1
|
Knox D. The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol Learn Mem 2016; 133:39-52. [PMID: 27264248 DOI: 10.1016/j.nlm.2016.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022]
Abstract
Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, United States.
| |
Collapse
|
2
|
Abstract
Basal forebrain cholinergic neurons constitute a way station for many ascending and descending pathways. These cholinergic neurons have a role in eliciting cortical activation and arousal. It is well established that they are mainly involved in cognitive processes requiring increased levels of arousal, attentive states and/or cortical activation with desynchronized activity in the EEG. These cholinergic neurons are modulated by several afferents of different neurotransmitter systems. Of particular importance within the cortical targets of basal forebrain neurons is the hippocampal cortex. The septohippocampal pathway is a bidirectional pathway constituting the main septal efferent system, which is widely known to be implicated in every memory process investigated. The present work aims to review the main neurotransmitter systems involved in modulating cognitive processes related to learning and memory through modulation of basal forebrain neurons.
Collapse
|
3
|
Hot P, Sequeira H. Diurnal emotional reactivity: Ultradian changes at neural and behavioral levels in men. Chronobiol Int 2015; 32:687-96. [DOI: 10.3109/07420528.2015.1039645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Ohira H, Matsunaga M, Murakami H, Osumi T, Fukuyama S, Shinoda J, Yamada J. Neural mechanisms mediating association of sympathetic activity and exploration in decision-making. Neuroscience 2013; 246:362-74. [PMID: 23643977 DOI: 10.1016/j.neuroscience.2013.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
Abstract
The somatic marker hypothesis asserts that decision-making can be guided by feedback of bodily states to the brain. In line with this hypothesis, the present study tested whether sympathetic activity shows an association with a tonic dimension of decision-making, exploratory tendency represented by entropy in information theory, and further examined the neural mechanisms of the association. Twenty participants performed a stochastic reversal learning task that required decision-making in an unstable and uncertain situation. Regional cerebral blood flow was evaluated using (15)O-water positron emission tomography (PET), and cardiovascular indices and concentrations of catecholamine in peripheral blood were also measured, during the task. In reversal learning, increased epinephrine during the task positively correlated with larger entropy, indicating a greater tendency for exploration in decision-making. The increase of epinephrine also correlated with brain activity revealed by PET in the somatosensory cortices, anterior insula, dorsal anterior cingulate cortex, and the dorsal pons. This result is consistent with previously reported brain matrixes of representation of bodily states and interoception. In addition, activity of the anterior insula specifically correlated with entropy, suggesting possible mediation of this brain region between peripheral sympathetic arousal and exploration in decision-making. These findings shed a new light about a role of bodily states in decision-making and underlying neural mechanisms.
Collapse
Affiliation(s)
- H Ohira
- Department of Psychology, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Broussard JI, Givens B. Low frequency oscillations in rat posterior parietal cortex are differentially activated by cues and distractors. Neurobiol Learn Mem 2010; 94:191-8. [PMID: 20493272 DOI: 10.1016/j.nlm.2010.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 04/07/2010] [Accepted: 05/15/2010] [Indexed: 01/08/2023]
Abstract
The posterior parietal cortex (PPC) is hypothesized to detect visual cues among competing distractors. Anatomical and neurophysiologic evidence indicates that the rat PPC is part of a network of brain areas involved in directed attention, specifically when new task parameters or conditions are introduced. Here, we test the hypothesis that changes in the local field potential (LFP) of the PPC of rats performing a sustained attention task reflect aspects of detection. Two event-related potentials were observed during detection: the P300 response and the contingent negative variation (CNV). Spectrogram analysis also indicated a detection-specific increase in alpha power in the retention interval of this task. This is consistent with observations from human studies, which indicate that tasks requiring a subject to withhold a response produced a pronounced synchronization of alpha rhythms during the delay, and desynchronization during retrieval. We also found cycles of alpha synchrony and desynchrony in response to a periodic distractor. These cycles were most pronounced in the initial trial block of the distractor when the false alarm rate was highest, and as task performance improved these cycles significantly diminished. This result suggests that alpha cycling in the PPC represent neural activity critical for learning to inhibit distractors. The occurrence of alpha synchronization and desynchronization to attention-demanding stimuli, in addition to the P300 and CNV responses observed during detection, is evidence that rat PPC is involved in sustained attention, particularly in the presence of distractors.
