1
|
Zhu R. Preschoolers Represent Abstract Relations Predicated on Kind Membership. Open Mind (Camb) 2025; 9:70-88. [PMID: 39817188 PMCID: PMC11729786 DOI: 10.1162/opmi_a_00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/22/2024] [Indexed: 01/18/2025] Open
Abstract
Recent work demonstrates that U.S. preschoolers can represent the abstract relational concepts same and different when these abstract relational concepts are predicated upon perceptual dimensions (e.g., size, shape, color). The current research investigates whether preschoolers (n = 192; predominantly White, upper middle class, U.S. convenience sample) can also represent the abstract relational concepts same and different when these abstract relational concepts are predicated upon abstract dimensions (e.g., kind membership). Experiment 1 shows that, at baseline, 4-year-olds fail at a relational match-to-sample (rMTS) task with familiar kinds. However, Experiment 2 shows that 4- and 5-year-olds, but not 3-year-olds, succeed at a rMTS task with familiar kinds when provided with training involving noun labels. Experiment 3 shows that 4- and 5-year-olds also succeed at a rMTS task with novel kinds when provided with training involving noun labels but not adjective labels, suggesting that noun labels but not adjective labels cue children's attention towards kind membership. Moreover, participants frequently provided explanations appealing to sameness and difference when justifying their responses. Taken together, these results suggest that, with training, preschoolers are capable of representing abstract relations predicated on abstract, as well as perceptual, dimensions.
Collapse
Affiliation(s)
- Rebecca Zhu
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Hurst MA, Piantadosi ST. Continuous and discrete proportion elicit different cognitive strategies. Cognition 2024; 252:105918. [PMID: 39153444 PMCID: PMC12070037 DOI: 10.1016/j.cognition.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Despite proportional information being ubiquitous, there is not a standard account of proportional reasoning. Part of the difficulty is that there are several apparent contradictions: in some contexts, proportion is easy and privileged, while in others it is difficult and ignored. One possibility is that although we see similarities across tasks requiring proportional reasoning, people approach them with different strategies. We test this hypothesis by implementing strategies computationally and quantitatively comparing them with Bayesian tools, using data from continuous (e.g., pie chart) and discrete (e.g., dots) stimuli and preschoolers, 2nd and 5th graders, and adults. Overall, people's comparisons of highly regular and continuous proportion are better fit by proportion strategy models, but comparisons of discrete proportion are better fit by a numerator comparison model. These systematic differences in strategies suggest that there is not a single, simple explanation for behavior in terms of success or failure, but rather a variety of possible strategies that may be chosen in different contexts.
Collapse
|
3
|
Stojić S, Nadasdy Z. Event as the central construal of psychological time in humans. Front Psychol 2024; 15:1402903. [PMID: 39359968 PMCID: PMC11445672 DOI: 10.3389/fpsyg.2024.1402903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Time is a fundamental dimension of our perception and mental construction of reality. It enables resolving changes in our environment without a direct sensory representation of elapsed time. Therefore, the concept of time is inferential by nature, but the units of subjective time that provide meaningful segmentation of the influx of sensory input remain to be determined. In this review, we posit that events are the construal instances of time perception as they provide a reproducible and consistent segmentation of the content. In that light, we discuss the implications of this proposal by looking at "events" and their role in subjective time experience from cultural anthropological and ontogenetic perspectives, as well as their relevance for episodic memory. Furthermore, we discuss the significance of "events" for the two critical aspects of subjective time-duration and order. Because segmentation involves parsing event streams according to causal sequences, we also consider the role of causality in developing the concept of directionality of mental timelines. We offer a fresh perspective on representing past and future events before age 5 by an egocentric bi-directional timeline model before acquiring the allocentric concept of absolute time. Finally, we illustrate how the relationship between events and durations can resolve contradictory experimental results. Although "time" warrants a comprehensive interdisciplinary approach, we focus this review on "time perception", the experience of time, without attempting to provide an all encompassing overview of the rich philosophical, physical, psychological, cognitive, linguistic, and neurophysiological context.
Collapse
Affiliation(s)
- Sandra Stojić
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltan Nadasdy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
- Zeto, Inc., Santa Clara, CA, United States
| |
Collapse
|
4
|
Guo J, Wei W. Factors influencing the role of inhibitory control in non-symbolic numerical processing. Acta Psychol (Amst) 2024; 248:104346. [PMID: 38870687 DOI: 10.1016/j.actpsy.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Previous studies have found that inhibitory control plays an important role in non-symbolic numerical processing. However, this role may be influenced by the visual cue control method or the stimulus' presentation time. We investigated these questions by conducting three experiments using a priming paradigm to compare the level of inhibitory control in a sequential dot comparison task with single-dimensional and multi-dimensional control of visual cues under two presentation time conditions (300 ms and 1500 ms). We found that neither the method of visual cue control nor the presentation time of dot arrays affected the level of inhibitory control in the dot comparison task. These results reveal a stable role of inhibitory control in non-symbolic numerical processing, providing further evidence for integrating numerical and visual information during non-symbolic numerical processing.
Collapse
Affiliation(s)
- Junzhen Guo
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou 310028, China
| | - Wei Wei
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou 310028, China.
| |
Collapse
|
5
|
Tang Y, Qian P, Yan L. Developmental changes of the impact of visual cues on ANS acuity across grades 1-5: Different patterns of visual cues on numerosity processing. Iperception 2024; 15:20416695241259160. [PMID: 38846636 PMCID: PMC11155340 DOI: 10.1177/20416695241259160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/18/2024] [Indexed: 06/09/2024] Open
Abstract
Numerous studies have consistently demonstrated the presence of the approximate number system (ANS) throughout development. Research has also revealed that visual cues may influence the ANS acuity, which may change with age. However, most studies have drawn conclusions based on performance differences between incongruent and congruent trials, which may be confounded by an individual's ability to inhibit interference. Therefore, to examine the developmental changes of the impact of visual cues on ANS acuity, we utilized congruent trials with varying visual cues. Our sample comprised Chinese children from grade one to grade five. We manipulated the salience of numerical cues (numerical ratio) and visual cues (dot size) in a non-symbolic numerosity comparison task. The results revealed a discernible leap in development from first to third grade and first to fifth grade; however, this upward trajectory did not persist into the transition from third to fifth grade, where no appreciable advancement was observed. Moreover, we observed different effects of visual cues on the dot-comparison task depending on the numerical cues and age. Specifically, visual cues (i.e., dot size) only facilitated ANS acuity in older school-aged children when numerical cues were weakened. The results indicate the presence of two distinct magnitude representational systems-one for the numerical dimension and another for the non-numerical dimension-during development.
Collapse
Affiliation(s)
- Yike Tang
- Zhejiang Sci-Tech University, Hangzhou, China
| | - Ping Qian
- Zhejiang Sci-Tech University, Hangzhou, China
| | - Linlin Yan
- Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
6
|
Romeo Z, Dolfi S, D'Amelio M, Mioni G. Duration, numerosity and length processing in healthy ageing and Parkinson's disease. Eur J Ageing 2024; 21:14. [PMID: 38656628 PMCID: PMC11043296 DOI: 10.1007/s10433-024-00807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
People constantly process temporal, numerical, and length information in everyday activities and interactions with the environment. However, it is unclear whether quantity perception changes during ageing. Previous studies have provided heterogeneous results, sometimes showing an age-related effect on a particular quantity, and other times reporting no differences between young and elderly samples. However, three dimensions were never compared within the same study. Here, we conducted two experiments with the aim of investigating the processing of duration, numerosity and length in both healthy and pathological ageing. The experimental paradigm consisted of three bisection tasks in which participants were asked to judge whether the presented stimulus (i.e. a time interval, a group of dots, or a line) was more similar to the short/few or long/many standards. The first study recruited healthy young and elderly participants, while the second recruited healthy elderly participants and patients with Parkinson's disease, a clinical condition commonly associated with temporal impairments. The results of both experiments showed that discrimination precision differed between domains in all groups, with higher precision in the numerosity task and lower sensitivity in judging duration. Furthermore, while discrimination abilities were affected in healthy elderly and, even more so, in Parkinson's disease group, no domain-specific impairments emerged. According to our research, reduced discrimination precision might be explained by an alteration of a single system for all quantities or by an age-related general cognitive decline.
