; 12:295-301. [PMID: 33603978 DOI: 10.1021/acsmedchemlett.0c00674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
The botulinum neurotoxin, the caustic agent that causes botulism, is the most lethal toxin known to man. The neurotoxin composed of a heavy chain (HC) and a light chain (LC) enters neurons and cleaves SNARE proteins, leading to flaccid paralysis, which, in severe occurrences, can result in death. A therapeutic target for botulinum neurotoxin (BoNT) intoxication is the LC, a zinc metalloprotease that directly cleaves SNARE proteins. Herein we report dipeptides containing an aromatic connected to the N-terminus via a sulfonamide and a hydroxamic acid at the C-terminus as BoNT/A LC inhibitors. On the basis of a structure-activity relationship study, 33 was discovered to inhibit the BoNT/A LC with an IC50 of 21 nM. X-ray crystallography analysis of 30 and 33 revealed that the dipeptides inhibit through a competitive mechanism and identified several key intermolecular interactions.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Ricardo S. Cruz
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Alex Ku
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Wilfred Moran
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Marcos E. Ortega
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Nicholas T. Salzameda
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| |
Collapse
|
12
|
Wang H, Shen X, Zheng X, Pan Y, Zhang Q, Liu Z. Intestinal lysozyme releases Nod2 ligand(s) to promote the intestinal mucosal adjuvant activity of cholera toxin. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1720-1731. [PMID: 33521852 DOI: 10.1007/s11427-020-1862-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/01/2022]
Abstract
Commensal bacteria boost serum IgG production in response to oral immunization with antigen and cholera toxin (CT) in a manner that depends on Nod2 (nucleotide-binding oligomerization domain-containing protein 2). In this study, we examined the role of intestinal lysozyme (Lyz1) in adjuvant activity of CT. We found that Lyz1 released Nod2 ligand(s) from bacteria. Lyz1 deficiency reduced the level of circulating Nod2 ligand in mice. Lyz1 deficiency also reduced the production of IgG and T-cellspecific cytokines after oral immunization in mice. Supplementing Lyz1-deficient mice with MDP restored IgG production. Furthermore, overexpression of Lyz1 in intestinal epithelium boosted the antigen-specific IgG response induced by CT. Collectively, our results indicate that Lyz1 plays an important role in mediating the immune regulatory effect of commensal bacteria through the release of Nod2 ligand(s).
Collapse
Affiliation(s)
- Haifang Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xueying Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojiao Zheng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qin Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhihua Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Pavlicevic M, Maestri E, Marmiroli M. Marine Bioactive Peptides-An Overview of Generation, Structure and Application with a Focus on Food Sources. Mar Drugs 2020; 18:E424. [PMID: 32823602 PMCID: PMC7460072 DOI: 10.3390/md18080424] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The biggest obstacles in the application of marine peptides are two-fold, as in the case of non-marine plant and animal-derived bioactive peptides: elucidating correlation between the peptide structure and its effect and demonstrating its stability in vivo. The structures of marine bioactive peptides are highly variable and complex and dependent on the sources from which they are isolated. They can be cyclical, in the form of depsipeptides, and often contain secondary structures. Because of steric factors, marine-derived peptides can be resistant to proteolysis by gastrointestinal proteases, which presents an advantage over other peptide sources. Because of heterogeneity, amino acid sequences as well as preferred mechanisms of peptides showing specific bioactivities differ compared to their animal-derived counterparts. This review offers insights on the extreme diversity of bioactivities, effects, and structural features, analyzing 253 peptides, mainly from marine food sources. Similar to peptides in food of non-marine animal origin, a significant percentage (52.7%) of the examined sequences contain one or more proline residues, implying that proline might play a significant role in the stability of bioactive peptides. Additional problems with analyzing marine-derived bioactive peptides include their accessibility, extraction, and purification; this review considers the challenges and proposes possible solutions.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11070 Belgrade, Serbia;
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
- Consorzio Italbiotec, Via Fantoli 16/15, 20138 Milan, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
| |
Collapse
|
14
|
Masri E, Ahsanullah, Accorsi M, Rademann J. Side-Chain Modification of Peptides Using a Phosphoranylidene Amino Acid. Org Lett 2020; 22:2976-2980. [PMID: 32223201 DOI: 10.1021/acs.orglett.0c00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The flexible variation of peptidomimetics is of great interest for the identification of optimized protein ligands. Here we present a general concept for introducing side-chain modifications into peptides using triarylphosphonium amino acids. Building blocks 4a and 4b are activated for amidation and incorporated into stable peptides. The obtained phosphoranylidene peptides undergo Wittig olefinations and 1,3-dipolar cycloaddition reactions, yielding peptidomimetics with vinyl ketones and 5-substituted 1,2,3-triazoles as non-native peptide side chains.
Collapse
Affiliation(s)
- Enaam Masri
- Department of Chemistry, Biology, and Pharmacy, Institute of Pharmacy/Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Ahsanullah
- Department of Chemistry, Biology, and Pharmacy, Institute of Pharmacy/Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany.,Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Matteo Accorsi
- Department of Chemistry, Biology, and Pharmacy, Institute of Pharmacy/Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Jörg Rademann
- Department of Chemistry, Biology, and Pharmacy, Institute of Pharmacy/Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| |
Collapse
|
15
|
Kawai K, Negoro R, Ichikawa M, Yamashita T, Deguchi S, Harada K, Hirata K, Takayama K, Mizuguchi H. Establishment of SLC15A1/PEPT1-Knockout Human-Induced Pluripotent Stem Cell Line for Intestinal Drug Absorption Studies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:49-57. [PMID: 31890740 PMCID: PMC6926248 DOI: 10.1016/j.omtm.2019.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Because many peptide and peptide-mimetic drugs are substrates of peptide transporter 1, it is important to evaluate the peptide transporter 1-mediated intestinal absorption of drug candidates in the early phase of drug development. Although intestinal cell lines treated with inhibitors of peptide transporter 1 are widely used to examine whether drug candidates are substrates for peptide transporter 1, these inhibitors are not sufficiently specific for peptide transporter 1. In this study, to generate a more precise evaluation model, we established peptide transporter 1-knockout induced pluripotent stem cells (iPSCs) by using a CRISPR-Cas9 system and differentiated the cells into intestinal epithelial-like cells. The permeability value and uptake capacity of glycylsarcosine (substrate of peptide transporter 1) in peptide transporter 1-knockout intestinal epithelial-like cells were significantly lower than those in wild-type intestinal epithelial-like cells, suggesting that peptide transporter 1 was successfully depleted in the epithelial cells. Taken together, our model can be useful in the development of peptide and peptide-mimetic drugs.
