1
|
McCrea M, Reddy N, Ghobrial K, Ahearn R, Krafty R, Hitchens TK, Martinez-Gonzalez J, Modo M. Mesoscale connectivity of the human hippocampus and fimbria revealed by ex vivo diffusion MRI. Neuroimage 2025; 310:121125. [PMID: 40101867 DOI: 10.1016/j.neuroimage.2025.121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
The human hippocampus is essential to cognition and emotional processing. Its function is defined by its connectivity. Although some pathways have been well-established, our knowledge about anterior-posterior connectivity and the distribution of fibers from major fiber bundles remains limited. Mesoscale (250 μm isotropic acquisition, upsampled to 125 μm) resolution MR images of the human temporal lobe afforded a detailed visualization of fiber tracts, including those that related anterior-posterior substructures defined as subregions (head, body, tail) and subfields (cornu ammonis 1-3, dentate gyrus) of the hippocampus. Fifty pathways were dissected between the head and body, highlighting an intricate mesh of connectivity between these two subregions. Along the body subregion, 12 lamellae were identified based on morphology and the presence of interlamellar fibers that appear to connect neighboring lamellae at the edge of the external limb of the granule cell layer (GCL). Translamellar fibers (i.e. longitudinal fibers crossing more than 2 lamellae) were also evident at the edge of the internal limb of the GCL. The dentate gyrus of the body was the main site of connectivity with the fimbria. Unique pathways were dissected within the fimbria that connected the body of the hippocampus with the amygdala and the temporal pole. A topographical segregation within the fimbria was determined by fibers' hippocampal origin, illustrating the importance of mapping the spatial distribution of fibers. Elucidating the detailed structural connectivity of the hippocampus is crucial to develop better diagnostic markers of neurological and psychiatric conditions, as well as to devise novel surgical interventions.
Collapse
Affiliation(s)
- Madeline McCrea
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Navya Reddy
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Kathryn Ghobrial
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ryan Ahearn
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ryan Krafty
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - T Kevin Hitchens
- Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | | | - Michel Modo
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA.
| |
Collapse
|
2
|
Lohnas LJ, Howard MW. The influence of emotion on temporal context models. Cogn Emot 2025; 39:18-46. [PMID: 39007902 PMCID: PMC11733071 DOI: 10.1080/02699931.2024.2371075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Temporal context models (TCMs) have been influential in understanding episodic memory and its neural underpinnings. Recently, TCMs have been extended to explain emotional memory effects, one of the most clinically important findings in the field of memory research. This review covers recent advances in hypotheses for the neural representation of spatiotemporal context through the lens of TCMs, including their ability to explain the influence of emotion on episodic and temporal memory. In recent years, simplifying assumptions of "classical" TCMs - with exponential trace decay and the mechanism by which temporal context is recovered - have become increasingly clear. The review also outlines how recent advances could be incorporated into a future TCM, beyond classical assumptions, to integrate emotional modulation.
Collapse
Affiliation(s)
- Lynn J Lohnas
- Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Subramanian DL, Smith DM. Time cells in the retrosplenial cortex. Hippocampus 2024; 34:598-607. [PMID: 39206817 DOI: 10.1002/hipo.23635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The retrosplenial cortex (RSC) is a key component of the brain's memory systems, with anatomical connections to the hippocampus, anterior thalamus, and entorhinal cortex. This circuit has been implicated in episodic memory and many of these structures have been shown to encode temporal information, which is critical for episodic memory. For example, hippocampal time cells reliably fire during specific segments of time during a delay period. Although RSC lesions are known to disrupt temporal memory, time cells have not been observed there. In this study, we reanalyzed archival RSC neuronal firing data during the intertrial delay period from two previous experiments involving different behavioral tasks, a blocked alternation task and a cued T-maze task. For the blocked alternation task, rats were required to approach the east or west arm of a plus maze for reward during different blocks of trials. Because the reward locations were not cued, the rat had to remember the goal location for each trial. In the cued T-maze task, the reward location was explicitly cued with a light and the rats simply had to approach the light for reward, so there was no requirement to hold a memory during the intertrial delay. Time cells were prevalent in the blocked alternation task, and most time cells clearly differentiated the east and west trials. We also found that RSC neurons could exhibit off-response time fields, periods of reliably inhibited firing. Time cells were also observed in the cued T-maze, but they were less prevalent and they did not differentiate left and right trials as well as in the blocked alternation task, suggesting that RSC time cells are sensitive to the memory demands of the task. These results suggest that temporal coding is a prominent feature of RSC firing patterns, consistent with an RSC role in episodic memory.
