1
|
Cassaday HJ, Muir C, Stevenson CW, Bonardi C, Hock R, Waite L. From safety to frustration: The neural substrates of inhibitory learning in aversive and appetitive conditioning procedures. Neurobiol Learn Mem 2023; 202:107757. [PMID: 37044368 DOI: 10.1016/j.nlm.2023.107757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Inhibitory associative learning counters the effects of excitatory learning, whether appetitively or aversively motivated. Moreover, the affective responses accompanying the inhibitory associations are of opponent valence to the excitatory conditioned responses. Inhibitors for negative aversive outcomes (e.g. shock) signal safety, while inhibitors for appetitive outcomes (e.g. food reward) elicit frustration and/or disappointment. This raises the question as to whether studies using appetitive and aversive conditioning procedures should demonstrate the same neural substrates for inhibitory learning. We review the neural substrates of appetitive and aversive inhibitory learning as measured in different procedural variants and in the context of the underpinning excitatory conditioning on which it depends. The mesocorticolimbic dopamine pathways, retrosplenial cortex and hippocampus are consistently implicated in inhibitory learning. Further neural substrates identified in some procedural variants may be related to the specific motivation of the learning task and modalities of the learning cues. Finally, we consider the translational implications of our understanding of the neural substrates of inhibitory learning, for obesity and addictions as well as for anxiety disorders.
Collapse
Affiliation(s)
- H J Cassaday
- School of Psychology, University of Nottingham, United Kingdom.
| | - C Muir
- School of Psychology, University of Nottingham, United Kingdom; School of Physiology, Pharmacology, and Neuroscience, University of Bristol, United Kingdom
| | - C W Stevenson
- School of Biosciences, University of Nottingham, United Kingdom
| | - C Bonardi
- School of Psychology, University of Nottingham, United Kingdom
| | - R Hock
- School of Psychology, University of Nottingham, United Kingdom
| | - L Waite
- School of Psychology, University of Nottingham, United Kingdom
| |
Collapse
|
2
|
O'Dell DE, Smith-Bell CA, Enquist LW, Engel EA, Schreurs BG. Eyeblink tract tracing with two strains of herpes simplex virus 1. Brain Res 2022; 1793:148040. [PMID: 35932812 DOI: 10.1016/j.brainres.2022.148040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Neuroinvasive herpes simplex-1 (HSV-1) isolates including H129 and McIntyre cross at or near synapses labeling higher-order neurons directly connected to infected cells. H129 spreads predominately in the anterograde direction while McIntyre strains spread only in the retrograde direction. However, it is unknown if neurons are functional once infected with derivatives of H129 or McIntyre. NEW METHOD We describe a previously unpublished HSV-1 recombinant derived from H129 (HSV-373) expressing mCherry fluorescent reporters and one new McIntyre recombinant (HSV-780) expressing the mCherry fluorophore and demonstrate how infections affect neuron viability. RESULTS AND COMPARISON WITH EXISTING METHODS Each recombinant virus behaved similarly and spread to the target 4 days post-infection. We tested H129 recombinant infected neurons for neurodegeneration using Fluoro-jade C and found them to be necrotic as a result of viral infection. We performed dual inoculations with both HSV-772 and HSV-780 to identify cells comprising both the anterograde pathway and the retrograde pathway, respectively, of our circuit of study. We examined the presence of postsynaptic marker PSD-95, which plays a role in synaptic plasticity, in HSV-772 infected and in dual-infected rats (HSV-772 and HSV-780). PSD-95 reactivity decreased in HSV-772-infected neurons and dual-infected tissue had no PSD-95 reactivity. CONCLUSIONS Infection by these new recombinant viruses traced the circuit of interest but functional studies of the cells comprising the pathway were not possible because viral-infected neurons died as a result of necrosis or were stripped of PSD-95 by the time the viral labels reached the target.