Collapse
Affiliation(s)
- Kanae Kawai
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Ryosuke Negoro
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Moe Ichikawa
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazumasa Hirata
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.,Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.,Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
16
|
The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019; 134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.
Collapse
|
17
|
Maestri E, Pavlicevic M, Montorsi M, Marmiroli N. Meta-Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect and Stability. Compr Rev Food Sci Food Saf 2018; 18:3-30. [PMID: 33337011 DOI: 10.1111/1541-4337.12402] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023]
Abstract
Amino acid (AA) sequences of 807 bioactive peptides from foods of animal origin were examined in order to correlate peptide structure with activity (antihypertensive, antioxidative, immunomodulatory, antimicrobial, hypolipidemic, antithrombotic, and opioid) and stability in vivo. Food sources, such as milk, meat, eggs, and marine products, show different frequencies of bioactive peptides exhibiting specific effects. There is a correlation of peptide structure and effect, depending on type and position of AA. Opioid peptides contain a high percentage of aromatic AA residues, while antimicrobial peptides show an excess of positively charged AAs. AA residue position is significant, with those in the first and penultimate positions having the biggest effects on peptide activity. Peptides that have activity in vivo contain a high percentage (67%) of proline residues, but the positions of proline in the sequence depend on the length of the peptide. We also discuss the influence of processing on activity of these peptides, as well as methods for predicting release from the source protein and activity of peptides.
Collapse
Affiliation(s)
- Elena Maestri
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Univ. of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.,Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), Univ. of Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Milica Pavlicevic
- Inst. for Food Technology and Biochemistry, Faculty of Agriculture, Univ. of Belgrade, Belgrade, Serbia
| | - Michela Montorsi
- Dept. of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open Univ., Via F. Daverio 7, 20122, Milan, Italy.,Consorzio Italbiotec, Via Fantoli, 16/15, 20138, Milano, Italy.,Inst. of Bioimaging and Molecular Physiology, National Council of Research (CNR), Via Fratelli Cervi 93, 20090, Segrate, Italy
| | - Nelson Marmiroli
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Univ. of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.,Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), Univ. of Parma, Parco Area delle Scienze, 43124, Parma, Italy.,Consorzio Italbiotec, Via Fantoli, 16/15, 20138, Milano, Italy
| |
Collapse
|
18
|
Khueychai S, Jangpromma N, Choowongkomon K, Joompang A, Daduang S, Vesaratchavest M, Payoungkiattikun W, Tachibana S, Klaynongsruang S. A novel ACE inhibitory peptide derived from alkaline hydrolysis of ostrich (Struthio camelus) egg white ovalbumin. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
He YY, Li TT, Chen JX, She XX, Ren DF, Lu J. Transport of ACE Inhibitory Peptides Ile-Gln-Pro and Val-Glu-Pro Derived from Spirulina platensis Across Caco-2 Monolayers. J Food Sci 2018; 83:2586-2592. [PMID: 30229911 DOI: 10.1111/1750-3841.14350] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022]
Abstract
This study evaluated transepithelial transport mechanisms of Ile-Gln-Pro (IQP) and Val-Glu-Pro (VEP), two ACE-inhibitory peptides derived from Spirulina platensis, using human intestinal Caco-2 cell monolayers. IQP and VEP were absorbed intact through Caco-2 cell monolayers with Papp values of 7.48 ± 0.58 × 10-6 and 5.05 ± 0.74 × 10-6 cm/s, respectively. The transport of IQP and VEP were affected neither by Gly-Pro nor by wortmannin, indicating that they were not PepT1-mediated and did not involve endocytosis. However, transport of IQP and VEP were increased significantly by sodium deoxycholate, suggesting that the major transport mechanism was paracellular. In addition, the increased transport of VEP and IQP were followed with the addition of sodium azide, suggesting influence of energy to the process. The transport of VEP was also increased by verapamil, indicating an apical-to-basolateral flux mediated by P-gp. PRACTICAL APPLICATION Bioactive peptides derived from food proteins have been considered as potentially ideal products to reduce hypertension because of their safety and positive impacts on health. IQP and VEP are the 2 ACE inhibitory peptides derived from Spirulina platensis, a kind of edible cyanobacteria with rich nutrition and multiple physiological functions, and were demonstrated to inhibit ACE and lower blood pressure in spontaneously hypertensive rats. However, it is prerequisite that such bioactive peptides must be absorbed intact across the intestinal epithelium, so as to exert antihypertensive effects in vivo. This study evaluated transepithelial transport mechanisms of IQP and VEP. It contributes to the study of Spirulina in lowering blood pressure and supports the development of bioactive peptide products.
Collapse
Affiliation(s)
- Yuan-Yuan He
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry Univ., Beijing, 100083, People's Republic of China.,Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Inst. of Food & Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Tao-Tao Li
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry Univ., Beijing, 100083, People's Republic of China
| | - Jia-Xin Chen
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry Univ., Beijing, 100083, People's Republic of China
| | - Xing-Xing She
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry Univ., Beijing, 100083, People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry Univ., Beijing, 100083, People's Republic of China
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Inst. of Food & Fermentation Industries, Beijing, 100015, People's Republic of China
| |
Collapse
|
20
|
Pavlova I, Milanova A, Danova S, Fink-Gremmels J. Enrofloxacin and Probiotic Lactobacilli Influence PepT1 and LEAP-2 mRNA Expression in Poultry. Probiotics Antimicrob Proteins 2018; 8:215-220. [PMID: 27503362 DOI: 10.1007/s12602-016-9225-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Expression of peptide transporter 1 (PepT1) and liver-expressed antimicrobial peptide 2 (LEAP-2) in chickens can be influenced by food deprivation, pathological conditions and drug administration. Effect of three putative probiotic Lactobacillus strains and enrofloxacin on the expression of PepT1 and LEAP-2 mRNA was investigated in Ross 308 chickens. One-day-old chicks (n = 24) were allocated to following groups: control (without treatment); group treated with probiotics via feed; group treated with a combination of probiotics and enrofloxacin; and a group given enrofloxacin only. The drug was administered at a dose of 10 mg kg-1, via drinking water for 5 days. Samples from liver, duodenum and jejunum were collected 126 h after the start of the treatment. Expression levels of PepT1 and LEAP-2 were determined by real-time polymerase chain reaction and were statistically evaluated by Mann-Whitney test. Enrofloxacin administered alone or in combination with probiotics provoked a statistically significant up-regulation of PepT1 mRNA levels in the measured organ sites. These changes can be attributed to a tendency of improvement in utilization of dietary peptide and in body weight gain. LEAP-2 mRNA expression levels did not change significantly in enrofloxacin-treated chickens in comparison with control group.