Collapse
Affiliation(s)
- Z Romeo
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council (CNR), Padua, Italy.
| | - S Dolfi
- Department of Developmental Psychology and Socialization, University of Padova, Padua, Italy
| | | | - G Mioni
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padua, Italy.
| |
Collapse
|
7
|
Sanford EM, Topaz CM, Halberda J. Modeling Magnitude Discrimination: Effects of Internal Precision and Attentional Weighting of Feature Dimensions. Cogn Sci 2024; 48:e13409. [PMID: 38294098 DOI: 10.1111/cogs.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 11/20/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Given a rich environment, how do we decide on what information to use? A view of a single entity (e.g., a group of birds) affords many distinct interpretations, including their number, average size, and spatial extent. An enduring challenge for cognition, therefore, is to focus resources on the most relevant evidence for any particular decision. In the present study, subjects completed three tasks-number discrimination, surface area discrimination, and convex hull discrimination-with the same stimulus set, where these three features were orthogonalized. Therefore, only the relevant feature provided consistent evidence for decisions in each task. This allowed us to determine how well humans discriminate each feature dimension and what evidence they relied on to do so. We introduce a novel computational approach that fits both feature precision and feature use. We found that the most relevant feature for each decision is extracted and relied on, with minor contributions from competing features. These results suggest that multiple feature dimensions are separately represented for each attended ensemble of many items and that cognition is efficient at selecting the appropriate evidence for a decision.
Collapse
Affiliation(s)
- Emily M Sanford
- Department of Psychological & Brain Sciences, Johns Hopkins University
| | | | - Justin Halberda
- Department of Psychological & Brain Sciences, Johns Hopkins University
| |
Collapse
|
8
|
Piantadosi ST. The algorithmic origins of counting. Child Dev 2023; 94:1472-1490. [PMID: 37984061 DOI: 10.1111/cdev.14031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023]
Abstract
The study of how children learn numbers has yielded one of the most productive research programs in cognitive development, spanning empirical and computational methods, as well as nativist and empiricist philosophies. This paper provides a tutorial on how to think computationally about learning models in a domain like number, where learners take finite data and go far beyond what they directly observe or perceive. To illustrate, this paper then outlines a model which acquires a counting procedure using observations of sets and words, extending the proposal of Piantadosi et al. (2012). This new version of the model responds to several critiques of the original work and outlines an approach which is likely appropriate for acquiring further aspects of mathematics.
Collapse
|
9
|
Sanford EM, Halberda J. A Shared Intuitive (Mis)understanding of Psychophysical Law Leads Both Novices and Educated Students to Believe in a Just Noticeable Difference (JND). Open Mind (Camb) 2023; 7:785-801. [PMID: 37946851 PMCID: PMC10631794 DOI: 10.1162/opmi_a_00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/03/2023] [Indexed: 11/12/2023] Open
Abstract
Humans are both the scientists who discover psychological laws and the thinkers who behave according to those laws. Oftentimes, when our natural behavior is in accord with those laws, this dual role serves us well: our intuitions about our own behavior can serve to inform our discovery of new laws. But, in cases where the laws that we discover through science do not agree with the intuitions and biases we carry into the lab, we may find it harder to believe in and adopt those laws. Here, we explore one such case. Since the founding of psychophysics, the notion of a Just Noticeable Difference (JND) in perceptual discrimination has been ubiquitous in experimental psychology-even in spite of theoretical advances since the 1950's that argue that there can be no such thing as a threshold in perceiving difference. We find that both novices and psychologically educated students alike misunderstand the JND to mean that, below a certain threshold, humans will be unable to tell which of two quantities is greater (e.g., that humans will be completely at chance when trying to judge which is heavier, a bag with 3000 grains of sand or 3001). This belief in chance performance below a threshold is inconsistent with psychophysical law. We argue that belief in a JND is part of our intuitive theory of psychology and is therefore very difficult to dispel.
Collapse
Affiliation(s)
- Emily M. Sanford
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Halberda
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Briggs G, Lovett A, Bridewell W, Bello PF. Attentional Strategies and the Transition From Subitizing to Estimation in Numerosity Perception. Cogn Sci 2023; 47:e13337. [PMID: 37747994 DOI: 10.1111/cogs.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023]
Abstract
The common view of the transition between subitizing and numerosity estimation regimes is that there is a hard bound on the subitizing range, and beyond this range, people estimate. However, this view does not adequately address the behavioral signatures of enumeration under conditions of attentional load or in the immediate post-subitizing range. The possibility that there might exist a numerosity range where both processes of subitizing and estimation operate in conjunction has so far been ignored. Here, we investigate this new proposal, that people strategically combine the processes of subitizing and estimation to maximize accuracy and precision, given time or attentional constraints. We present a process-level account of how subitizing and estimation can be combined through strategic deployment of attention to maximize the precision of perceived numerosity given time constraints. We then describe a computational model of this account and apply it in two experimental simulations to demonstrate how it can explain key findings in prior enumeration research. While recent modeling work has argued that the behavioral signatures of enumeration can best be explained through a single numerosity system with a single form of representation, we argue that our model demonstrates how the traditional two-systems view of numerical representation accounts for behavioral data through coordination with a unified attentional mechanism, rather than a unified representation.
Collapse
Affiliation(s)
- Gordon Briggs
- Navy Center for Applied Research in Artificial Intelligence, U.S. Naval Research Laboratory
| | - Andrew Lovett
- Navy Center for Applied Research in Artificial Intelligence, U.S. Naval Research Laboratory
| | - Will Bridewell
- Navy Center for Applied Research in Artificial Intelligence, U.S. Naval Research Laboratory
| | - Paul F Bello
- Navy Center for Applied Research in Artificial Intelligence, U.S. Naval Research Laboratory
| |
Collapse
|
11
|
Goh RZ, Phillips IB, Firestone C. The perception of silence. Proc Natl Acad Sci U S A 2023; 120:e2301463120. [PMID: 37428927 PMCID: PMC10629541 DOI: 10.1073/pnas.2301463120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023] Open
Abstract
Auditory perception is traditionally conceived as the perception of sounds-a friend's voice, a clap of thunder, a minor chord. However, daily life also seems to present us with experiences characterized by the absence of sound-a moment of silence, a gap between thunderclaps, the hush after a musical performance. In these cases, do we positively hear silence? Or do we just fail to hear, and merely judge or infer that it is silent? This longstanding question remains controversial in both the philosophy and science of perception, with prominent theories holding that sounds are the only objects of auditory experience and thus that our encounter with silence is cognitive, not perceptual. However, this debate has largely remained theoretical, without a key empirical test. Here, we introduce an empirical approach to this theoretical dispute, presenting experimental evidence that silence can be genuinely perceived (not just cognitively inferred). We ask whether silences can "substitute" for sounds in event-based auditory illusions-empirical signatures of auditory event representation in which auditory events distort perceived duration. Seven experiments introduce three "silence illusions"-the one-silence-is-more illusion, silence-based warping, and the oddball-silence illusion-each adapted from a prominent perceptual illusion previously thought to arise only from sounds. Subjects were immersed in ambient noise interrupted by silences structurally identical to the sounds in the original illusions. In all cases, silences elicited temporal distortions perfectly analogous to the illusions produced by sounds. Our results suggest that silence is truly heard, not merely inferred, introducing a general approach for studying the perception of absence.