Collapse
Affiliation(s)
- Deidre E O'Dell
- Department of Neuroscience, Rockefeller Neuroscience Institute, United States; West Virginia University, Morgantown, WV 26505, United States.
| | - Carrie A Smith-Bell
- Department of Neuroscience, Rockefeller Neuroscience Institute, United States; West Virginia University, Morgantown, WV 26505, United States
| | - Lynn W Enquist
- Department of Molecular Biology, United States; Princeton Neuroscience Institute, United States; Princeton University, Princeton, NJ 08544, United States
| | - Esteban A Engel
- Princeton Neuroscience Institute, United States; Princeton University, Princeton, NJ 08544, United States
| | - Bernard G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, United States; West Virginia University, Morgantown, WV 26505, United States.
| |
Collapse
|
3
|
Shipman ML, Green JT. Cerebellum and cognition: Does the rodent cerebellum participate in cognitive functions? Neurobiol Learn Mem 2019; 170:106996. [PMID: 30771461 DOI: 10.1016/j.nlm.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/02/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
There is a widespread, nearly complete consensus that the human and non-human primate cerebellum is engaged in non-motor, cognitive functions. This body of research has implicated the lateral portions of lobule VII (Crus I and Crus II) and the ventrolateral dentate nucleus. With rodents, however, it is not so clear. We review here approximately 40 years of experiments using a variety of cerebellar manipulations in rats and mice and measuring the effects on executive functions (working memory, inhibition, and cognitive flexibility), spatial navigation, discrimination learning, and goal-directed and stimulus-driven instrumental conditioning. Our conclusion is that there is a solid body of support for engagement of the rodent cerebellum in tests of cognitive flexibility and spatial navigation, and some support for engagement in working memory and certain types of discrimination learning. Future directions will involve determining the relevant cellular mechanisms, cerebellar regions, and precise cognitive functions of the rodent cerebellum.
Collapse
Affiliation(s)
- Megan L Shipman
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA; Neuroscience Graduate Program, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA.
| | - John T Green
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
4
|
van Gaalen J, Maas RPPWM, Ippel EF, Elting MW, van Spaendonck-Zwarts KY, Vermeer S, Verschuuren-Bemelmans C, Timmann D, van de Warrenburg BP. Abnormal eyeblink conditioning is an early marker of cerebellar dysfunction in preclinical SCA3 mutation carriers. Exp Brain Res 2018; 237:427-433. [PMID: 30430184 PMCID: PMC6373441 DOI: 10.1007/s00221-018-5424-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Background Spinocerebellar ataxias (SCAs) are a group of autosomal dominantly inherited degenerative diseases. As the pathological process probably commences years before the first appearance of clinical symptoms, preclinical carriers of a SCA mutation offer the opportunity to study the earliest stages of cerebellar dysfunction and degeneration. Eyeblink classical conditioning (EBCC) is a motor learning paradigm, crucially dependent on the integrity of the olivocerebellar circuit, and has been shown to be able to detect subtle alterations of cerebellar function, which might already be present in preclinical carriers. Methods In order to acquire conditioned responses, we performed EBCC, delay paradigm, in 18 preclinical carriers of a SCA3 mutation and 16 healthy, age-matched controls by presenting repeated pairings of an auditory tone with a supraorbital nerve stimulus with a delay interval of 400 ms. Results Preclinical carriers acquired significantly less conditioned eyeblink responses than controls and learning rates were significantly reduced. This motor learning defect was, however, not associated with the predicted time to onset. Conclusions EBCC is impaired in preclinical carriers of a SCA3 mutation, as a result of impaired motor learning capacities of the cerebellum and is thus suggestive of cerebellar dysfunction. EBCC can be used to detect but probably not monitor preclinical cerebellar dysfunction in genetic ataxias, such as SCA3. Electronic supplementary material The online version of this article (10.1007/s00221-018-5424-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - R P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E F Ippel
- Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands
| | - M W Elting
- Department of Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - S Vermeer
- Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Verschuuren-Bemelmans
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Halverson HE, Poremba A, Freeman JH. Medial auditory thalamus is necessary for acquisition and retention of eyeblink conditioning to cochlear nucleus stimulation. Learn Mem 2015; 22:258-66. [PMID: 25878138 PMCID: PMC4408770 DOI: 10.1101/lm.036947.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/04/2015] [Indexed: 12/05/2022]
Abstract
Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning. However, the medial auditory thalamic nuclei (MATN), consisting of the medial division of the medial geniculate, suprageniculate, and posterior interlaminar nucleus have also been implicated as a critical auditory relay to the pontine nuclei for cerebellum-dependent motor learning. The MATN also conveys auditory information to the amygdala necessary for avoidance and fear conditioning. The current study used CN stimulation to increase activity in the pontine nuclei, relative to a tone stimulus, and possibly provide sufficient input to the cerebellum for acquisition or retention of eyeblink conditioning during MATN inactivation. Primary and secondary effects of CN stimulation and MATN inactivation were examined using 2-deoxy-glucose autoradiography. Stimulation of CN increased activity in the pontine nuclei, however, this increase was not sufficient for cerebellar learning during MATN inactivation. Results of the current experiment provide additional evidence indicating the MATN may be the critical auditory relay for many associative learning tasks.