Collapse
Affiliation(s)
| | - David M Smith
- Department of Psychology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Teghil A. Interoceptive and Bodily Processing in Prospective and Retrospective Timing. Curr Top Behav Neurosci 2024. [PMID: 39436628 DOI: 10.1007/7854_2024_516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This chapter reviews some directions along which Craig's proposal of subjective time as emergent from interoceptive and bodily dynamics allows to frame recent findings on prospective and retrospective time processing. Behavioral and neuroimaging evidence from prospective timing studies demonstrates that an interoceptive-insular system may support the development of a primary representation of time in the context of large-scale networks involved in duration processing. Studies showing a tight link between episodic memory and interoceptive, emotional, and sensorimotor states further provide insights on processes supporting retrospective timing. These lines of evidence show that acknowledging its dependence on bodily states is most likely a crucial step toward a mechanistic understanding of time perception.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Karaaslan A, Shi Z. Influences of temporal and probabilistic expectation on subjective time of emotional stimulus. Q J Exp Psychol (Hove) 2024; 77:1824-1834. [PMID: 38628032 DOI: 10.1177/17470218241245355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
Abstract
Subjective time perception can change based on a stimulus's valence and expectancy. Yet, it is unclear how these two factors might interact to shape our sense of how long something lasts. Here, we conducted two experiments examining the effects of temporal and probabilistic expectancy on the perceived duration of images with varying emotional valence. In Experiment 1, we varied the temporal predictive cue with varying stimulus-onset asynchronies (SOAs), while in Experiment 2, we manipulated the cue-emotion probabilistic associations. Our results revealed that stimuli appearing earlier than anticipated were perceived as shorter, whereas less infrequent stimuli seemed to last longer. In addition, negative images were perceived longer than neural ones. However, no significant interaction between expectancy and stimulus valence was observed. We interpret these using the internal clock model, suggesting that while emotional stimuli primarily affect the pacemaker's rhythm through arousal, expectation steers attention, influencing how we register time's passage.
Collapse
Affiliation(s)
- Aslan Karaaslan
- Department of Psychology, Faculty of Letter, Ege University, Bornova, Turkey
| | - Zhuanghua Shi
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
6
|
Clewett D, Huang R, Davachi L. Locus coeruleus activation 'resets' hippocampal event representations and separates adjacent memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608148. [PMID: 39185215 PMCID: PMC11343187 DOI: 10.1101/2024.08.15.608148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Memories reflect the ebb and flow of experiences, capturing unique and meaningful events from our lives. Using a combination of functional magnetic resonance imaging (fMRI), neuromelanin imaging, and pupillometry, we show that arousal and locus coeruleus (LC) activation transform otherwise continuous experiences into distinct episodic memories. As sequences unfold, encountering a context shift, or event boundary, triggers arousal and LC processes that predict later memory separation. Boundaries furthermore promote temporal pattern separation within left hippocampal dentate gyrus, which correlates with heightened LC responses to those same transition points. We also find that a neurochemical index of prolonged LC activation correlates with diminished arousal responses at boundaries, suggesting a connection between elevated LC output and impaired event processing. These findings align with the idea that arousal processes initiate a neural and memory 'reset' in response to significant changes, constructing the very episodes that define everyday memory.