Collapse
Affiliation(s)
- Ivelina Pavlova
- Department of Pharmacology, Veterinary Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Aneliya Milanova
- Department of Pharmacology, Veterinary Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria.
| | - Svetla Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences (BAS), 26, Akad. G. Bontchev, str., Sofia, Bulgaria
| | - Johanna Fink-Gremmels
- Division of Veterinary Pharmacology, Pharmacotherapy and Toxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Transepithelial transport of lunasin and derived peptides: Inhibitory effects on the gastrointestinal cancer cells viability. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.01.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Virtual bioequivalence for achlorhydric subjects: The use of PBPK modelling to assess the formulation-dependent effect of achlorhydria. Eur J Pharm Sci 2017; 109:111-120. [DOI: 10.1016/j.ejps.2017.07.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/31/2017] [Accepted: 07/30/2017] [Indexed: 01/27/2023]
|
23
|
Mizuno A, Matsui K, Shuto S. From Peptides to Peptidomimetics: A Strategy Based on the Structural Features of Cyclopropane. Chemistry 2017. [PMID: 28632330 DOI: 10.1002/chem.201702119] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptidomimetics, non-natural mimicries of bioactive peptides, comprise an important class of drug molecules. The essence of the peptidomimetic design is to mimic the key conformation assumed by the bioactive peptides upon binding to their targets. Regulation of the conformation of peptidomimetics is important not only to enhance target binding affinity and selectivity, but also to confer cell-membrane permeability for targeting protein-protein interactions in cells. The rational design of peptidomimetics with suitable three-dimensional structures is challenging, however, due to the inherent flexibility of peptides and their dynamic conformational changes upon binding to the target biomolecules. In this Minireview, a three-dimensional structural diversity-oriented strategy based on the characteristic structural features of cyclopropane to address this challenging issue in peptidomimetic chemistry is described.
Collapse
Affiliation(s)
- Akira Mizuno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Kouhei Matsui
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
24
|
Functionalized PLA-PEG nanoparticles targeting intestinal transporter PepT1 for oral delivery of acyclovir. Int J Pharm 2017; 529:357-370. [DOI: 10.1016/j.ijpharm.2017.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 01/12/2023]
|
25
|
Khatun Z, Choi YS, Kim YG, Yoon K, Nurunnabi M, Li L, Lee E, Kang HC, Huh KM. Bioreducible Poly(ethylene glycol)-Triphenylphosphonium Conjugate as a Bioactivable Mitochondria-Targeting Nanocarrier. Biomacromolecules 2017; 18:1074-1085. [PMID: 28257184 DOI: 10.1021/acs.biomac.6b01324] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bioactivable nanocarrier systems have favorable characteristics such as high cellular uptake, target specificity, and an efficient intracellular release mechanism. In this study, we developed a bioreducible methoxy polyethylene glycol (mPEG)-triphenylphosphonium (TPP) conjugate (i.e., mPEG-(ss-TPP)2 conjugate) as a vehicle for mitochondrial drug delivery. A bioreducible linkage with two disulfide bond-containing end groups was used at one end of the hydrophilic mPEG for conjugation with lipophilic TPP molecules. The amphiphilic mPEG-(ss-TPP)2 self-assembled in aqueous media, which thereby formed core-shell structured nanoparticles (NPs) with good colloidal stability, and efficiently encapsulated the lipophilic anticancer drug doxorubicin (DOX). The DOX-loaded mPEG-(ss-TPP)2 NPs were characterized in terms of their physicochemical and morphological properties, drug-loading and release behaviors, in vitro anticancer effects, and mitochondria-targeting capacity. Our results suggest that bioreducible DOX-loaded mPEG-(ss-TPP)2 NPs can induce fast drug release with enhanced mitochondrial uptake and have a better therapeutic effect than nonbioreducible NPs.
Collapse
Affiliation(s)
| | - Yeon Su Choi
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea , 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | | | | | | | | | | | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea , 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | | |
Collapse
|
26
|
Azzolini M, Mattarei A, La Spina M, Fanin M, Chiodarelli G, Romio M, Zoratti M, Paradisi C, Biasutto L. New natural amino acid-bearing prodrugs boost pterostilbene's oral pharmacokinetic and distribution profile. Eur J Pharm Biopharm 2017; 115:149-158. [PMID: 28254379 DOI: 10.1016/j.ejpb.2017.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 12/14/2022]
Abstract
The biomedical effects of the natural phenol pterostilbene are of great interest but its bioavailability is negatively affected by the phenolic group in position 4' which is an ideal target for the conjugative enzymes of phase II metabolism. We report the synthesis and characterization of prodrugs in which the hydroxyl moiety is reversibly protected as a carbamate ester linked to the N-terminus of a natural amino acid. Prodrugs comprising amino acids with hydrophobic side chains were readily absorbed after intragastric administration to rats. The Area Under the Curve for pterostilbene in blood was optimal when prodrugs with isoleucine or β-alanine were used. The prodrug incorporating isoleucine was used for further studies to map distribution into major organs. When compared to pterostilbene itself, administration of the isoleucine prodrug afforded increased absorption, reduced metabolism and higher concentrations of pterostilbene, sustained for several hours, in most of the organs examined. Experiments using Caco-2 cells as an in vitro model for human intestinal absorption suggest that the prodrug could have promising absorption profiles also in humans; its uptake is partly due to passive diffusion, and partly mediated by H+-dependent transporters expressed on the apical membrane of enterocytes, such as PepT1 and OATP.