Collapse
Affiliation(s)
- Hunter E Halverson
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Amy Poremba
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - John H Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
6
|
Magal A, Mintz M. Inhibition of the amygdala central nucleus by stimulation of cerebellar output in rats: a putative mechanism for extinction of the conditioned fear response. Eur J Neurosci 2014; 40:3548-55. [PMID: 25185877 DOI: 10.1111/ejn.12714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Abstract
The amygdala and the cerebellum serve two distinctively different functions. The amygdala plays a role in the expression of emotional information, whereas the cerebellum is involved in the timing of discrete motor responses. Interaction between these two systems is the basis of the two-stage theory of learning, according to which an encounter with a challenging event triggers fast classical conditioning of fear-conditioned responses in the amygdala and slow conditioning of motor-conditioned responses in the cerebellum. A third stage was hypothesised when an apparent interaction between amygdala and cerebellar associative plasticity was observed: an adaptive rate of cerebellum-dependent motor-conditioned responses was associated with a decrease in amygdala-dependent fear-conditioned responses, and was interpreted as extinction of amygdala-related fear-conditioned responses by the cerebellar output. To explore this hypothesis, we mimicked some components of classical eyeblink conditioning in anesthetised rats by applying an aversive periorbital pulse as an unconditioned stimulus and a train of pulses to the cerebellar output nuclei as a cerebellar neuronal-conditioned response. The central amygdala multiple unit response to the periorbital pulse was measured with or without a preceding train to the cerebellar output nuclei. The results showed that activation of the cerebellar output nuclei prior to periorbital stimulation produced diverse patterns of inhibition of the amygdala response to the periorbital aversive stimulus, depending upon the nucleus stimulated, the laterality of the nucleus stimulated, and the stimulus interval used. These results provide a putative extinction mechanism of learned fear behavior, and could have implications for the treatment of pathologies involving abnormal fear responses by using motor training as therapy.
Collapse
Affiliation(s)
- Ari Magal
- Psychobiology Research Unit, School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
7
|
Steinmetz AB, Harmon TC, Freeman JH. Visual cortical contributions to associative cerebellar learning. Neurobiol Learn Mem 2013; 104:103-9. [PMID: 23791556 DOI: 10.1016/j.nlm.2013.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
Eye-blink conditioning (EBC) is a form of associative learning that depends on the cerebellum. Previous reports suggested that sensory cortex is necessary for trace EBC but not for delay EBC. The trace and delay EBC procedures used in these studies differed by the presence or absence of a temporal gap between the end of the conditioned stimulus and the onset of the unconditioned stimulus (trace interval) and in the interval between the onset of the CS and the US (inter-stimulus interval, ISI). The current study examined the role of the visual cortex in delay, long-delay, and trace EBC, matching CS duration and inter-stimulus interval between groups. In Experiment 1, extensive removal of the visual cortex impaired acquisition of long-delay and trace EBC but had no effect on delay EBC. In Experiment 2, bilateral inactivation of the visual cortex impaired acquisition and retention of long-delay and trace EBC, but had no effect on delay EBC. In Experiment 3, unilateral inactivation of the visual cortex impaired long-delay EBC but had no effect on trace EBC. The results indicate that the visual cortex facilitates EBC with relatively long ISIs, regardless of whether there is a trace interval or not. Moreover, the ipsilateral projections from the visual cortex to the pontine nuclei are sufficient for modulating long-delay EBC, whereas trace EBC involves bilateral visual cortical interactions with forebrain systems including the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Adam B Steinmetz
- Department of Psychology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
8
|
Abstract
Two experiments using garden snails (Helix aspersa) showed conditioned inhibition using both retardation and summation tests. Conditioned inhibition is a procedure by which a stimulus becomes a predictor of the absence of a relevant event--the unconditioned stimulus (US). Typically, conditioned inhibition consists of pairings between an initially neutral conditioned stimulus, CS(2), and an effective excitatory conditioned stimulus, CS(1), in the absence of the US. Retardation and summation tests are required in order to confirm that CS(2) has acquired inhibitory properties. Conditioned inhibition has previously been found in invertebrates; however, these demonstrations did not use the retardation and summation tests required for an unambiguous demonstration of inhibition, allowing for alternative explanations. The implications of our results for the fields of comparative cognition and invertebrate physiological models of learning are discussed.