Collapse
Affiliation(s)
- Rui Zhe Goh
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218
- Department of Philosophy, Johns Hopkins University, Baltimore, MD21218
| | - Ian B. Phillips
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218
- Department of Philosophy, Johns Hopkins University, Baltimore, MD21218
| | - Chaz Firestone
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218
- Department of Philosophy, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
12
|
Yuan X, Ni L, Li H, Zhang D, Zhou K. The neural correlates of individual differences in numerosity perception: A voxel-based morphometry study. iScience 2023; 26:107392. [PMID: 37554464 PMCID: PMC10405316 DOI: 10.1016/j.isci.2023.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
Numerosity perception is a fundamental cognitive function in humans and animals. Using an individual difference approach with a comprehensive dataset (N = 249), we performed a voxel-based morphometry analysis to unravel the neuroanatomical substrates associated with individual differences in numerosity perception sensitivity, measured by a classical non-symbolic numerical judgment task. Results showed that greater gray matter volume (GMV) in the left cerebellum, right temporal pole, and right parahippocampal was positively correlated to higher perceptual sensitivity to numerosity. In contrast, the GMV in the left intraparietal sulcus, and bilateral precentral/postcentral gyrus was negatively correlated to the sensitivity of numerosity perception. These findings indicate that a wide range of brain structures, rather than a specific anatomical structure or circuit, forms the neuroanatomical basis of numerosity perception, lending support to the emerging network view of the neural representation of numerosity. This work contributes to a more comprehensive understanding of how the brain processes numerical information. •Unveils neuroanatomical basis of numerosity perception •Discovers positive and negative greater GMV correlations •Links GMV in a wide range of brain regions to numerical sensitivity •Supports the network view of the neural representation of numerosity perception
Collapse
Affiliation(s)
- Xinyi Yuan
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Liangping Ni
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei 230032, China
| | - Huan Li
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei 230032, China
| | - Dai Zhang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei 230032, China
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Bonny JW, Lourenco SF. Electrophysiological Comparison of Cumulative Area and Non-Symbolic Number Judgments. Brain Sci 2023; 13:975. [PMID: 37371453 DOI: 10.3390/brainsci13060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the importance of representing different magnitudes (i.e., number and cumulative area) for action planning and formal mathematics, there is much debate about the nature of these representations, particularly the extent to which magnitudes interact in the mind and brain. Early interaction views suggest that there are shared perceptual processes that form overlapping magnitude representations. However, late interaction views hold that representations of different magnitudes remain distinct, interacting only when preparing a motor response. The present study sheds light on this debate by examining the temporal onset of ratio and congruity effects as participants made ordinal judgments about number and cumulative area. Event-related potentials (ERPs) were recorded to identify whether the onset of such effects aligned with early versus late views. Ratio effects for both magnitudes were observed starting in the P100. Moreover, a congruity effect emerged within the P100. That interactions were observed early in processing, at the same time that initial ratio effects occurred, suggests that number and cumulative area processes interacted when magnitude representations were being formed, prior to preparing a decision response. Our findings are consistent with an early interaction view of magnitude processing, in which number and cumulative area may rely on shared perceptual mechanisms.
Collapse
Affiliation(s)
- Justin W Bonny
- Department of Psychology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | | |
Collapse
|
14
|
Lv J, Mao H, Zeng L, Wang X, Zhou X, Mou Y. The developmental relationship between nonsymbolic and symbolic fraction abilities. J Exp Child Psychol 2023; 232:105666. [PMID: 37043876 DOI: 10.1016/j.jecp.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 04/14/2023]
Abstract
A fundamental research question in quantitative cognition concerns the developmental relationship between nonsymbolic and symbolic quantitative abilities. This study examined this developmental relationship in abilities to process nonsymbolic and symbolic fractions. There were 99 6th graders (Mage = 11.86 years), 101 10th graders (Mage = 15.71 years), and 102 undergraduate and graduate students (Mage = 21.97 years) participating in this study, and their nonsymbolic and symbolic fraction abilities were measured with nonsymbolic and symbolic fraction comparison tasks, respectively. Nonsymbolic and symbolic fraction abilities were significantly correlated in all age groups even after controlling for the ability to process nonsymbolic absolute quantity and general cognitive abilities, including working memory and inhibitory control. Moreover, the strength of nonsymbolic-symbolic correlations was higher in 6th graders than in 10th graders and adults. These findings suggest a weakened association between nonsymbolic and symbolic fraction abilities during development, and this developmental pattern may be related with participants' increasing proficiency in symbolic fractions.
Collapse
Affiliation(s)
- Jianxiang Lv
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Huomin Mao
- Affiliated Primary School of Sun Yat-sen University, Zhuhai Campus, Zhuhai 519000, China
| | - Liping Zeng
- Yangchun No. 1 Middle School, Guangdong 529600, China
| | - Xuqing Wang
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Yi Mou
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Malykh S, Tarasov S, Baeva I, Nikulchev E, Kolyasnikov P, Ilin D, Marnevskaia I, Malykh A, Ismatullina V, Kuzmina Y. Large-scale study of the precision of the approximate number system: Differences between formats, heterogeneity and congruency effects. Heliyon 2023; 9:e14912. [PMID: 37064479 PMCID: PMC10102223 DOI: 10.1016/j.heliyon.2023.e14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The study used a large sample of elementary schoolchildren in Russia (N = 3,448, 51.6% were girls, with a mean age of 8.70 years, ranging 6-11 years) to investigate the congruency, format and heterogeneity effects in a nonsymbolic comparison test and between-individual differences in these effects with generalized linear mixed effects models (GLMMs). The participants were asked to compare two arrays of figures of different colours in spatially separated or spatially intermixed formats. In addition, the figures could be similar or different for the two arrays. The results revealed that congruency (difference between congruent and incongruent items), format (difference between mixed and separated formats) and heterogeneity (difference between homogeneous and heterogeneous conditions) interacted. The heterogeneity effect was higher in the separated format, while the format effect was higher for the homogeneous condition. The separated format produced a greater congruency effect than the mixed format. In addition, the congruency effect was lower in the heterogeneous condition than in the homogeneous condition. Analysis of between-individual differences revealed that there was significant between-individual variance in the format and congruency effects. Analysis of between-grade differences revealed that accuracy improved from grade 1 to grade 4 only for congruent trials in separated formats. Consequently, the congruency effect increased in separated/homogeneous and separated/heterogeneous conditions. In general, the study demonstrated that the test format and heterogeneity affected accuracy and that this effect varied for congruent and incongruent items.
Collapse
Affiliation(s)
- S. Malykh
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia
- Russian Academy of Education, Moscow, Russia
- Corresponding author. Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.
| | - S. Tarasov
- The Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - I. Baeva
- The Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | - E. Nikulchev
- MIREA—Russian Technological University, Moscow, Russia
| | | | - D. Ilin
- MIREA—Russian Technological University, Moscow, Russia
| | - I. Marnevskaia
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - A. Malykh
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - V. Ismatullina
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | | |
Collapse
|
16
|
Aulet LS, Lourenco SF. No intrinsic number bias: Evaluating the role of perceptual discriminability in magnitude categorization. Dev Sci 2023; 26:e13305. [PMID: 35851738 DOI: 10.1111/desc.13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 01/29/2023]
Abstract
Accumulating evidence suggests that there is a spontaneous preference for numerical, compared to non-numerical (e.g., cumulative surface area), information. However, given a paucity of research on the perception of non-numerical magnitudes, it is unclear whether this preference reflects a specific bias towards number, or a general bias towards the more perceptually discriminable dimension (i.e., number). Here, we found that when the number and area of visual dot displays were matched in mathematical ratio, number was more perceptually discriminable than area in both adults and children. Moreover, both adults and children preferentially categorized these ratio-matched stimuli based on number, consistent with previous work. However, when number and area were matched in perceptual discriminability, a different pattern of results emerged. In particular, children preferentially categorized stimuli based on area, suggesting that children's previously observed number bias may be due to a mismatch in the perceptual discriminability of number and area, not an intrinsic salience of number. Interestingly, adults continued to categorize the displays on the basis of number. Altogether, these findings suggest a dominant role for area during childhood, refuting the claim that number is inherently and uniquely salient. Yet they also reveal an increased salience of number that emerges over development. Potential explanations for this developmental shift are discussed. RESEARCH HIGHLIGHTS: Previous work found that children and adults spontaneously categorized dot array stimuli by number, over other magnitudes (e.g., area), suggesting number is uniquely salient. However, here we found that when number and area were matched by ratio, as in prior work, number was significantly more perceptually discriminable than area. When number and area were made equally discriminable ('perceptually-matched'), children, contra adults, spontaneously categorized stimuli by area over number (and other non-numerical magnitudes). These findings suggest that area may be uniquely salient early in childhood, with the previously-observed number bias not emerging until later in development.