Collapse
Affiliation(s)
- Michele Azzolini
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy
| | - Andrea Mattarei
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Martina La Spina
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Fanin
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Giacomo Chiodarelli
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Matteo Romio
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mario Zoratti
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy
| | - Cristina Paradisi
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Lucia Biasutto
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
27
|
Zhang Y, Viennois E, Zhang M, Xiao B, Han MK, Walter L, Garg P, Merlin D. PepT1 Expression Helps Maintain Intestinal Homeostasis by Mediating the Differential Expression of miRNAs along the Crypt-Villus Axis. Sci Rep 2016; 6:27119. [PMID: 27250880 PMCID: PMC4890533 DOI: 10.1038/srep27119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/12/2016] [Indexed: 01/25/2023] Open
Abstract
In the jejunum, PepT1 is particularly enriched in the well-differentiated absorptive epithelial cells in the villi. Studies of expression and function of PepT1 along the crypt-villus axis demonstrated that this protein is crucial to the process of di/tripeptide absorption. We recently exhibited that PepT1 plays an important role in multiple biological functions, including the ability to regulate the expression/secretion of specific microRNAs (miRNAs) and the expression levels of multiple proteins. In this study, we observed that PepT1 knockout (KO) mice exhibited reduced body weight and shorten intestinal microvilli. We then examined the expression levels of various miRNAs and their target proteins along the crypt-villi axis in the jejunum of PepT1 KO mice. We found that PepT1 KO altered the distribution of miRNAs along the crypt-villus axis and changed the miRNA profiles of both villi and crypts. Using miRNA-target prediction and 2D-DIGE/mass spectrometry on villi and crypts samples, we found that ablation of PepT1 further directly or indirectly altered expression levels of certain protein targets. Collectively, our results suggest that PepT1 contributes to maintain balance of homeostasis and proper functions in the small intestine, and dysregulated miRNAs and proteins along the crypt-villus axis are highly related to this process.
Collapse
Affiliation(s)
- Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Bo Xiao
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA.,Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Lewins Walter
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Pallavi Garg
- Department of Biology, Georgia State University, Atlanta, Georgia, 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302, USA.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia, 30033, USA
| |
Collapse
|
28
|
Stelzl T, Baranov T, Geillinger KE, Kottra G, Daniel H. Effect of N-glycosylation on the transport activity of the peptide transporter PEPT1. Am J Physiol Gastrointest Liver Physiol 2016; 310:G128-41. [PMID: 26585416 DOI: 10.1152/ajpgi.00350.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/10/2015] [Indexed: 01/31/2023]
Abstract
The intestinal peptide transporter PEPT1 provides bulk quantities of amino acids to epithelial cells. PEPT1 is a high-capacity and low-affinity solute carrier of the SLC15 family found in apical membranes of enterocytes in small intestine and distal colon. Surprisingly, murine PEPT1 (mPEPT1) has an apparent molecular mass of ∼95 kDa in the small intestine but ∼105 kDa in the large intestine. Here we describe studies on mPEPT1 protein glycosylation and how glycans affect transport function. Putative N-glycosylation sites of mPEPT1 were altered by site-directed mutagenesis followed by expression in Xenopus laevis oocytes. Replacement of six asparagine residues (N) at positions N50, N406, N439, N510, N515, and N532 by glutamine (Q) resulted in a decrease of the mPEPT1 mass by around 35 kDa. Electrophysiology revealed all glycosylation-deficient transporters to be functional with comparable expression levels in oocyte membranes. Strikingly, the mutant protein with N50Q exhibited a twofold decreased affinity for Gly-Sar but a 2.5-fold rise in the maximal inward currents compared with the wild-type protein. Elevated maximal transport currents were also recorded for cefadroxil and tri-l-alanine. Tracer flux studies performed with [(14)C]-Gly-Sar confirmed the reduction in substrate affinity and showed twofold increased maximal transport rates for the N50Q transporter. Elimination of individual N-glycosylation sites did not alter membrane expression in oocytes or overall transport characteristics except for the mutant protein N50Q. Because transporter surface density was not altered in N50Q, removal of the glycan at this location appears to accelerate the substrate turnover rate.
Collapse
Affiliation(s)
- Tamara Stelzl
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Tatjana Baranov
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Kerstin E Geillinger
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Gabor Kottra
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| |
Collapse
|
29
|
Aduri NG, Prabhala BK, Ernst HA, Jørgensen FS, Olsen L, Mirza O. Salt Bridge Swapping in the EXXERFXYY Motif of Proton-coupled Oligopeptide Transporters. J Biol Chem 2015; 290:29931-40. [PMID: 26483552 DOI: 10.1074/jbc.m115.675603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 01/12/2023] Open
Abstract
Proton-coupled oligopeptide transporters (POTs) couple the inward transport of di- or tripeptides with an inwardly directed transport of protons. Evidence from several studies of different POTs has pointed toward involvement of a highly conserved sequence motif, E1XXE2RFXYY (from here on referred to as E1XXE2R), located on Helix I, in interactions with the proton. In this study, we investigated the intracellular substrate accumulation by motif variants with all possible combinations of glutamate residues changed to glutamine and arginine changed to a tyrosine, the latter being a natural variant found in the Escherichia coli POT YjdL. We found that YjdL motif variants with E1XXE2R, E1XXE2Y, E1XXQ2Y, or Q1XXE2Y were able to accumulate peptide, whereas those with E1XXQ2R, Q1XXE2R, or Q1XXQ2Y were unable to accumulate peptide, and Q1XXQ2R abolished uptake. These results suggest a mechanism that involves swapping of an intramotif salt bridge, i.e. R-E2 to R-E1, which is consistent with previous structural studies. Molecular dynamics simulations of the motif variants E1XXE2R and E1XXQ2R support this mechanism. The simulations showed that upon changing conformation arginine pushes Helix V, through interactions with the highly conserved FYING motif, further away from the central cavity in what could be a stabilization of an inward facing conformation. As E2 has been suggested to be the primary site for protonation, these novel findings show how protonation may drive conformational changes through interactions of two highly conserved motifs.
Collapse
Affiliation(s)
- Nanda G Aduri
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bala K Prabhala
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Heidi A Ernst
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Flemming S Jørgensen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lars Olsen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Osman Mirza
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Freeman HJ. Clinical relevance of intestinal peptide uptake. World J Gastrointest Pharmacol Ther 2015; 6:22-27. [PMID: 25949847 PMCID: PMC4419090 DOI: 10.4292/wjgpt.v6.i2.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/22/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine available information on an independent peptide transporter 1 (PepT1) and its potential relevance to treatment, this evaluation was completed.
METHODS: Fully published English language literature articles sourced through PubMed related to protein digestion and absorption, specifically human peptide and amino acid transport, were accessed and reviewed. Papers from 1970 to the present, with particular emphasis on the past decade, were examined. In addition, abstracted information translated to English in PubMed was also included. Finally, studies and reviews relevant to nutrient or drug uptake, particularly in human intestine were included for evaluation. This work represents a summary of all of these studies with particular reference to peptide transporter mediated assimilation of nutrients and pharmacologically active medications.