Collapse
|
9
|
Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem 2011; 18:666-77. [PMID: 21969489 DOI: 10.1101/lm.2023011] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning.
Collapse
Affiliation(s)
- John H Freeman
- Department of Psychology and Neuroscience Program, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
10
|
Halverson HE, Freeman JH. Medial auditory thalamic input to the lateral pontine nuclei is necessary for auditory eyeblink conditioning. Neurobiol Learn Mem 2010; 93:92-8. [PMID: 19706335 PMCID: PMC2815143 DOI: 10.1016/j.nlm.2009.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 11/28/2022]
Abstract
Auditory and visual conditioned stimulus (CS) pathways for eyeblink conditioning were investigated with reversible inactivation of the medial (MPN) or lateral (LPN) pontine nuclei. In Experiment 1, Long-Evans rats were given three phases of eyeblink conditioning. Phase 1 consisted of three training sessions with electrical stimulation of the medial auditory thalamic nuclei (MATN) paired with a periorbital shock unconditioned stimulus (US). An additional session was given with a muscimol (0.5muL, 10mM) or saline infusion targeting the LPN followed by a recovery session with no infusions. The same training and testing sequence was then repeated with either a tone or light CS in phases 2 and 3 (counterbalanced). Experiment 2 consisted of the same training as Experiment 1 except that muscimol or saline was infused in the MPN during the retention tests. Muscimol infusions targeting the LPN severely impaired retention of eyeblink conditioned responses (CRs) to the MATN stimulation and tone CSs but only partially reduced CR percentage to the light CS. Muscimol infusions that targeted the MPN had a larger effect on CR retention to the light CS relative to MATN stimulation or tone CSs. The results provide evidence that the auditory CS pathway necessary for delay eyeblink conditioning includes the MATN-LPN projection and the visual CS pathway includes the MPN.
Collapse
Affiliation(s)
| | - John H. Freeman
- Department of Psychology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Thompson R, Steinmetz J. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 2009; 162:732-55. [DOI: 10.1016/j.neuroscience.2009.01.041] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/18/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
12
|
Halverson HE, Poremba A, Freeman JH. Medial auditory thalamus inactivation prevents acquisition and retention of eyeblink conditioning. Learn Mem 2008; 15:532-8. [PMID: 18626096 PMCID: PMC2505321 DOI: 10.1101/lm.1002508] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
Abstract
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or muscimol infusions into the MATN contralateral to the trained eye before each of four conditioning sessions with an auditory CS. Rats were then given four additional sessions without infusions to assess savings from the initial training. All rats were then given a retention test with a muscimol infusion followed by a recovery session. Muscimol infusions through cannula placements within 0.5 mm of the MGm prevented acquisition of eyeblink conditioned responses (CRs) and also blocked CR retention. Cannula placements more than 0.5 mm from the MATN did not completely block CR acquisition and had a partial effect on CR retention. The primary and secondary effects of MATN inactivation were examined with 2-deoxy-glucose (2-DG) autoradiography. Differences in 2-DG uptake in the auditory thalamus were consistent with the cannula placements and behavioral results. Differences in 2-DG uptake were found between groups in the ipsilateral auditory cortex, basilar pontine nuclei, and inferior colliculus. Results from this experiment indicate that the MATN contralateral to the trained eye and its projection to the pontine nuclei are necessary for acquisition and retention of eyeblink CRs to an auditory CS.