Collapse
Affiliation(s)
- Lauren S Aulet
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
17
|
Rodríguez C, Ferreira RA. To what extent is dot comparison an appropriate measure of approximate number system? Front Psychol 2023; 13:1065600. [PMID: 36704683 PMCID: PMC9873381 DOI: 10.3389/fpsyg.2022.1065600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Number sense has been systematically measured using dot comparison tasks. However, recent studies have reported that performance on dot comparison might be influenced inhibitory control and visual properties of dot arrays. In the present study, we analysed the influence of continuous magnitude, inhibitory control, and numerical ratio on the dot comparison performance of preschool children. Methods Participants were 517 preschool children from 13 different schools in Chile. Children completed a dot comparison and two inhibitory control tasks. Gebuis and Reynvoet method was used to create well-controlled dot arrays for use in the dot comparison task. A logistic mixed effects model was conducted to predict participants' dot comparison accuracy. Continuous magnitude and ratio were entered as level-1 predictors and inhibitory control as level-2 predictors. Results The results showed that all predictors made a significant contribution to dot comparison accuracy. Furthermore, a significant double interaction (inhibitory control x continuous magnitude) and a triple interaction (inhibitory control x continuous magnitude x ratio) showed that the contribution of inhibitory control skills in dot comparison accuracy depends on the continuous properties of dot arrays and ratio. Discussion These findings suggest that preschool children rely more on continuous magnitudes than numerosity in dot comparison tasks. They also indicate that the greater children's inhibitory control, the more able they are to respond based on numerosity in fully incongruent trials, particularly when ratio is low (easiest items). Taken together, the above findings support the competing processes account provided that both ANS and inhibitory control skills influence performance on dot comparison tasks.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Millennium Nucleus for the Science of Learning (MiNSoL), Talca, Chile,Facultad de Ciencias de la Educación, Universidad Católica del Maule, Talca, Chile,*Correspondence: Cristina Rodríguez,
| | - Roberto A. Ferreira
- Millennium Nucleus for the Science of Learning (MiNSoL), Talca, Chile,Facultad de Ciencias de la Educación, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
18
|
The approximate number system cannot be the leading factor in the acquisition of the first symbolic numbers. COGNITIVE DEVELOPMENT 2023. [DOI: 10.1016/j.cogdev.2022.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Kuzmina Y, Malykh S. The effect of visual parameters on nonsymbolic numerosity estimation varies depending on the format of stimulus presentation. J Exp Child Psychol 2022; 224:105514. [DOI: 10.1016/j.jecp.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
|
20
|
Yousif SR, Alexandrov E, Bennette E, Aslin R, Keil FC. Do children estimate area using an ‘Additive‐Area Heuristic’? Dev Sci 2022; 25:e13235. [DOI: 10.1111/desc.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/22/2021] [Accepted: 01/06/2022] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | - Richard Aslin
- Yale University Department of Psychology
- Haskins Laboratories
- Yale Child Study Center
| | | |
Collapse
|
21
|
Wilkey ED, Shanley L, Sabb F, Ansari D, Cohen JC, Men V, Heller NA, Clarke B. Sharpening, focusing, and developing: A study of change in nonsymbolic number comparison skills and math achievement in 1st grade. Dev Sci 2021; 25:e13194. [PMID: 34800342 DOI: 10.1111/desc.13194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
Children's ability to discriminate nonsymbolic number (e.g., the number of items in a set) is a commonly studied predictor of later math skills. Number discrimination improves throughout development, but what drives this improvement is unclear. Competing theories suggest that it may be due to a sharpening numerical representation or an improved ability to pay attention to number and filter out non-numerical information. We investigate this issue by studying change in children's performance (N = 65) on a nonsymbolic number comparison task, where children decide which of two dot arrays has more dots, from the middle to the end of 1st grade (mean age at time 1 = 6.85 years old). In this task, visual properties of the dot arrays such as surface area are either congruent (the more numerous array has more surface area) or incongruent. Children rely more on executive functions during incongruent trials, so improvements in each congruency condition provide information about the underlying cognitive mechanisms. We found that accuracy rates increased similarly for both conditions, indicating a sharpening sense of numerical magnitude, not simply improved attention to the numerical task dimension. Symbolic number skills predicted change in congruent trials, but executive function did not predict change in either condition. No factor predicted change in math achievement. Together, these findings suggest that nonsymbolic number processing undergoes development related to existing symbolic number skills, development that appears not to be driving math gains during this period. Children's ability to discriminate nonsymbolic number improves throughout development. Competing theories suggest improvement due to sharpening magnitude representations or changes in attention and inhibition. The current study investigates change in nonsymbolic number comparison performance during first grade and whether symbolic number skills, math skills, or executive function predict change. Children's performance increased across visual control conditions (i.e., congruent or incongruent with number) suggesting an overall sharpening of number processing. Symbolic number skills predicted change in nonsymbolic number comparison performance.
Collapse
Affiliation(s)
- Eric D Wilkey
- Brain & Mind Institute, Western University, London, Ontario, Canada
| | - Lina Shanley
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Fred Sabb
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Daniel Ansari
- Brain & Mind Institute, Western University, London, Ontario, Canada
| | - Jason C Cohen
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Virany Men
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Nicole A Heller
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Ben Clarke
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
22
|
Ogden RS, Simmons FR, Wearden JH. Verbal estimation of the magnitude of time, number, and length. PSYCHOLOGICAL RESEARCH 2021; 85:3048-3060. [PMID: 33331956 PMCID: PMC8476378 DOI: 10.1007/s00426-020-01456-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/01/2020] [Indexed: 12/04/2022]
Abstract
Performance similarities on tasks requiring the processing of different domains of magnitude (e.g. time, numerosity, and length) have led to the suggestion that humans possess a common processing system for all domains of magnitude (Bueti and Walsh in Philos Trans R Soc B 364:1831-1840, 2009). In light of this, the current study examined whether Wearden's (Timing Time Percept 3:223-245, 2015) model of the verbal estimation of duration could be applied to verbal estimates of numerosity and length. Students (n = 23) verbally estimated the duration, number, or physical length of items presented in visual displays. Analysis of the mean verbal estimates indicated the data were typical of that found in other studies. Analysis of the frequency of individual verbal estimates produced suggested that the verbal responses were highly quantized for duration and length: that is, only a small number of estimates were used. Responses were also quantized for number but to a lesser degree. The data were modelled using Wearden's (2015) account of verbal estimation performance, which simulates quantization effects, and good fits could be obtained providing that stimulus durations were scaled as proportions (0.75, 1.06, and 0.92 for duration, number, and length, respectively) of their real magnitudes. The results suggest that despite previous reports of similarities in the processing of magnitude, there appear to be differences in the way in which the underlying representations of the magnitudes are scaled and then transformed into verbal outputs.