Collapse
Affiliation(s)
- John I Broussard
- Department of Psychology, The Ohio State University, Columbus, OH 43210, United States.
| | | |
Collapse
|
6
|
Regulation of cortical acetylcholine release: insights from in vivo microdialysis studies. Behav Brain Res 2010; 221:527-36. [PMID: 20170686 DOI: 10.1016/j.bbr.2010.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/10/2010] [Indexed: 01/12/2023]
Abstract
Acetylcholine release links the activity of presynaptic neurons with their postsynaptic targets and thus represents the intercellular correlate of cholinergic neurotransmission. Here, we review the regulation and functional significance of acetylcholine release in the mammalian cerebral cortex, with a particular emphasis on information derived from in vivo microdialysis studies over the past three decades. This information is integrated with anatomical and behavioral data to derive conclusions regarding the role of cortical cholinergic transmission in normal behavioral and how its dysregulation may contribute to cognitive correlates of several neuropsychiatric conditions. Some unresolved issues regarding the regulation and significance of cortical acetylcholine release and the promise of new methodology for advancing our knowledge in this area are also briefly discussed.
Collapse
|
7
|
Parikh V, Sarter M. Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann N Y Acad Sci 2008; 1129:225-35. [PMID: 18591483 DOI: 10.1196/annals.1417.021] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Contrary to the classic description of acetylcholine (ACh) as a slowly acting neuromodulator that influences arousal states, results from experiments that employed enzyme-selective microelectrodes for the real-time monitoring of ACh release in the cortex of attentional task-performing rats indicate that cholinergic signals manifesting on multiple timescales (seconds, tens of seconds, and minutes) support, and are necessary for, the mediation of defined cognitive operations. Specifically, in the prefrontal cortex, second-based cholinergic signals support the detection of behaviorally significant cues. In contrast to these prefrontal cholinergic transients, performance-associated cholinergic activity that manifested at lower temporal resolution also was observed elsewhere in the cortex. Although tonic cholinergic signal levels were correlated with the amplitudes of cue-evoked cholinergic transients, and the latter with response latencies, the interrelationships and interactions between the multiple cholinergic signaling modes remains unclear. Hypotheses concerning the afferent circuitry contributing to the regulation of second- versus minute-based cholinergic signals are discussed. The discovery of cholinergic transients and their crucial role in cue detection and attentional performance form the basis for new hypotheses about the nature of cholinergic dysfunction in cognitive disorders and offer new targets for the development of treatments for the cognitive symptoms of neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-1043, USA
| | | |
Collapse
|
8
|
Knox D, Berntson GG. Cortical modulation by nucleus basalis magnocellularis corticopetal cholinergic neurons during anxiety-like states is reflected by decreases in delta. Brain Res 2008; 1227:142-52. [PMID: 18619423 DOI: 10.1016/j.brainres.2008.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/14/2008] [Accepted: 06/17/2008] [Indexed: 11/30/2022]
Abstract
Previous research has demonstrated that nucleus basalis magnocellularis (nbm) corticopetal cholinergic neurons modulate anxiety-like states, but cortical modulation by these neurons during anxiety-like states has not been characterized. In order to address this, we documented the effect of nbm corticopetal cholinergic lesions on cortical activity in direct (prefrontal cortex) and indirect (retrosplenial cortex) targets of nbm corticopetal cholinergic neurons during footshock induced operant suppression. The gamma/delta ratio and theta were used as indices of cortical activity, because these components of the electroencephalogram (EEG) are sensitive to basal forebrain corticopetal cholinergic modulation. During operant suppression, increases in the gamma/delta ratio and augmented theta were observed in both cortical EEGs. Lesions attenuated operant suppression and the gamma/delta ratio, but had no effect on increased theta. The effect of nbm corticopetal cholinergic lesions on the gamma/delta ratio was driven by the effect of the lesions on the delta band. The results of the study demonstrate that during anxiety-like states 1) decreases in delta reflect the action of nbm corticopetal cholinergic neurons, 2) nbm corticopetal cholinergic neurons alter neural processes in direct and indirect cortical targets, and 3) cortical theta is not dependent on the integrity of nbm corticopetal cholinergic neurons.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychology, The Ohio State University, USA.
| | | |
Collapse
|
9
|
Kozak R, Martinez V, Young D, Brown H, Bruno JP, Sarter M. Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not non-performing, rats. Neuropsychopharmacology 2007; 32:2074-86. [PMID: 17299502 DOI: 10.1038/sj.npp.1301352] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impairments in attentional functions and capacities represent core aspects of the cognitive symptoms of schizophrenia. Attentional performance has been demonstrated to depend on the integrity and activity of cortical cholinergic inputs. The neurobiological, behavioral, and cognitive effects of repeated exposure to psychostimulants model important aspects of schizophrenia. In the present experiment, prefrontal acetylcholine (ACh) release was measured in attentional task-performing and non-performing rats pretreated with an escalating dosing regimen of amphetamine (AMPH) and following challenges with AMPH. In non-performing rats, pretreatment with AMPH did not affect the increases in ACh release produced by AMPH-challenges. In contrast, attentional task performance-associated increases in ACh release were attenuated in AMPH-pretreated and AMPH-challenged rats. This effect of repeated AMPH exposure on ACh release was already present before task-onset, suggesting that the loss of cognitive control that characterized these animals' performance was a result of cholinergic dysregulation. The findings indicate that the demonstration of repeated AMPH-induced dysregulation of the prefrontal cholinergic input system depends on interactions between the effects of repeated AMPH exposure and cognitive performance-associated recruitment of this neuronal system. Repeated AMPH-induced disruption of prefrontal cholinergic activity and attentional performance represents a useful model to investigate the cholinergic mechanisms contributing to the cognitive impairments of schizophrenia.