Collapse
Affiliation(s)
| | - Amy Poremba
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - John H. Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
13
|
Wetmore DZ, Mukamel EA, Schnitzer MJ. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. J Neurophysiol 2007; 100:2328-47. [PMID: 17671105 PMCID: PMC2576199 DOI: 10.1152/jn.00344.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.
Collapse
Affiliation(s)
- Daniel Z Wetmore
- Department of Physics, James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA 94305-5435, USA
| | | | | |
Collapse
|
14
|
Plakke B, Freeman JH, Poremba A. Metabolic mapping of the rat cerebellum during delay and trace eyeblink conditioning. Neurobiol Learn Mem 2007; 88:11-8. [PMID: 17468019 PMCID: PMC2556373 DOI: 10.1016/j.nlm.2007.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/09/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
The essential neural circuitry for delay eyeblink conditioning has been largely identified, whereas much of the neural circuitry for trace conditioning has not been identified. The major difference between delay and trace conditioning is a time gap between the presentation of the conditioned stimulus (CS) and the unconditioned stimulus (US) during trace conditioning. It is this time gap or trace interval which accounts for an additional memory component in trace conditioning. Additional neural structures are also necessary for trace conditioning, including hippocampus and prefrontal cortex. This addition of forebrain structures necessary for trace but not delay conditioning suggests other brain areas become involved when a memory gap is added to the conditioning parameters. A metabolic marker of energy use, radioactively labeled glucose analog, was used to compare differences in glucose analog uptake between delay, trace, and unpaired experimental groups in order to identify new areas of involvement within the cerebellum. Known structures such as the interpositus nucleus and lobule HVI showed increased activation for both delay and trace conditioning compared to unpaired conditioning. However, there was a differential amount of activation between anterior and posterior portions of the interpositus nucleus between delay and trace, respectively. Cerebellar cortical areas including lobules IV and V of anterior lobe, Crus I, Crus II, and paramedian lobule also showed increases in activity for delay conditioning but not for trace conditioning. Delay and trace eyeblink conditioning both resulted in increased metabolic activity within the cerebellum but delay conditioning resulted in more widespread cerebellar cortical activation.
Collapse
Affiliation(s)
| | | | - Amy Poremba
- Corresponding author. Fax: +1 319 335 0191. E-mail address: (A. Poremba)
| |
Collapse
|
15
|
Green JT, Arenos JD. Hippocampal and cerebellar single-unit activity during delay and trace eyeblink conditioning in the rat. Neurobiol Learn Mem 2006; 87:269-84. [PMID: 17046292 PMCID: PMC1907365 DOI: 10.1016/j.nlm.2006.08.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/24/2006] [Accepted: 08/31/2006] [Indexed: 10/23/2022]
Abstract
In delay eyeblink conditioning, the CS overlaps with the US and only a brainstem-cerebellar circuit is necessary for learning. In trace eyeblink conditioning, the CS ends before the US is delivered and several forebrain structures, including the hippocampus, are required for learning, in addition to a brainstem-cerebellar circuit. The interstimulus interval (ISI) between CS onset and US onset is perhaps the most important factor in classical conditioning, but studies comparing delay and trace conditioning have typically not matched these procedures in this crucial factor, so it is often difficult to determine whether results are due to differences between delay and trace or to differences in ISI. In the current study, we employed a 580-ms CS-US interval for both delay and trace conditioning and compared hippocampal CA1 activity and cerebellar interpositus nucleus activity in order to determine whether a unique signature of trace conditioning exists in patterns of single-unit activity in either structure. Long-Evans rats were chronically implanted in either CA1 or interpositus with microwire electrodes and underwent either delay eyeblink conditioning, or trace eyeblink conditioning with a 300-ms trace period between CS offset and US onset. On trials with a CR in delay conditioning, CA1 pyramidal cells showed increases in activation (relative to a pre-CS baseline) during the CS-US period in sessions 1-4 that was attenuated by sessions 5-6. In contrast, on trials with a CR in trace conditioning, CA1 pyramidal cells did not show increases in activation during the CS-US period until sessions 5-6. In sessions 5-6, increases in activation were present only to the CS and not during the trace period. For rats with interpositus electrodes, activation of interpositus neurons on CR trials was present in all sessions in both delay and trace conditioning. However, activation was greater in trace compared to delay conditioning in the first half of the CS-US interval (during the trace CS) during early sessions of conditioning and, in later sessions of conditioning, activation was greater in the second half of the CS-US interval (during the trace interval). These results suggest that the pattern of hippocampal activation that differentiates trace from delay eyeblink conditioning is a slow buildup of activation to the CS, possibly representing encoding of CS duration or discrimination of the CS from the background context. Interpositus nucleus neurons show strong modeling of the eyeblink CR regardless of paradigm but show a changing pattern across conditioning that may be due to the necessary contributions of forebrain processing to trace conditioning.