RESULTS: Assimilation of dietary protein in humans involves gastric and pancreatic enzyme hydrolysis to luminal oligopeptides and free amino acids. During the ensuing intestinal phase, these hydrolytic products are transported into the epithelial cell and, eventually, the portal vein. A critical component of this process is the uptake of intact di-peptides and tri-peptides by an independent PepT1. A number of “peptide-mimetic” pharmaceutical agents may also be transported through this carrier, important for uptake of different antibiotics, antiviral agents and angiotensin-converting enzyme inhibitors. In addition, specific peptide products of intestinal bacteria may also be transported by PepT1, with initiation and persistence of an immune response including increased cytokine production and associated intestinal inflammatory changes. Interestingly, these inflammatory changes may also be attenuated with orally-administered anti-inflammatory tripeptides administered as site-specific nanoparticles and taken up by this PepT1 transport protein.
CONCLUSION: Further evaluation of the role of this transporter in treatment of intestinal disorders, including inflammatory bowel disease is needed.
Collapse
|
31
|
Prabhala BK, Aduri NG, Hald H, Mirza O. Investigation of the Substrate Specificity of the Proton Coupled Peptide Transporter PepTSo from Shewanella oneidensis. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9427-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
The dipeptide H-Trp-Glu-OH (WE) shows agonistic activity to peroxisome proliferator-activated protein-α and reduces hepatic lipid accumulation in lipid-loaded H4IIE cells. Bioorg Med Chem Lett 2014; 24:2957-62. [DOI: 10.1016/j.bmcl.2014.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/23/2014] [Accepted: 04/07/2014] [Indexed: 01/05/2023]
|
33
|
Ikeda A, Ichino H, Kiguchiya S, Chigwechokha P, Komatsu M, Shiozaki K. Evaluation and Identification of Potent Angiotensin-I Converting Enzyme Inhibitory Peptide Derived from Dwarf Gulper Shark (C
entrophorus atromarginatus
). J FOOD PROCESS PRES 2014. [DOI: 10.1111/jfpp.12210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Asami Ikeda
- Faculty of Fisheries; Kagoshima University; Kagoshima Japan
| | - Hayato Ichino
- Faculty of Fisheries; Kagoshima University; Kagoshima Japan
| | | | | | | | | |
Collapse
|
34
|
PepT1 expressed in immune cells has an important role in promoting the immune response during experimentally induced colitis. J Transl Med 2013; 93:888-99. [PMID: 23797361 DOI: 10.1038/labinvest.2013.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 11/08/2022] Open
Abstract
We and others have shown that the dipeptide cotransporter PepT1 is expressed in immune cells, including macrophages that are in close contact with the lamina propria of the small and large intestines. In the present study, we used PepT1-knockout (KO) mice to explore the role played by PepT1 in immune cells during dextran sodium sulfate (DSS)-induced colitis. DSS treatment caused less severe body weight loss, diminished rectal bleeding, and less diarrhea in PepT1-KO mice than in wild-type (WT) animals. A histological examination of colonic sections revealed that the colonic architecture was less disrupted and the extent of immune cell infiltration into the mucosa and submucosa following DSS treatment was reduced in PepT1-KO mice compared with WT animals. Consistent with these results, the DSS-induced colitis increase in colonic myeloperoxidase activity was significantly less in PepT1-KO mice than in WT littermates. The colonic levels of mRNAs encoding the inflammatory cytokines CXCL1, interleukin (IL)-6, monocyte chemotactic protein-1, IL-12, and interferon-γ were significantly lower in DSS-treated PepT1-KO mice than in DSS-treated WT animals. Colonic immune cells from WT had significantly higher level of proinflammatory cytokines then PepT1 KO. In addition, we observed that knocking down the PepT1 expression decreases chemotaxis of immune cells recruited during intestinal inflammation. Antibiotic treatment before DSS-induced colitis eliminated the differential expression of inflammatory cytokines between WT and PepT1-KO mice. In conclusion, PepT1 in immune cells regulates the secretion of proinflammatory cytokines triggered by bacteria and/or bacterial products, and thus has an important role in the induction of colitis. PepT1 may transport small bacterial products, such as muramyl dipeptide and the tripeptide L-Ala-gamma-D-Glu-meso-DAP, into macrophages. These materials may be sensed by members of the nucleotide-binding site-leucine-rich repeat family of intracellular receptors, ultimately resulting in altered homeostasis of the intestinal microbiota.
Collapse
|
35
|
Fransson R, Sköld C, Kratz JM, Svensson R, Artursson P, Nyberg F, Hallberg M, Sandström A. Constrained H-Phe-Phe-NH2 Analogues with High Affinity to the Substance P 1–7 Binding Site and with Improved Metabolic Stability and Cell Permeability. J Med Chem 2013; 56:4953-65. [DOI: 10.1021/jm400209h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Christian Sköld
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Jadel M. Kratz
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Programa de Pós-Graduação
em Farmácia, Centro de Ciências da Saúde, Departamento
de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, 88.040-900, Florianópolis,
SC, Brazil
| | - Richard Svensson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- The Uppsala
University Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical
Biology Consortium Sweden (CBCS), Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- The Uppsala
University Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical
Biology Consortium Sweden (CBCS), Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
36
|
Berthelsen R, Nielsen CU, Brodin B. Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent. ACTA ACUST UNITED AC 2013; 65:970-9. [PMID: 23738724 DOI: 10.1111/jphp.12061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/11/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Transepithelial di/tripeptide transport in enterocytes occurs via the apical proton-coupled peptide transporter, hPEPT1 (SLC15A1) and a basolateral peptide transporter, which has only been characterized functionally. In this study we examined the pH dependency, substrate uptake kinetics and substrate specificity of the transporter. METHODS We studied the uptake of [(14) C]Gly-Sar from basolateral solution into Caco-2 cell monolayers grown for 17-22 days on permeable supports, at a range of basolateral pH values. KEY FINDINGS Basolateral Gly-Sar uptake was pH dependent, with a maximal uptake rate at a basolateral pH of 5.5. Uptake of Gly-Sar decreased in the presence of the protonophore nigericin, indicating that the uptake was proton-coupled. The uptake was saturable, with a maximal flux (Vmax ) of 408 ± 71, 307 ± 25 and 188 ± 19 pmol/cm(2) /min (mean ± S.E., n = 3) at basolateral pH 5.0, 6.0 and 7.4, respectively. The compounds Gly-Asp, Glu-Phe-Tyr, Gly-Glu-Gly, Gly-Phe-Gly, lidocaine and, to a smaller degree, para-aminohippuric acid were all shown to inhibit the basolateral uptake of Gly-Sar. CONCLUSIONS The study showed that basolateral Gly-Sar transport in the intestinal cell line Caco-2 is proton-coupled. The inhibitor profile indicated that the transporter has broad substrate specificity.