Collapse
Affiliation(s)
- R S Ogden
- Liverpool John Moores University, Liverpool, L33AF, UK.
| | - F R Simmons
- Liverpool John Moores University, Liverpool, L33AF, UK
| | - J H Wearden
- University of Keele, Staffordshire, ST5 5BG, UK
- University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
23
|
Saga M, Rkhaila A, Ounine K, Oubaha D. Developmental dyscalculia: the progress of cognitive modeling in the field of numerical cognition deficits for children. APPLIED NEUROPSYCHOLOGY-CHILD 2021; 11:904-914. [PMID: 34320331 DOI: 10.1080/21622965.2021.1955679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The study of dyscalculia requires an analysis of the current developed hypotheses which describe the cognitive mechanisms involved in this neurodevelopmental disorder. The objective of our review is to determine any progress in modeling developmental dyscalculia. The first hypothesis suggests that dyscalculia is the consequence of a specific deficit level number on the precise number system and the approximate system. Then, the second hypothesis states that developmental dyscalculia is linked to a failure to process non-symbolic representations of numbers. On the other hand, the third suggests that dyscalculia is caused by a lack of access to numerical quantities from symbols. However, the last hypothesis asserts that developmental dyscalculia is linked to general deficits. All these hypotheses are compatible with recent neuroimaging results and raise new horizons for experimentation, which will allow the development of precise diagnostic tools and the improvement of intervention strategies and the remediation of developmental dyscalculia.
Collapse
Affiliation(s)
- Mouhatti Saga
- Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Amine Rkhaila
- Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Khadija Ounine
- Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | | |
Collapse
|
24
|
Kanjlia S, Feigenson L, Bedny M. Neural basis of approximate number in congenital blindness. Cortex 2021; 142:342-356. [PMID: 34352637 DOI: 10.1016/j.cortex.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 01/06/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023]
Abstract
Although humans are unique among animals in their ability to manipulate symbolic numbers, we share with other species an approximate number sense that allows us to estimate and compare the number of objects or events in a set, such as the number of apples in a tree. Our ability to discriminate the numerosity of two sets decreases as the ratio between them becomes smaller (e.g., 8 vs 16 items is harder to discriminate than 8 vs 32 items). The intraparietal sulcus (IPS) plays a key role in this numerical approximation. Neuronal populations within the IPS code for numerosity, with stimuli of different numerosities eliciting discriminable spatial patterns of activity. The developmental origins of these IPS number representations are not known. Here, we tested the hypothesis that representations of number in the IPS require visual experience with object sets, by working with individuals blind from birth. While undergoing fMRI, congenitally blind (n = 17) and blindfolded sighted (n = 25) participants judged which of two sequences of beeps was more numerous. In both sighted and blind individuals, patterns of activity in the IPS discriminated among different numerosities (4, 8, 16 vs 32), with better discrimination in the IPS of the blind group. In both groups, decoding performance decreased as the ratio between numerosities decreased (e.g., 8 vs 16 was less discriminable than 8 vs 32). These findings suggest that number representations in the IPS either have innate precursors, or that auditory or tactile experience with sets is sufficient for typical development.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychology, Carnegie Mellon University, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, USA.
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
25
|
Gouet C, Jin W, Naiman DQ, Peña M, Halberda J. Bias and noise in proportion estimation: A mixture psychophysical model. Cognition 2021; 213:104805. [PMID: 34172265 DOI: 10.1016/j.cognition.2021.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/29/2023]
Abstract
The importance of proportional reasoning has long been recognized by psychologists and educators, yet we still do not have a good understanding of how humans mentally represent proportions. In this paper we present a psychophysical model of proportion estimation, extending previous approaches. We assumed that proportion representations are formed by representing each magnitude of a proportion stimuli (the part and its complement) as Gaussian activations in the mind, which are then mentally combined in the form of a proportion. We next derived the internal representation of proportions, including bias and internal noise parameters -capturing respectively how our estimations depart from true values and how variable estimations are. Methodologically, we introduced a mixture of components to account for contaminating behaviors (guessing and reversal of responses) and framed the model in a hierarchical way. We found empirical support for the model by testing a group of 4th grade children in a spatial proportion estimation task. In particular, the internal density reproduced the asymmetries (skewedness) seen in this and in previous reports of estimation tasks, and the model accurately described wide variations between subjects in behavior. Bias estimates were in general smaller than by using previous approaches, due to the model's capacity to absorb contaminating behaviors. This property of the model can be of especial relevance for studies aimed at linking psychophysical measures with broader cognitive abilities. We also recovered higher levels of noise than those reported in discrimination of spatial magnitudes and discuss possible explanations for it. We conclude by illustrating a concrete application of our model to study the effects of scaling in proportional reasoning, highlighting the value of quantitative models in this field of research.
Collapse
Affiliation(s)
- Camilo Gouet
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA; Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - Wei Jin
- Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Daniel Q Naiman
- Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Marcela Peña
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - Justin Halberda
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
26
|
Ma H, Bu X, Sanford EM, Zeng T, Halberda J. Approximate Number Sense in Students With Severe Hearing Loss: A Modality-Neutral Cognitive Ability. Front Hum Neurosci 2021; 15:688144. [PMID: 34177504 PMCID: PMC8220080 DOI: 10.3389/fnhum.2021.688144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 01/29/2023] Open
Abstract
The Approximate Number System (ANS) allows humans and non-human animals to estimate large quantities without counting. It is most commonly studied in visual contexts (i.e., with displays containing different numbers of dots), although the ANS may operate on all approximate quantities regardless of modality (e.g., estimating the number of a series of auditory tones). Previous research has shown that there is a link between ANS and mathematics abilities, and that this link is resilient to differences in visual experience (Kanjlia et al., 2018). However, little is known about the function of the ANS and its relationship to mathematics abilities in the absence of other types of sensory input. Here, we investigated the acuity of the ANS and its relationship with mathematics abilities in a group of students from the Sichuan Province in China, half of whom were deaf. We found, consistent with previous research, that ANS acuity improves with age. We found that mathematics ability was predicted by Non-verbal IQ and Inhibitory Control, but not visual working memory capacity or Attention Network efficiencies. Even above and beyond these predictors, ANS ability still accounted for unique variance in mathematics ability. Notably, there was no interaction with hearing, which indicates that the role played by the ANS in explaining mathematics competence is not modulated by hearing capacity. Finally, we found that age, Non-verbal IQ and Visual Working Memory capacity were predictive of ANS performance when controlling for other factors. In fact, although students with hearing loss performed slightly worse than students with normal hearing on the ANS task, hearing was no longer significantly predictive of ANS performance once other factors were taken into account. These results indicate that the ANS is able to develop at a consistent pace with other cognitive abilities in the absence of auditory experience, and that its relationship with mathematics ability is not contingent on sensory input from hearing.
Collapse
Affiliation(s)
- Hailin Ma
- College of Education, Shanxi Normal University, Xi'an, China.,Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Xiaoou Bu
- Plateau Brain Science Research Center, Tibet University, Lhasa, China.,Faculty of Education, EastChina Normal University, Shanghai, China
| | - Emily M Sanford
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Tongao Zeng
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Justin Halberda
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
27
|
Bennette E, Keil FC, Yousif SR. A Ubiquitous Illusion of Volume: Are Impressions of 3D Volume Captured by an "Additive Heuristic"? Perception 2021; 50:462-469. [PMID: 33951948 DOI: 10.1177/03010066211003746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several empirical approaches have attempted to explain perception of 2D and 3D size. While these approaches have documented interesting perceptual effects, they fail to offer a compelling, general explanation of everyday size perception. Here, we offer one. Building on prior work documenting an "Additive Area Heuristic" by which observers estimate perceived area by summing objects' dimensions, we show that this same principle-an "additive heuristic"-explains impressions of 3D volume. Observers consistently discriminate sets that vary in "additive volume," even when there is no true difference; they also fail to discriminate sets that truly differ (even by amounts as much as 30%) when they are equated in "additive volume." These results suggest a failure to properly integrate multiple spatial dimensions, and frequent reliance on a perceptual heuristic instead.