Collapse
Affiliation(s)
- John T Green
- Department of Psychology, University of Vermont, Burlington VT 05405-0134, USA.
| | | |
Collapse
|
16
|
Campolattaro MM, Freeman JH. Perirhinal cortex lesions impair simultaneous but not serial feature-positive discrimination learning. Behav Neurosci 2006; 120:970-5. [PMID: 16893302 PMCID: PMC2556364 DOI: 10.1037/0735-7044.120.4.970] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the perirhinal cortex in discriminative eyeblink conditioning was examined by means of feature-positive discrimination procedures with simultaneous (A-/XA+) and serial (A-/X-->A+) stimulus compounds. Lesions of the perirhinal cortex severely impaired acquisition of simultaneous feature-positive discrimination but produced no impairment in serial feature-positive discrimination. The results suggest that the perirhinal cortex plays a role in discriminative eyeblink conditioning by resolving ambiguity in discriminations with overlapping stimulus elements.
Collapse
|
17
|
Migo EM, Corbett K, Graham J, Smith S, Tate S, Moran PM, Cassaday HJ. A novel test of conditioned inhibition correlates with personality measures of schizotypy and reward sensitivity. Behav Brain Res 2005; 168:299-306. [PMID: 16386317 DOI: 10.1016/j.bbr.2005.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/23/2022]
Abstract
Conditioned inhibition is demonstrated when the meaning of one signal (conditioned stimulus, CS) is qualified by another (conditioned inhibitor, CI). Whilst the CS presented alone reliably predicts the outcome (unconditioned stimulus, US), when presented in conjunction with the CI the otherwise expected US will not occur. Conditioned inhibition has long been established in animal research but there have been difficulties in establishing reliable procedures suitable for use in human research. Such procedures are necessary to investigate disorders in which cognitive inhibitory mechanisms are known to be deficient, e.g., schizophrenia. In healthy participants, individual differences in the tendency to show conditioned inhibition should be related to personality measures of cognitive inhibition. In the present study, this was measured using an automated test procedure, in which visual stimuli predict the occurrence or non-occurrence of a visual outcome US, and BIS/BAS and schizotypy scales. Conditioned inhibition was reliable across two alternative test variants, in which the non-occurrence of the US was specified differently, and was confirmed by summation tests. The level of CI shown was positively associated with BAS Reward Responsiveness but did not correlate significantly with any of the other BIS/BAS scales. Conversely, the level of CI shown was negatively associated with schizotypy. We suggest that this novel conditioned inhibition task should now be applied to investigate a range of disorders that have some basis in dysfunctional inhibitory processes, such as schizophrenia.