Collapse
Affiliation(s)
- Rouba Kozak
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1043, USA
| | | | | | | | | | | |
Collapse
|
10
|
Briand LA, Gritton H, Howe WM, Young DA, Sarter M. Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog Neurobiol 2007; 83:69-91. [PMID: 17681661 PMCID: PMC2080765 DOI: 10.1016/j.pneurobio.2007.06.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/06/2007] [Accepted: 06/22/2007] [Indexed: 12/19/2022]
Abstract
Research on the regulation and function of ascending noradrenergic, dopaminergic, serotonergic, and cholinergic systems has focused on the organization and function of individual systems. In contrast, evidence describing co-activation and interactions between multiple neuromodulatory systems has remained scarce. However, commonalities in the anatomical organization of these systems and overlapping evidence concerning the post-synaptic effects of neuromodulators strongly suggest that these systems are recruited in concert; they influence each other and simultaneously modulate their target circuits. Therefore, evidence on the regulatory and functional interactions between these systems is considered essential for revealing the role of neuromodulators. This postulate extends to contemporary neurobiological hypotheses of major neuropsychiatric disorders. These hypotheses have focused largely on aberrations in the integrity or regulation of individual ascending modulatory systems, with little regard for the likely possibility that dysregulation in multiple ascending neuromodulatory systems and their interactions contribute essentially to the symptoms of these disorders. This review will paradigmatically focus on neuromodulator interactions in the PFC and be further constrained by an additional focus on their role in cognitive functions. Recent evidence indicates that individual neuromodulators, in addition to their general state-setting or gating functions, encode specific cognitive operations, further substantiating the importance of research concerning the parallel recruitment of neuromodulator systems and interactions between these systems.
Collapse
Affiliation(s)
- Lisa A Briand
- University of Michigan, Department of Psychology and Neuroscience Program, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
11
|
Sarter M, Gehring WJ, Kozak R. More attention must be paid: The neurobiology of attentional effort. ACTA ACUST UNITED AC 2006; 51:145-60. [PMID: 16530842 DOI: 10.1016/j.brainresrev.2005.11.002] [Citation(s) in RCA: 367] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 10/24/2022]
Abstract
Increases in attentional effort are defined as the motivated activation of attentional systems in response to detrimental challenges on attentional performance, such as the presentation of distractors, prolonged time-on-task, changing target stimulus characteristics and stimulus presentation parameters, circadian phase shifts, stress or sickness. Increases in attentional effort are motivated by the expected performance outcome; in the absence of such motivation, attentional performance continues to decline or may cease altogether. The beneficial effects of increased attentional effort are due in part to the activation of top-down mechanisms that act to optimize input detection and processing, thereby stabilizing or recovering attentional performance in response to challenges. Following a description of the psychological construct "attentional effort", evidence is reviewed indicating that increases in the activity of cortical cholinergic inputs represent a major component of the neuronal circuitry mediating increases in attentional effort. A neuronal model describes how error detection and reward loss, indicating declining performance, are integrated with motivational mechanisms on the basis of neuronal circuits between prefrontal/anterior cingulate and mesolimbic regions. The cortical cholinergic input system is activated by projections of mesolimbic structures to the basal forebrain cholinergic system. In prefrontal regions, increases in cholinergic activity are hypothesized to contribute to the activation of the anterior attention system and associated executive functions, particularly the top-down optimization of input processing in sensory regions. Moreover, and influenced in part by prefrontal projections to the basal forebrain, increases in cholinergic activity in sensory and other posterior cortical regions contribute directly to the modification of receptive field properties or the suppression of contextual information and, therefore, to the mediation of top-down effects. The definition of attentional effort as a cognitive incentive, and the description of a neuronal circuitry model that integrates brain systems involved in performance monitoring, the processing of incentives, activation of attention systems and modulation of input functions, suggest that 'attentional effort' represents a viable construct for cognitive neuroscience research.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, 48109, USA.