Collapse
|
28
|
Aulet LS, Lourenco SF. The relative salience of numerical and non-numerical dimensions shifts over development: A re-analysis of. Cognition 2021; 210:104610. [DOI: 10.1016/j.cognition.2021.104610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
|
29
|
Park Y, Viegut AA, Matthews PG. More than the sum of its parts: Exploring the development of ratio magnitude versus simple magnitude perception. Dev Sci 2021; 24:e13043. [PMID: 33030291 PMCID: PMC8742982 DOI: 10.1111/desc.13043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/13/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Humans perceptually extract quantity information from our environments, be it from simple stimuli in isolation, or from relational magnitudes formed by taking ratios of pairs of simple stimuli. Some have proposed that these two types of magnitude are processed by a common system, whereas others have proposed separate systems. To test these competing possibilities, the present study examined the developmental trajectories of simple and relational magnitude discrimination and relations among these abilities for preschoolers (n = 42), 2nd-graders (n = 31), 5th-graders (n = 29), and adults (n = 32). Participants completed simple magnitude and ratio discrimination tasks in four different nonsymbolic formats, using dots, lines, circles, and irregular blobs. All age cohorts accurately discriminated both simple and ratio magnitudes. Discriminability differed by format such that performance was highest with line and lowest with dot stimuli. Moreover, developmental trajectories calculated for each format were similar across simple and ratio discriminations. Although some characteristics were similar for both types of discrimination, ratio acuity in a given format was more closely related with ratio acuities in alternate formats than to within-format simple magnitude acuity. Results demonstrate that ratio magnitude processing shares several similarities to simple magnitude processing, but is also substantially different.
Collapse
Affiliation(s)
- Yunji Park
- Department of Educational Psychology, University of Wisconsin, Madison, WI, USA
| | - Alexandria A Viegut
- Department of Educational Psychology, University of Wisconsin, Madison, WI, USA
| | - Percival G Matthews
- Department of Educational Psychology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
30
|
Malykh S, Kuzmina Y, Tikhomirova T. Developmental Changes in ANS Precision Across Grades 1-9: Different Patterns of Accuracy and Reaction Time. Front Psychol 2021; 12:589305. [PMID: 33841232 PMCID: PMC8024480 DOI: 10.3389/fpsyg.2021.589305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/03/2021] [Indexed: 01/29/2023] Open
Abstract
The main aim of this study was to analyze the patterns of changes in Approximate Number Sense (ANS) precision from grade 1 (mean age: 7.84 years) to grade 9 (mean age: 15.82 years) in a sample of Russian schoolchildren. To fulfill this aim, the data from a longitudinal study of two cohorts of children were used. The first cohort was assessed at grades 1-5 (elementary school education plus the first year of secondary education), and the second cohort was assessed at grades 5-9 (secondary school education). ANS precision was assessed by accuracy and reaction time (RT) in a non-symbolic comparison test ("blue-yellow dots" test). The patterns of change were estimated via mixed-effect growth models. The results revealed that in the first cohort, the average accuracy increased from grade 1 to grade 5 following a non-linear pattern and that the rate of growth slowed after grade 3 (7-9 years old). The non-linear pattern of changes in the second cohort indicated that accuracy started to increase from grade 7 to grade 9 (13-15 years old), while there were no changes from grade 5 to grade 7. However, the RT in the non-symbolic comparison test decreased evenly from grade 1 to grade 7 (7-13 years old), and the rate of processing non-symbolic information tended to stabilize from grade 7 to grade 9. Moreover, the changes in the rate of processing non-symbolic information were not explained by the changes in general processing speed. The results also demonstrated that accuracy and RT were positively correlated across all grades. These results indicate that accuracy and the rate of non-symbolic processing reflect two different processes, namely, the maturation and development of a non-symbolic representation system.
Collapse
Affiliation(s)
- Sergey Malykh
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Yulia Kuzmina
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Tatiana Tikhomirova
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| |
Collapse
|
31
|
Baer C, Malik P, Odic D. Are children's judgments of another's accuracy linked to their metacognitive confidence judgments? METACOGNITION AND LEARNING 2021; 16:485-516. [PMID: 34720771 PMCID: PMC8550463 DOI: 10.1007/s11409-021-09263-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/07/2021] [Indexed: 06/13/2023]
Abstract
The world can be a confusing place, which leads to a significant challenge: how do we figure out what is true? To accomplish this, children possess two relevant skills: reasoning about the likelihood of their own accuracy (metacognitive confidence) and reasoning about the likelihood of others' accuracy (mindreading). Guided by Signal Detection Theory and Simulation Theory, we examine whether these two self- and other-oriented skills are one in the same, relying on a single cognitive process. Specifically, Signal Detection Theory proposes that confidence in a decision is purely derived from the imprecision of that decision, predicting a tight correlation between decision accuracy and confidence. Simulation Theory further proposes that children attribute their own cognitive experience to others when reasoning socially. Together, these theories predict that children's self and other reasoning should be highly correlated and dependent on decision accuracy. In four studies (N = 374), children aged 4-7 completed a confidence reasoning task and selective social learning task each designed to eliminate confounding language and response biases, enabling us to isolate the unique correlation between self and other reasoning. However, in three of the four studies, we did not find that individual differences on the two tasks correlated, nor that decision accuracy explained performance. These findings suggest self and other reasoning are either independent in childhood, or the result of a single process that operates differently for self and others. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11409-021-09263-x.
Collapse
Affiliation(s)
- Carolyn Baer
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4 Canada
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way West, Berkeley, CA 94720 USA
| | - Puja Malik
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4 Canada
| | - Darko Odic
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
32
|
Barner D. Numerical Symbols as Explanations of Human Perceptual Experience. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2021. [DOI: 10.1002/9781119684527.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Judgments of spatial extent are fundamentally illusory: ‘Additive-area’ provides the best explanation. Cognition 2020; 205:104439. [DOI: 10.1016/j.cognition.2020.104439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
|
34
|
Wang JJ, Feigenson L. Dynamic changes in numerical acuity in 4-month-old infants. INFANCY 2020; 26:47-62. [PMID: 33111486 DOI: 10.1111/infa.12373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/29/2023]
Abstract
Preverbal infants represent the approximate numerosity of visual and auditory arrays: By 6 months old, they reliably discriminate eight dots or tones from 16 (a 1:2 ratio), but not eight from 12 (a 2:3 ratio). The precision of this approximate number sense improves gradually over childhood and into adulthood. However, less is known about numerical abilities in younger infants, and in particular, whether there is developmental change in the number sense in the first half year of life. Here, in four experiments, we measured numerical precision in 4-month-old infants (N = 128) using a visual habituation task comparable to that in studies of older infants. We found that 4-month-olds exhibited poorer numerical discrimination than the 6-month-olds tested in previous studies, dishabituating to a 1:4 change in numerical ratio, but not a 1:3 change. Like older infants, 4-month-olds' numerical precision improved when they were provided with redundant visual and auditory input; when both visual and auditory information were present, 4-month-olds discriminated a 1:3 but not a 1:2 ratio. These results suggest that Approximate Number System precision develops in early infancy and may be sensitive to intersensory redundancy as early as four months of age.