Collapse
Affiliation(s)
- Ellen M Migo
- School of Psychology, University of Nottingham, University Park, Nottingham, England NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Freeman JH, Rabinak CA. Eyeblink conditioning in rats using pontine stimulation as a conditioned stimulus. ACTA ACUST UNITED AC 2005; 39:180-91. [PMID: 15929500 PMCID: PMC1249521 DOI: 10.1007/bf02734438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies using rabbits and ferrets found that electrical stimulation of the pontine nuclei or middle cerebellar peduncle could serve as a conditioned stimulus (CS) in eyeblink conditioning (Bao, Chen, & Thompson, 2000; Hesslow, Svensson, & Ivarsson, 1999; Steinmetz, 1990; Steinmetz, Lavond, & Thompson, 1985; 1989; Steinmetz et al., 1986; Tracy, Thompson, Krupa, & Thompson, 1998). The current study used electrical stimulation of the pontine nuclei as a CS to establish eyeblink conditioning in rats. The goals of this study were to develop a method for directly activating the CS pathway in rodents and to compare the neural circuitry underlying eyeblink conditioning in different mammalian species. Rats were given electrical stimulation through a bipolar electrode implanted in the pontine nuclei paired with a periorbital shock unconditioned stimulus (US). Paired training was followed by extinction training. A subset of rats was given a test session of paired training after receiving an infusion of muscimol into the anterior interpositus nucleus. Rats given paired presentations of the stimulation CS and US developed CRs rapidly and showed extinction. Muscimol infusion prior to the test session resulted in a reversible loss of the eyeblink CR. The results demonstrate that electrical stimulation of the pontine nuclei can be used as a CS in rodents and that the CS pathway is similar in rats, rabbits, and ferrets. In addition, the loss of CRs following muscimol inactivation shows that the conditioning produced with pontine stimulation depends on cerebellar mechanisms.
Collapse
Affiliation(s)
- John H Freeman
- Department of Psychology, University of Iowa, E11 Seashore Hall, Iowa City, IA 52242, USA.
| | | |
Collapse
|
19
|
Nolan BC, Freeman JH. Purkinje cell loss by OX7-saporin impairs excitatory and inhibitory eyeblink conditioning. Behav Neurosci 2005; 119:190-201. [PMID: 15727524 PMCID: PMC1393287 DOI: 10.1037/0735-7044.119.1.190] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebellar cortical contributions to eyeblink conditioned excitation have been examined extensively. In contrast, very little evidence exists concerning the role of the cerebellar cortex in eyeblink conditioned inhibition. In the current study, rats were given intraventricular infusions of the immunotoxin OX7-saporin to selectively destroy Purkinje cells throughout the cerebellar cortex following excitatory conditioning. After a 2-week postinfusion period, the rats were given reacquisition training. After reacquiring excitatory conditioning, the rats were trained in a feature-negative discrimination procedure to establish conditioned inhibition. Rats treated with OX7-saporin showed impaired reacquisition of excitatory conditioning and acquisition of conditioned inhibition. The results suggest that Purkinje cells play important, but different, roles in conditioned excitation and inhibition in rats.
Collapse
|
20
|
Freeman JH, Muckler AS. Developmental changes in eyeblink conditioning and neuronal activity in the pontine nuclei. Learn Mem 2003; 10:337-45. [PMID: 14557606 PMCID: PMC217999 DOI: 10.1101/lm.63703] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuronal activity was recorded in the pontine nuclei of developing rats during eyeblink conditioning on postnatal days 17-18 (P17-P18) or P24-P25. A pretraining session consisted of unpaired presentations of a 300-msec tone conditioned stimulus (CS) and a 10-msec periorbital shock unconditioned stimulus (US). Five paired training sessions followed the unpaired session, consisting of 100 trials of the CS paired with the US. The rats trained on P24-P25 exhibited significantly more conditioned responses (CRs) than the rats trained on P17-P18, although both groups produced CRs by the end of training. Ontogenetic increases in pre-CS and stimulus-elicited activity in the pontine nuclei were observed during the pretraining session and after paired training. The activity of pontine units was greater on trials with CRs relative to trials without CRs in rats trained on P24-P25, but almost no CR-related modulation was observed in the pontine units of rats trained on P17-P18. The findings indicate that pontine neuronal responses to the CS and modulation of pontine activity by the cerebellum and red nucleus undergo substantial postnatal maturation. The developmental changes in pontine neuronal activity might play a significant role in the ontogeny of eyeblink conditioning.