Collapse
Affiliation(s)
- Ragna Berthelsen
- Department of Pharmacy, The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
37
|
Abstract
The eye is a highly protected organ, and designing an effective therapy is often considered a challenging task. The anatomical and physiological barriers result in low ocular bioavailability of drugs. Due to these constraints, less than 5% of the administered dose is absorbed from the conventional ophthalmic dosage forms. Further, physicochemical properties such as lipophilicity, molecular weight and charge modulate the permeability of drug molecules. Vision-threatening diseases such as glaucoma, diabetic macular edema, cataract, wet and dry age-related macular degeneration, proliferative vitreoretinopathy, uveitis, and cytomegalovirus retinitis alter the pathophysiological and molecular mechanisms. Understanding these mechanisms may result in the development of novel treatment modalities. Recently, transporter/receptor targeted prodrug approach has generated significant interest in ocular drug delivery. These transporters and receptors are involved in the transport of essential nutrients, vitamins, and xenobiotics across biological membranes. Several influx transporters (peptides, amino acids, glucose, lactate and nucleosides/nucleobases) and receptors (folate and biotin) have been identified on conjunctiva, cornea, and retina. Structural and functional delineation of these transporters will enable more drugs targeting the posterior segment to be successfully delivered topically. Prodrug derivatization targeting transporters and receptors expressed on ocular tissues has been the subject of intense research. Several prodrugs have been designed to target these transporters and enhance the absorption of poorly permeating parent drug. Moreover, this approach might be used in gene delivery to modify cellular function and membrane receptors. This review provides comprehensive information on ocular drug delivery, with special emphasis on the use of transporters and receptors to improve drug bioavailability.
Collapse
|
38
|
Bejjani S, Wu J. Transport of IRW, an ovotransferrin-derived antihypertensive peptide, in human intestinal epithelial Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1487-1492. [PMID: 23298184 DOI: 10.1021/jf302904t] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
IRW is an egg ovotransferrin-derived ACE inhibitory peptide. The purpose of this study was to evaluate the stability and transcellular transport of IRW in Caco-2 cell monolayers. The stability of IRW was monitored on the apical (AP) surface while its transport was studied from AP to basal (BL) and from BL to AP surfaces. The results revealed that IRW is resistant against intestinal peptidase up to 60 min. Transport of IRW was not affected by addition of wortamanin, a transcytosis inhibitor. However, in the presence of cytochalasin D, a gap junction disruptor, transport of IRW was significantly increased, suggesting a possible passive transport from AP to BL surface. A higher transport of IRW from AP to BL surface than that from BL to AP surface suggests a passive-mediated transport. Moreover, in the presence of glycyl-sarcosine, a substrate for peptide transporter PepT 1, transport of IRW was reduced from AP to BL surface. The above observations showed atypical transport of IRW in Caco-2 cell monolayers. Thus, IRW may possibly be absorbed intact into the site of action for controlling hypertension.
Collapse
Affiliation(s)
- Satyanarayana Bejjani
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
39
|
Saaby L, Nielsen C, Steffansen B, Larsen S, Brodin B. Current status of rational design of prodrugs targeting the intestinal di/tri-peptide transporter hPEPT1 (SLC15A1). J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50047-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Identification and Characterization of a Novel Nontranslated Sequence Variant of the Human Intestinal Di-/Tripeptide Transporter, hPEPT1. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:743472. [PMID: 23346117 PMCID: PMC3546484 DOI: 10.1155/2012/743472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/02/2012] [Accepted: 12/06/2012] [Indexed: 11/17/2022]
Abstract
The human H+-coupled di-/tripeptide transporter (hPEPT1) mediates intestinal absorption of dietary di- and tripeptides, as well as several peptidomimetic drug compounds. The aim of the present study was to investigate the possible role of the hPEPT1 variant hPEPT1-RF in hPEPT1 regulation. However, the proposed hPEPT1-RF mRNA sequence could not be detected in Caco-2 cells or in human intestinal samples. Instead, a new sequence variant, hPEPT1-RFI, was found, which is almost identical to the proposed hPEPT1-RF, except for two nucleotide insertions and one deletion that resulted in a changed open reading frame as compared to hPEPT1-RF. In vitro translation analysis showed that hPEPT1-RFI was not translated. In conclusion, the existence of hPEPT1-RF could not be confirmed; furthermore, the identified sequence variant, hPEPT1-RFI, does not appear to be translated and is therefore unlikely to have a regulatory effect on hPEPT1 transport activity.
Collapse
|
41
|
Kovacs-Nolan J, Zhang H, Ibuki M, Nakamori T, Yoshiura K, Turner PV, Matsui T, Mine Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim Biophys Acta Gen Subj 2012; 1820:1753-63. [PMID: 22842481 DOI: 10.1016/j.bbagen.2012.07.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract. The peptide transporter PepT1 is responsible for the intestinal uptake of dietary peptides, and its expression in the gastrointestinal tract is up-regulated during intestinal inflammation, indicating that PepT1 may be a promising target for IBD therapeutics. METHODS The transport of soy-derived di- and tripeptides across Caco-2 intestinal epithelial cells was examined, and the anti-inflammatory effects of the transported peptide VPY were evaluated in vitro in Caco-2 and THP-1 macrophages, and in vivo in a mouse model of DSS-induced colitis. RESULTS VPY inhibited the secretion of IL-8 and TNF-α, respectively, from Caco-2 and THP-1 cells. VPY transport and anti-inflammatory activity in Caco-2 cells was reduced in the presence of Gly-Sar, indicating this activity was mediated by PepT1. In mice, VPY treatment reduced DSS-induced colitis symptoms and weight loss, improved colon histology, reduced MPO activity, and decreased gene expression of the pro-inflammatory cytokines TNF-α, IL-6, IL-1β, IFN-γ and IL-17 in the colon. CONCLUSIONS AND GENERAL SIGNIFICANCE VPY is a novel PepT1 substrate that can inhibit the production of pro-inflammatory mediators in vitro in intestinal epithelial and immune cells, and reduce the severity of colitis in mice by down-regulating the expression of pro-inflammatory cytokines in the colon, suggesting that VPY may be promising for the treatment of IBD.