| | | | | |
Collapse
|
12
|
Knox D, Berntson GG. Effect of nucleus basalis magnocellularis cholinergic lesions on fear-like and anxiety-like behavior. Behav Neurosci 2006; 120:307-12. [PMID: 16719695 DOI: 10.1037/0735-7044.120.2.307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous research has suggested that cholinergic neurons in the nucleus basalis magnocellularis and substantia innominata (NBM/SI) may be important in mediating aversive states. The authors investigated the effect of NBM/SI cholinergic lesions, induced with 192 IgG saporin, on behavioral measures of aversive states in rats. Behavior in the elevated plus maze and behavioral suppression induced by 2 fear-conditioned stimuli, a tone and a light, were evaluated. Lesions had no effect on any measures in the elevated plus maze but attenuated operant suppression induced by the light and attenuated freezing induced by the tone, though this last effect was not statistically significant. The results of the study suggest that NBM/SI cholinergic neurons may be important in mediating selective aspects of aversive states.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
13
|
Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. ACTA ACUST UNITED AC 2005; 48:98-111. [PMID: 15708630 DOI: 10.1016/j.brainresrev.2004.08.006] [Citation(s) in RCA: 496] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2004] [Indexed: 12/17/2022]
Abstract
Neurophysiological studies demonstrated that increases in cholinergic transmission in sensory areas enhance the cortical processing of thalamic inputs. Cholinergic activity also suppresses the retrieval of internal associations, thereby further promoting sensory input processing. Behavioral studies documented the role of cortical cholinergic inputs in attentional functions and capacities by demonstrating, for example, that the integrity of the cortical cholinergic input system is necessary for attentional performance, and that the activity of cortical cholinergic inputs is selectively enhanced during attentional performance. This review aims at integrating the neurophysiological and behavioral evidence on the functions of cortical cholinergic inputs and hypothesizes that the cortical cholinergic input system generally acts to optimize the processing of signals in attention-demanding contexts. Such signals 'recruit', via activation of basal forebrain corticopetal cholinergic projections, the cortical attention systems and thereby amplify the processing of attention-demanding signals (termed 'signal-driven cholinergic modulation of detection'). The activity of corticopetal cholinergic projections is also modulated by direct prefrontal projections to the basal forebrain and, indirectly, to cholinergic terminals elsewhere in the cortex; thus, cortical cholinergic inputs are also involved in the mediation of top-down effects, such as the knowledge-based augmentation of detection (see Footnote 1) of signals and the filtering of irrelevant information (termed 'cognitive cholinergic modulation of detection'). Thus, depending on the quality of signals and task characteristics, cortical cholinergic activity reflects the combined effects of signal-driven and cognitive modulation of detection. This hypothesis begins to explain signal intensity or duration-dependent performance in attention tasks, the distinct effects of cortex-wide versus prefrontal cholinergic deafferentation on attention performance, and it generates specific predictions concerning cortical acetylcholine (ACh) release in attention task-performing animals. Finally, the consequences of abnormalities in the regulation of cortical cholinergic inputs for the manifestation of the symptoms of major neuropsychiatric disorders are conceptualized in terms of dysregulation in the signal-driven and cognitive cholinergic modulation of detection processes.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, 525 E. University Ave., Ann Arbor, MI 48109-1109, USA.
| | | | | | | |
Collapse
|
14
|
Castle M, Comoli E, Loewy AD. Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience 2005; 134:657-69. [PMID: 15975727 DOI: 10.1016/j.neuroscience.2005.04.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 11/28/2022]
Abstract
Vagal nerve stimulation has been reported to enhance memory in both rats and humans, and to be an effective treatment for epilepsy in some patients, but the underlying neuroanatomical substrate(s) responsible for these effects remains unknown. Since there is no direct anatomical projection from the nucleus tractus solitarius, the main vagal relay site of the brain, to the hippocampus, we tested whether a multisynaptic pathway exists. Pseudorabies virus, a pig herpesvirus that can be used as a retrograde transneuronal tracer, was injected into the ventral CA1 hippocampus of rats, and after 4 days, pseudorabies virus infected neurons were identified in the general visceral portion of the nucleus tractus solitarius, with the majority being localized in the A2 noradrenergic cell group. Other autonomic brainstem nuclei, including the parabrachial nucleus, locus coeruleus, A1 and A5 noradrenergic cell groups, and C1 adrenergic cell group, were labeled. In order to identify some of the potential relay sites of the nucleus tractus solitarius-->hippocampal pathway, immunotoxin lesions of the ventral CA1 region were made that selectively destroyed either the noradrenergic or cholinergic fibers. After 2 weeks' recovery, pseudorabies virus was injected in this same CA1 area, and 4 days later, the transneuronal labeling in the nucleus tractus solitarius was reduced by approximately 65%. These findings suggest that the noradrenergic neurons of the locus coeruleus and cholinergic neurons of the medial septum/diagonal band are likely to be relay sites for this pathway. Other potential linkages are discussed. In summary, this is the first anatomical report to show that the general visceral region of nucleus tractus solitarius is linked via multisynaptic relays to the hippocampus.
Collapse
Affiliation(s)
- M Castle
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8108, St. Louis, MO 63110, USA
| | | | | |
Collapse
|