Collapse
Affiliation(s)
- John H Freeman
- Department of Psychology, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
21
|
Nicholson DA, Sweet JA, Freeman JH. Long-term retention of the classically conditioned eyeblink response in rats. Behav Neurosci 2003; 117:871-5. [PMID: 12931972 DOI: 10.1037/0735-7044.117.4.871] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retention of the classically conditioned eyeblink response in rats was tested with a conditioned stimulus (CS)-alone extinction test and 2 sessions of reacquisition training. Retention of the eyeblink conditioned response (CR) during both tests was highest 24 hr and 1 month after initial acquisition. Three months after initial acquisition, responding during the CS-alone test was at baseline, but there was significant savings during reacquisition. By 6 months after initial acquisition, the memory for the eyeblink CR was not expressed in either test. The group differences in retention, despite initial acquisition of the eyeblink CR to equal levels, suggest that rat eyeblink conditioning may provide a useful behavioral model for studying the neural processes underlying memory retention and loss.
Collapse
|
22
|
Nicholson DA, Freeman JH. Medial dorsal thalamic lesions impair blocking and latent inhibition of the conditioned eyeblink response in rats. Behav Neurosci 2002; 116:276-85. [PMID: 11998820 DOI: 10.1037/0735-7044.116.2.276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of lesions of the medial dorsal thalamic nucleus (MD) on blocking and latent inhibition (LI) of the rat eyeblink response were examined in the present study. Previous work has demonstrated that the cingulate cortex and related thalamic areas are involved in processing conditioning stimuli throughout training. The experiments in the present study tested the hypothesis that disruption of cingulothalamic stimulus processing produced by lesions of the MD would impair 2 types of associative learning that involve decremental changes in attention. In Experiment 1, MD lesions severely impaired blocking. In Experiment 2, MD lesions severely impaired LI. The results indicate that lesions of the MD impair incremental, decremental, or both types of changes in stimulus processing during learning.
Collapse
|
23
|
Nolan BC, Nicholson DA, Freeman JH. Blockade of GABAA receptors in the interpositus nucleus modulates expression of conditioned excitation but not conditioned inhibition of the eyeblink response. Integr Psychol Behav Sci 2002; 37:293-310. [PMID: 12645845 PMCID: PMC1393457 DOI: 10.1007/bf02734250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The cerebellum and related brainstem structures are essential for excitatory eyeblink conditioning. Recent evidence indicates that the cerebellar interpositus and lateral pontine nuclei may also play critical roles in conditioned inhibition (CI) of the eyeblink response. The current study examined the role of GABAergic inhibition of the interpositus nucleus in retention of CI. Male Long-Evans rats were implanted with a cannula positioned just above or in the anterior interpositus nucleus before training. The rats were trained with two different tones and a light as conditioned stimuli, and a periorbital shock as the unconditioned stimulus. CI training consisted of four phases: 1) excitatory conditioning (8 kHz tone paired with shock); 2) feature-negative discrimination (2 kHz tone paired with shock or 2 kHz tone concurrent with light); 3) summation test (8 kHz tone or 8 kHz tone concurrent with light); and 4) retardation test (light paired with shock). After reaching a criterion level of performance on the feature-negative discrimination (40% discrimination), 0.5 microl picrotoxin (a GABAA receptor antagonist) was infused at one of four concentrations, each concentration infused during separate test sessions. Picrotoxin transiently impaired conditioned responses during trials with the excitatory stimulus (tone) in a dose-dependent manner, but did not significantly impact responding to the inhibitory compound stimulus (tone-light). The results suggest that expression of conditioned inhibition of the eyeblink conditioned response does not require GABAergic inhibition of neurons in the anterior interpositus nucleus.
Collapse
Affiliation(s)
| | | | - John H. Freeman
- Address for Correspondence: John Freeman, Department of Psychology, University of Iowa, E–11 Seashore Hall, Iowa City, IA 52242. Electronic mail may be sent to
| |
Collapse
|