Collapse
|
42
|
Santos S, Torcato I, Castanho MARB. Biomedical applications of dipeptides and tripeptides. Biopolymers 2012. [DOI: 10.1002/bip.22067] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Dalmasso G, Nguyen HTT, Ingersoll SA, Ayyadurai S, Laroui H, Charania MA, Yan Y, Sitaraman SV, Merlin D. The PepT1-NOD2 signaling pathway aggravates induced colitis in mice. Gastroenterology 2011; 141:1334-45. [PMID: 21762661 PMCID: PMC3186842 DOI: 10.1053/j.gastro.2011.06.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/02/2011] [Accepted: 06/29/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS The human di/tripeptide transporter human intestinal H-coupled oligonucleotide transporter (hPepT1) is abnormally expressed in colons of patients with inflammatory bowel disease, although its exact role in pathogenesis is unclear. We investigated the contribution of PepT1 to intestinal inflammation in mouse models of colitis and the involvement of the nucleotide-binding oligomerization domain 2 (NOD2) signaling pathway in the pathogenic activity of colonic epithelial hPepT1. METHODS Transgenic mice were generated in which hPepT1 expression was regulated by the β-actin or villin promoters; colitis was induced using 2,4,6-trinitrobenzene sulfonic acid (TNBS) or dextran sodium sulfate (DSS) and the inflammatory responses were assessed. The effects of NOD2 deletion in the hPepT1 transgenic mice also was studied to determine the involvement of the PepT1-NOD2 signaling pathway. RESULTS TNBS and DSS induced more severe levels of inflammation in β-actin-hPepT1 transgenic mice than wild-type littermates. Intestinal epithelial cell-specific hPepT1 overexpression in villin-hPepT1 transgenic mice increased the severity of inflammation induced by DSS, but not TNBS. Bone marrow transplantation studies showed that hPepT1 expression in intestinal epithelial cells and immune cells has an important role in the proinflammatory response. Antibiotics abolished the effect of hPepT1 overexpression on the inflammatory response in DSS-induced colitis in β-actin-hPepT1 and villin-hPepT1 transgenic mice, indicating that commensal bacteria are required to aggravate intestinal inflammation. Nod2-/-, β-actin-hPepT1 transgenic/Nod2-/-, and villin-hPepT1 transgenic/Nod2-/- littermates had similar levels of susceptibility to DSS-induced colitis, indicating that hPepT1 overexpression increased intestinal inflammation in a NOD2-dependent manner. CONCLUSIONS The PepT1-NOD2 signaling pathway is involved in aggravation of DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Hang Thi Thu Nguyen
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Sarah A. Ingersoll
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Saravanan Ayyadurai
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Hamed Laroui
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Moiz A Charania
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Yutao Yan
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Shanthi V Sitaraman
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Didier Merlin
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA,Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
44
|
Thorn K, Nielsen CU, Jakobsen P, Steffansen B, Zercher CK, Begtrup M. The tandem chain extension aldol reaction used for synthesis of ketomethylene tripeptidomimetics targeting hPEPT1. Bioorg Med Chem Lett 2011; 21:4597-601. [PMID: 21703856 PMCID: PMC3237634 DOI: 10.1016/j.bmcl.2011.05.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 11/16/2022]
Abstract
The rationale for targeting the human di-/tripeptide transporter hPEPT1 for oral drug delivery has been well established by several drug and prodrug cases. The aim of this study was to synthesize novel ketomethylene modified tripeptidomimetics and to investigate their binding affinity for hPEPT1. Three related tripeptidomimetics of the structure H-Phe-ψ[COCH(2)]-Ser(Bz)-X(aa)-OH were synthesized applying the tandem chain extension aldol reaction, where amino acid derived β-keto imides were stereoselectively converted to α-substituted γ-keto imides. In addition, three corresponding tripeptides, composed of amide bonds, were synthesized for comparison of binding affinities. The six investigated compounds were all defined as high affinity ligands (K(i)-values <0.5 mM) for hPEPT1 by measuring the concentration dependent inhibition of apical [(14)C]Gly-Sar uptake in Caco-2 cells. Consequently, the ketomethylene replacement for the natural amide bond and α-side chain modifications appears to offer a promising strategy to modify tripeptidic structures while maintaining a high affinity for hPEPT1.