Collapse
Affiliation(s)
| | | | - Lila Davachi
- Department of Psychology, Columbia University, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| |
Collapse
|
7
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Subramanian DL, Smith DM. Time Cells in the Retrosplenial Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583039. [PMID: 38464235 PMCID: PMC10925311 DOI: 10.1101/2024.03.01.583039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The retrosplenial cortex (RSC) is a key component of the brain's memory systems, with anatomical connections to the hippocampus, anterior thalamus, and entorhinal cortex. This circuit has been implicated in episodic memory and many of these structures have been shown to encode temporal information, which is critical for episodic memory. For example, hippocampal time cells reliably fire during specific segments of time during a delay period. Although RSC lesions are known to disrupt temporal memory, time cells have not been observed there. In the present study, we examined the firing patterns of RSC neurons during the intertrial delay period of two behavioral tasks, a blocked alternation task and a cued T-maze task. For the blocked alternation task, rats were required to approach the east or west arm of a plus maze for reward during different blocks of trials. Because the reward locations were not cued, the rat had to remember the goal location for each trial. In the cued T-maze task, the reward location was explicitly cued with a light and the rats simply had to approach the light for reward, so there was no requirement to hold a memory during the intertrial delay. Time cells were prevalent in the blocked alternation task, and most time cells clearly differentiated the east and west trials. We also found that RSC neurons could exhibit off-response time fields, periods of reliably inhibited firing. Time cells were also observed in the cued T-maze, but they were less prevalent and they did not differentiate left and right trials as well as in the blocked alternation task, suggesting that RSC time cells are sensitive to the memory demands of the task. These results suggest that temporal coding is a prominent feature of RSC firing patterns, consistent with an RSC role in episodic memory.
Collapse
Affiliation(s)
| | - David M. Smith
- Department of Psychology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
9
|
Cheng S, Chen S, Glasauer S, Keeser D, Shi Z. Neural mechanisms of sequential dependence in time perception: the impact of prior task and memory processing. Cereb Cortex 2024; 34:bhad453. [PMID: 38037371 DOI: 10.1093/cercor/bhad453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Our perception and decision-making are susceptible to prior context. Such sequential dependence has been extensively studied in the visual domain, but less is known about its impact on time perception. Moreover, there are ongoing debates about whether these sequential biases occur at the perceptual stage or during subsequent post-perceptual processing. Using functional magnetic resonance imaging, we investigated neural mechanisms underlying temporal sequential dependence and the role of action in time judgments across trials. Participants performed a timing task where they had to remember the duration of green coherent motion and were cued to either actively reproduce its duration or simply view it passively. We found that sequential biases in time perception were only evident when the preceding task involved active duration reproduction. Merely encoding a prior duration without reproduction failed to induce such biases. Neurally, we observed activation in networks associated with timing, such as striato-thalamo-cortical circuits, and performance monitoring networks, particularly when a "Response" trial was anticipated. Importantly, the hippocampus showed sensitivity to these sequential biases, and its activation negatively correlated with the individual's sequential bias following active reproduction trials. These findings highlight the significant role of memory networks in shaping time-related sequential biases at the post-perceptual stages.
Collapse
Affiliation(s)
- Si Cheng
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstraße 13, 80802, Munich, Germany
| | - Siyi Chen
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstraße 13, 80802, Munich, Germany
| | - Stefan Glasauer
- Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Lipezker Straße 47, 03048, Cottbus, Germany
| | - Daniel Keeser
- NeuroImaging Core Unit Munich (NICUM), Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Nußbaumstraße 7, 80336, Munich, Germany
| | - Zhuanghua Shi
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstraße 13, 80802, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Nußbaumstraße 7, 80336, Munich, Germany
| |
Collapse
|
10
|
Teghil A, Boccia M, Di Vita A, Zazzaro G, Sepe Monti M, Trebbastoni A, Talarico G, Campanelli A, Bruno G, Guariglia C, de Lena C, D'Antonio F. Multidimensional assessment of time perception along the continuum of Alzheimer's Disease and evidence of alterations in subjective cognitive decline. Sci Rep 2023; 13:22117. [PMID: 38092802 PMCID: PMC10719320 DOI: 10.1038/s41598-023-49222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Timing alterations occur in Alzheimer's disease (AD), even in early stages (mild cognitive impairment, MCI). Moreover, a stage named subjective cognitive decline (SCD), in which individuals perceive a change in cognitive performance not revealed by neuropsychological tests, has been identified as a preclinical phase of AD. However, no study to date has investigated different dimensions of time processing along the continuum from physiological to pathological aging, and whether timing alterations occur in SCD. Here a sample of participants with SCD, MCI, AD and healthy controls (HC) performed tasks assessing prospective duration estimation, production, reproduction, implicit temporal learning in conditions dependent from external cues (externally-cued learning, ECL) or independent from external cues (internally-based learning, IBL), retrospective duration estimation, the subjective experience of time and the temporal collocation of events. AD patients performed worse than HC and SCD in prospective timing, and in collocating events in time. The subjective experience of time did not differ between groups. Concerning temporal learning, AD performed worse in ECL than in IBL, whereas SCD performed worse in IBL than in ECL. SCD, MCI and AD patients all showed errors greater than HC in retrospective duration estimation. Results point to implicit temporal learning in externally-cued conditions and retrospective time estimation as possible early markers of cognitive decline.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonella Di Vita