Collapse
Affiliation(s)
- Jinjing Jenny Wang
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychology, Rutgers University, New Brunswick, NJ, USA
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
35
|
Savelkouls S, Cordes S. The impact of set size on cumulative area judgments. Acta Psychol (Amst) 2020; 210:103163. [PMID: 32858461 DOI: 10.1016/j.actpsy.2020.103163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/29/2023] Open
Abstract
The ability to track number has long been considered more difficult than tracking continuous quantities. Evidence for this claim comes from work revealing that continuous properties (specifically cumulative area) influence numerical judgments, such that adults perform worse on numerical tasks when cumulative area is incongruent with number. If true, then continuous extent tracking abilities should be unimpeded by number. The aim of the present study was to determine the precision with which adults track cumulative area and to uncover the process by which they do so. Across two experiments, we presented adults with arrays of dots and asked them to judge the relative cumulative area of the displays. Participants performed worse and were slower on incongruent trials, in which the more numerous array had the smaller cumulative area. These findings suggest that number interferes with continuous quantity judgments, and that number is at least as salient as continuous variables, undermining claims in the literature that continuous properties are easier to represent, and more salient to adults. Our primary research question, however, pertained to how cumulative area representations were impacted by set size. Results revealed that the area of a single item was tracked much faster and with greater precision than the area of multiple items. However, for sets with more than one item, results revealed less accurate, yet faster responses, as set size increased, suggesting a speed-accuracy trade-off in judgments of cumulative area. Results are discussed in the context of two distinct theories regarding the process of tracking cumulative area.
Collapse
Affiliation(s)
| | - Sara Cordes
- Department of Psychology, Boston College, United States of America
| |
Collapse
|
36
|
Ayzenberg V, Lourenco SF. The relations among navigation, object analysis, and magnitude perception in children: Evidence for a network of Euclidean geometry. COGNITIVE DEVELOPMENT 2020. [DOI: 10.1016/j.cogdev.2020.100951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Liang Y, Zhang L, Wang C, Liu Y. Performance patterns and strategy use in number line estimation among preschool children with different spontaneous focusing on numerosity tendencies. INFANT AND CHILD DEVELOPMENT 2020. [DOI: 10.1002/icd.2203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuan Liang
- School of Psychology Shaanxi Normal University Xi'an China
| | - Lijin Zhang
- School of Psychology Shaanxi Normal University Xi'an China
- Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience Xi'an China
- Shaanxi Key Research Center of Child Mental and Behavioral Health Xi'an China
| | - Chunling Wang
- School of Psychology Shaanxi Normal University Xi'an China
| | - Yujuan Liu
- Research Center for Moral Education, Psychology and Special Education National Institute of Education Sciences Beijing China
| |
Collapse
|
38
|
Maldonado Moscoso PA, Castaldi E, Burr DC, Arrighi R, Anobile G. Grouping strategies in number estimation extend the subitizing range. Sci Rep 2020; 10:14979. [PMID: 32917941 PMCID: PMC7486368 DOI: 10.1038/s41598-020-71871-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/17/2020] [Indexed: 01/29/2023] Open
Abstract
When asked to estimate the number of items in a visual array, educated adults and children are more precise and rapid if the items are clustered into small subgroups rather than randomly distributed. This phenomenon, termed "groupitizing", is thought to rely on the recruitment of the subitizing system (dedicated to the perception of very small numbers), with the aid of simple arithmetical calculations. The aim of current study is to verify whether the advantage for clustered stimuli does rely on subitizing, by manipulating attention, known to strongly affect attention. Participants estimated the numerosity of grouped or ungrouped arrays in condition of full attention or while attention was diverted with a dual-task. Depriving visual attention strongly decreased estimation precision of grouped but not of ungrouped arrays, as well as increasing the tendency for numerosity estimation to regress towards the mean. Additional explorative analyses suggested that calculation skills correlated with the estimation precision of grouped, but not of ungrouped, arrays. The results suggest that groupitizing is an attention-based process that leverages on the subitizing system. They also suggest that measuring numerosity estimation thresholds with grouped stimuli may be a sensitive correlate of math abilities.
Collapse
Affiliation(s)
- Paula A Maldonado Moscoso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- Institut für Psychologie, Universität Regensburg, Regensburg, Germany
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Wang JJ, Halberda J, Feigenson L. Emergence of the Link Between the Approximate Number System and Symbolic Math Ability. Child Dev 2020; 92:e186-e200. [PMID: 32816346 DOI: 10.1111/cdev.13454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Experimentally manipulating Approximate Number System (ANS) precision has been found to influence children's subsequent symbolic math performance. Here in three experiments (N = 160; 81 girls; 3-5 year old) we replicated this effect and examined its duration and developmental trajectory. We found that modulation of 5-year-olds' ANS precision continued to affect their symbolic math performance after a 30-min delay. Furthermore, our cross-sectional investigation revealed that children 4.5 years and older experienced a significant transfer effect of ANS manipulation on math performance, whereas younger children showed no such transfer, despite experiencing significant changes in ANS precision. These findings support the existence of a causal link between nonverbal numerical approximation and symbolic math performance that first emerges during the preschool years.
Collapse
|
40
|
Yousif SR, Keil FC. Area, not number, dominates estimates of visual quantities. Sci Rep 2020; 10:13407. [PMID: 32770093 PMCID: PMC7414215 DOI: 10.1038/s41598-020-68593-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
The study of numerical estimation collectively spans hundreds of papers and hundreds of thousands of citations. Interest in this topic hinges on one assumption: that we can approximate number independently of continuous spatial dimensions (e.g., area). Accordingly, many studies have specifically tried to demonstrate sensitivity specific to number while controlling other dimensions. However, recent work demonstrates that perceived area (based on psychophysical judgments) differs from true area (i.e., a precise pixel count). This difference raises concerns about most past studies of approximate number, by asking if they have systematically controlled for the wrong dimension(s). Building on recent findings that the percept of area may be systematically illusory, the current study examines the relation between perceived area and number. Four experiments reveal that (1) perceived area, but not mathematical area, strongly influences numerosity judgments, (2) perceived area influences perceived number but not the reverse, (3) number acuity is greatly reduced in stimuli controlled for perceived area, and (4) the ability to make area discriminations on the basis of 'additive area' but not mathematical area predicts number discrimination ability. Together, these findings highlight a potentially serious confound in prior work, raising new theoretical and methodological challenges for the field.
Collapse
Affiliation(s)
- Sami R Yousif
- Psychology Department, Yale University, New Haven, USA.
| | - Frank C Keil
- Psychology Department, Yale University, New Haven, USA
| |
Collapse
|
41
|
Abreu-Mendoza RA. Research on numerical cognition in Mexico ( Investigación sobre cognición numérica en México). STUDIES IN PSYCHOLOGY 2020. [DOI: 10.1080/02109395.2020.1748999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
42
|
Maldonado Moscoso PA, Anobile G, Primi C, Arrighi R. Math Anxiety Mediates the Link Between Number Sense and Math Achievements in High Math Anxiety Young Adults. Front Psychol 2020; 11:1095. [PMID: 32528392 PMCID: PMC7264265 DOI: 10.3389/fpsyg.2020.01095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/29/2020] [Indexed: 01/29/2023] Open
Abstract
In the past few years, many studies have suggested that subjects with high sensory precision in the processing of non-symbolic numerical quantities (approximate number system; ANS) also have higher math abilities. At the same time, there has been interest in another non-cognitive factor affecting mathematical learning: mathematical anxiety (MA). MA is defined as a debilitating emotional reaction to mathematics that interferes with the manipulation of numbers and the solving of mathematical problems. Few studies have been dedicated to uncovering the interplay between ANS and MA and those have provided conflicting evidence. Here we measured ANS precision (numerosity discrimination thresholds) in a cohort of university students with either a high (>75th percentile; n = 49) or low (<25th percentile; n = 39) score on the Abbreviate Math Anxiety Scale (AMAS). We also assessed math proficiency using a standardized test (MPP: Mathematics Prerequisites for Psychometrics), visuo-spatial attention capacity by means of a Multiple Objects Tracking task (MOT) and sensory precision for non-numerical quantities (disk size). Our results confirmed previous studies showing that math abilities and ANS precision correlate in subjects with high math anxiety. Neither precision in size-discrimination nor visuo-spatial attentional capacity were found to correlate with math capacities. Interestingly, within the group with high MA, our data also revealed a relationship between ANS precision and MA, with MA playing a key role in mediating the correlation between ANS and math achievement. Taken together, our results suggest an interplay between extreme levels of MA and the sensory precision in the processing of non-symbolic numerosity.