Collapse
Affiliation(s)
- Karina Thorn
- Protein Chemistry, Biogen Idec Hemophilia, Waltham, MA 02451, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Flaten GE, Kottra G, Stensen W, Isaksen G, Karstad R, Svendsen JS, Daniel H, Svenson J. In Vitro Characterization of Human Peptide Transporter hPEPT1 Interactions and Passive Permeation Studies of Short Cationic Antimicrobial Peptides. J Med Chem 2011; 54:2422-32. [DOI: 10.1021/jm1015704] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gøril Eide Flaten
- Department of Pharmacy, University of Tromsø, N-9037, Tromsø, Norway
| | - Gabor Kottra
- Molecular Nutrition Unit, Technical University of Munich, D-85350 Freising, Germany
| | | | - Geir Isaksen
- Department of Chemistry, University of Tromsø, N-9037, Tromsø, Norway
- The Norwegian Structural Biology Centre and The Centre for Theoretical and Computational Chemistry, University of Tromsø, N-9037, Tromsø, Norway
| | - Rasmus Karstad
- Department of Chemistry, University of Tromsø, N-9037, Tromsø, Norway
| | - John S. Svendsen
- Lytix Biopharma AS, N-9294 Tromsø, Norway
- Department of Chemistry, University of Tromsø, N-9037, Tromsø, Norway
| | - Hannelore Daniel
- Molecular Nutrition Unit, Technical University of Munich, D-85350 Freising, Germany
| | - Johan Svenson
- Department of Chemistry, University of Tromsø, N-9037, Tromsø, Norway
| |
Collapse
|
46
|
Wang CL, Fan YB, Lu HH, Tsai TH, Tsai MC, Wang HP. Evidence of D-phenylglycine as delivering tool for improving L-dopa absorption. J Biomed Sci 2010; 17:71. [PMID: 20815935 PMCID: PMC2941486 DOI: 10.1186/1423-0127-17-71] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/06/2010] [Indexed: 11/10/2022] Open
Abstract
Background l-Dopa has been used for Parkinson's disease management for a long time. However, its wide variety in the rate and the extent of absorption remained challenge in designing suitable therapeutic regime. We report here a design of using d-phenylglycine to guard l-dopa for better absorption in the intestine via intestinal peptide transporter I (PepT1). Methods d-Phenylglycine was chemically attached on l-dopa to form d-phenylglycine-l-dopa as a dipeptide prodrug of l-dopa. The cross-membrane transport of this dipeptide and l-dopa via PepT1 was compared in brush-boarder membrane vesicle (BBMV) prepared from rat intestine. The intestinal absorption was compared by in situ jejunal perfusion in rats. The pharmacokinetics after i.v. and p.o. administration of both compounds were also compared in Wistar rats. The striatal dopamine released after i.v. administration of d-phenylglycine-l-dopa was collected by brain microdialysis and monitored by HPLC. Anti-Parkinsonism effect was determined by counting the rotation of 6-OHDA-treated unilateral striatal lesioned rats elicited rotation with (+)-methamphetamine (MA). Results The BBMV uptake of d-phenylglycine-l-dopa was inhibited by Gly-Pro, Gly-Phe and cephradine, the typical PepT1 substrates, but not by amino acids Phe or l-dopa. The cross-membrane permeability (Pm*) determined in rat jejunal perfusion of d-phenylglycine-l-dopa was higher than that of l-dopa (2.58 ± 0.14 vs. 0.94 ± 0.10). The oral bioavailability of d-phenylglycine-l-dopa was 31.7 times higher than that of l-dopa in rats. A sustained releasing profile of striatal dopamine was demonstrated after i. v. injection of d-phenylglycine-l-dopa (50 mg/kg), indicated that d-phenylglycine-l-dopa might be a prodrug of dopamine. d-Phenylglycine-l-dopa was more efficient than l-dopa in lowering the rotation of unilateral striatal lesioned rats (19.1 ± 1.7% vs. 9.9 ± 1.4%). Conclusion The BBMV uptake studies indicated that d-phenylglycine facilitated the transport of l-dopa through the intestinal PepT1 transporter. The higher jejunal permeability and the improved systemic bioavailability of d-phenylglycine-l-dopa in comparison to that of l-dopa suggested that d-phenylglycine is an effective delivery tool for improving the oral absorption of drugs like l-dopa with unsatisfactory pharmacokinetics. The gradual release of dopamine in brain striatum rendered this dipeptide as a potential dopamine sustained-releasing prodrug.
Collapse
Affiliation(s)
- Chun-Li Wang
- Taipei Medical University College of Pharmacy, 250 Wu-Hsing St,, Taipei, 110-31, Taiwan
| | | | | | | | | | | |
Collapse
|
47
|
Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2010; 60:543-85. [DOI: 10.1211/jpp.60.5.0002] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractPeptide transport is currently a prominent topic in membrane research. The transport proteins involved are under intense investigation because of their physiological importance in protein absorption and also because peptide transporters are possible vehicles for drug delivery. Moreover, in many tissues peptide carriers transduce peptidic signals across membranes that are relevant in information processing. The focus of this review is on the pharmaceutical relevance of the human peptide transporters PEPT1 and PEPT2. In addition to their physiological substrates, both carriers transport many β-lactam antibiotics, valaciclovir and other drugs and prodrugs because of their sterical resemblance to di- and tripeptides. The primary structure, tissue distribution and substrate specificity of PEPT1 and PEPT2 have been well characterized. However, there is a dearth of knowledge on the substrate binding sites and the three-dimensional structure of these proteins. Until this pivotal information becomes available by X-ray crystallography, the development of new drug substrates relies on classical transport studies combined with molecular modelling. In more than thirty years of research, data on the interaction of well over 700 di- and tripeptides, amino acid and peptide derivatives, drugs and prodrugs with peptide transporters have been gathered. The aim of this review is to put the reports on peptide transporter-mediated drug uptake into perspective. We also review the current knowledge on pharmacogenomics and clinical relevance of human peptide transporters. Finally, the reader's attention is drawn to other known or proposed human peptide-transporting proteins.
Collapse
Affiliation(s)
- Matthias Brandsch
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Ilka Knütter
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Eva Bosse-Doenecke
- Institute of Biochemistry/Biotechnology, Faculty of Science I, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|
48
|
|
49
|
Cang J, Zhang J, Wang C, Liu Q, Meng Q, Wang D, Sugiyama Y, Tsuji A, Kaku T, Liu K. Pharmacokinetics and Mechanism of Intestinal Absorption of JBP485 in Rats. Drug Metab Pharmacokinet 2010; 25:500-7. [DOI: 10.2133/dmpk.dmpk-10-rg-045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Foster DR, Gonzales JP, Amidon GL, Welage LS. Intestinal Dipeptide Absorption Is Preserved During Thermal Injury and Cytokine Treatment. JPEN J Parenter Enteral Nutr 2009; 33:520-8. [DOI: 10.1177/0148607109333002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- David R. Foster
- From the Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmaceutical Sciences, Indianapolis, Indiana; Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland; Department of Pharmaceutical Sciences, University of Michigan, College of Pharmacy, Ann Arbor, Michigan; Department of Clinical, Social and Administrative Sciences, University of Michigan College of Pharmacy,
| | - Jeffrey P. Gonzales
- From the Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmaceutical Sciences, Indianapolis, Indiana; Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland; Department of Pharmaceutical Sciences, University of Michigan, College of Pharmacy, Ann Arbor, Michigan; Department of Clinical, Social and Administrative Sciences, University of Michigan College of Pharmacy,
| | - Gordon L. Amidon
- From the Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmaceutical Sciences, Indianapolis, Indiana; Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland; Department of Pharmaceutical Sciences, University of Michigan, College of Pharmacy, Ann Arbor, Michigan; Department of Clinical, Social and Administrative Sciences, University of Michigan College of Pharmacy,
| | - Lynda S. Welage
- From the Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmaceutical Sciences, Indianapolis, Indiana; Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland; Department of Pharmaceutical Sciences, University of Michigan, College of Pharmacy, Ann Arbor, Michigan; Department of Clinical, Social and Administrative Sciences, University of Michigan College of Pharmacy,
| |
Collapse
|