Collapse
Affiliation(s)
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Caterina Primi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
43
|
Roquet A, Poletti C, Lemaire P. Sequential modulations of executive control processes throughout lifespan in numerosity comparison. COGNITIVE DEVELOPMENT 2020. [DOI: 10.1016/j.cogdev.2020.100884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Testolin A, Zou WY, McClelland JL. Numerosity discrimination in deep neural networks: Initial competence, developmental refinement and experience statistics. Dev Sci 2020; 23:e12940. [PMID: 31977137 DOI: 10.1111/desc.12940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 01/29/2023]
Abstract
Both humans and non-human animals exhibit sensitivity to the approximate number of items in a visual array, as indexed by their performance in numerosity discrimination tasks, and even neonates can detect changes in numerosity. These findings are often interpreted as evidence for an innate 'number sense'. However, recent simulation work has challenged this view by showing that human-like sensitivity to numerosity can emerge in deep neural networks that build an internal model of the sensory data. This emergentist perspective posits a central role for experience in shaping our number sense and might explain why numerical acuity progressively increases over the course of development. Here we substantiate this hypothesis by introducing a progressive unsupervised deep learning algorithm, which allows us to model the development of numerical acuity through experience. We also investigate how the statistical distribution of numerical and non-numerical features in natural environments affects the emergence of numerosity representations in the computational model. Our simulations show that deep networks can exhibit numerosity sensitivity prior to any training, as well as a progressive developmental refinement that is modulated by the statistical structure of the learning environment. To validate our simulations, we offer a refinement to the quantitative characterization of the developmental patterns observed in human children. Overall, our findings suggest that it may not be necessary to assume that animals are endowed with a dedicated system for processing numerosity, since domain-general learning mechanisms can capture key characteristics others have attributed to an evolutionarily specialized number system.
Collapse
Affiliation(s)
- Alberto Testolin
- Department of General Psychology, University of Padova, Padova, Italy.,Department of Information Engineering, University of Padova, Padova, Italy
| | - Will Y Zou
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
45
|
Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children. PLoS One 2020; 15:e0228960. [PMID: 32045454 PMCID: PMC7012440 DOI: 10.1371/journal.pone.0228960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/27/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, we aimed to compare developmental changes in nonsymbolic and symbolic magnitude representations across the elementary school years. For this aim, we used a four-wave longitudinal study with a one-year interval in schoolchildren in grades 1-4 in Russia and Kyrgyzstan (N = 490, mean age was 7.65 years at grade 1). The results of mixed-effects growth models revealed that growth in the precision of symbolic representation was larger than in the nonsymbolic representation. Moreover, growth in nonsymbolic representation was fully explained by growth in fluid intelligence (FI), visuospatial working memory (VSWM) and processing speed (PS). The analysis demonstrated that growth in nonsymbolic magnitude representation was significant only for pupils with a high level of FI and PS, whereas growth in precision of symbolic representation did not significantly vary across pupils with different levels of FI or VSWM.
Collapse
|
46
|
Pecora G, Bellagamba F, Chiarotti F, Paoletti M, Castano ML, Addessi E. The Effect of Symbolic Distancing on Delay Tolerance across the Preschool Period. JOURNAL OF COGNITION AND DEVELOPMENT 2019. [DOI: 10.1080/15248372.2019.1693374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
de Hevia MD, Macchi Cassia V, Veggiotti L, Netskou ME. Discrimination of ordinal relationships in temporal sequences by 4-month-old infants. Cognition 2019; 195:104091. [PMID: 31739006 DOI: 10.1016/j.cognition.2019.104091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 11/28/2022]
Abstract
The ability to discriminate the ordinal information embedded in magnitude-based sequences has been shown in 4-month-old infants, both for numerical and size-based sequences. At this early age, however, this ability is confined to increasing sequences, with infants failing to extract and represent decreasing order. Here we investigate whether the ability to represent order extends to duration-based sequences in 4-month-old infants, and whether it also shows the asymmetry signature previously observed for number and size. Infants were tested in an order discrimination task in which they were habituated to either increasing or decreasing variations in temporal duration, and were then tested with novel sequences composed of new temporal items whose durations varied following the familiar and the novel orders in alternation. Across three experiments, we manipulated the duration of the single temporal items and therefore of the whole sequences, which resulted in imposing more or less constraints on infants' working memory, or general processing capacities. Results showed that infants failed at discriminating the ordinal direction in temporal sequences when the sequences had an overall long duration (Experiment 1), but succeeded when the duration of the sequences was shortened (Experiments 2 and 3). Moreover, there was no sign of the asymmetry signature previously reported for number and size, as successful discrimination was present for infants habituated to both increasing and decreasing sequences. These results suggest that sensitivity to temporal order is present very early in development, and that its functional properties are not shared with other magnitude dimensions, such as size and number.
Collapse
Affiliation(s)
- Maria Dolores de Hevia
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; CNRS UMR 8002, Integrative Neuroscience and Cognition Center, Paris, France.
| | - Viola Macchi Cassia
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; NeuroMi, Milan Center for Neuroscience, Milan, Italy
| | | | | |
Collapse
|
48
|
Viarouge A, Houdé O, Borst G. Evidence for the role of inhibition in numerical comparison: A negative priming study in 7- to 8-year-olds and adults. J Exp Child Psychol 2019; 186:131-141. [DOI: 10.1016/j.jecp.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
|
49
|
Preschoolers and multi-digit numbers: A path to mathematics through the symbols themselves. Cognition 2019; 189:89-104. [PMID: 30933877 DOI: 10.1016/j.cognition.2019.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 01/22/2023]
Abstract
Numerous studies from developmental psychology have suggested that human symbolic representation of numbers is built upon the evolutionally old capacity for representing quantities that is shared with other species. Substantial research from mathematics education also supports the idea that mathematical concepts are best learned through their corresponding physical representations. We argue for an independent pathway to learning "big" multi-digit symbolic numbers that focuses on the symbol system itself. Across five experiments using both between- and within-subject designs, we asked preschoolers to identify written multi-digit numbers with their spoken names in a two-alternative-choice-test or to indicate the larger quantity between two written numbers. Results showed that preschoolers could reliably map spoken number names to written forms and compare the magnitudes of two written multi-digit numbers. Importantly, these abilities were not related to their non-symbolic representation of quantities. These findings have important implications for numerical cognition, symbolic development, teaching, and education.
Collapse
|
50
|
Cueli M, Areces D, McCaskey U, Álvarez-García D, González-Castro P. Mathematics Competence Level: The Contribution of Non-symbolic and Spatial Magnitude Comparison Skills. Front Psychol 2019; 10:465. [PMID: 30890988 PMCID: PMC6411688 DOI: 10.3389/fpsyg.2019.00465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Magnitude comparison skills have been related to mathematics competence, although results in this area vary. The current study aimed to describe the performance of 75 children (aged 4-5 years) in two comparison tasks; and examine the strength of the relationship between each of the two tasks and mathematics competence level (MCL). Participants were assessed with the Early Numeracy Test which provides a global MCL score. Magnitude comparison skills were assessed with two tasks: a non-symbolic number comparison task and a spatial comparison task. Results of the Pearson correlation analysis showed a relationship between the two tasks with better performance in the spatial comparison task. Regression analysis with the stepwise method showed that only the non-symbolic number comparison task had a significant value in the prediction of the MCL pointing to the need to take these kinds of tasks into account in the first years of school.
Collapse
Affiliation(s)
- Marisol Cueli
- Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Débora Areces
- Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Ursina McCaskey
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|