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giulia Zazzaro
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Micaela Sepe Monti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carlo de Lena
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Fabrizia D'Antonio
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Buonomano DV, Buzsáki G, Davachi L, Nobre AC. Time for Memories. J Neurosci 2023; 43:7565-7574. [PMID: 37940593 PMCID: PMC10634580 DOI: 10.1523/jneurosci.1430-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 11/10/2023] Open
Abstract
The ability to store information about the past to dynamically predict and prepare for the future is among the most fundamental tasks the brain performs. To date, the problems of understanding how the brain stores and organizes information about the past (memory) and how the brain represents and processes temporal information for adaptive behavior have generally been studied as distinct cognitive functions. This Symposium explores the inherent link between memory and temporal cognition, as well as the potential shared neural mechanisms between them. We suggest that working memory and implicit timing are interconnected and may share overlapping neural mechanisms. Additionally, we explore how temporal structure is encoded in associative and episodic memory and, conversely, the influences of episodic memory on subsequent temporal anticipation and the perception of time. We suggest that neural sequences provide a general computational motif that contributes to timing and working memory, as well as the spatiotemporal coding and recall of episodes.
Collapse
Affiliation(s)
- Dean V Buonomano
- Department of Neurobiology, University of California, Los Angeles, California 90095
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
- Integrative Center for Learning and Memory, UCLA, Los Angeles, California 90025
| | - György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, New York 10016
- Center for Neural Science, New York University, New York, New York 10003
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, New York 10027
- Center for Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, Connecticut 06510
- Wu Tsai Center for Neurocognition and Behavior, Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
12
|
Zou F, Wanjia G, Allen EJ, Wu Y, Charest I, Naselaris T, Kay K, Kuhl BA, Hutchinson JB, DuBrow S. Re-expression of CA1 and entorhinal activity patterns preserves temporal context memory at long timescales. Nat Commun 2023; 14:4350. [PMID: 37468489 DOI: 10.1038/s41467-023-40100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
Converging, cross-species evidence indicates that memory for time is supported by hippocampal area CA1 and entorhinal cortex. However, limited evidence characterizes how these regions preserve temporal memories over long timescales (e.g., months). At long timescales, memoranda may be encountered in multiple temporal contexts, potentially creating interference. Here, using 7T fMRI, we measured CA1 and entorhinal activity patterns as human participants viewed thousands of natural scene images distributed, and repeated, across many months. We show that memory for an image's original temporal context was predicted by the degree to which CA1/entorhinal activity patterns from the first encounter with an image were re-expressed during re-encounters occurring minutes to months later. Critically, temporal memory signals were dissociable from predictors of recognition confidence, which were carried by distinct medial temporal lobe expressions. These findings suggest that CA1 and entorhinal cortex preserve temporal memories across long timescales by coding for and reinstating temporal context information.
Collapse
Affiliation(s)
- Futing Zou
- Department of Psychology, University of Oregon, Eugene, OR, USA.
| | - Guo Wanjia
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Emily J Allen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Yihan Wu
- Graduate Program in Cognitive Science, University of Minnesota, Minneapolis, MN, USA
| | - Ian Charest
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Thomas Naselaris
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kendrick Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Sarah DuBrow
- Department of Psychology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| |
Collapse
|
13
|
Rafiee B, Abbas Z, Ghiassian S, Kumaraswamy R, Sutton RS, Ludvig EA, White A. From eye-blinks to state construction: Diagnostic benchmarks for online representation learning. ADAPTIVE BEHAVIOR 2023; 31:3-19. [PMID: 36618906 PMCID: PMC9814020 DOI: 10.1177/10597123221085039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We present three new diagnostic prediction problems inspired by classical-conditioning experiments to facilitate research in online prediction learning. Experiments in classical conditioning show that animals such as rabbits, pigeons, and dogs can make long temporal associations that enable multi-step prediction. To replicate this remarkable ability, an agent must construct an internal state representation that summarizes its interaction history. Recurrent neural networks can automatically construct state and learn temporal associations. However, the current training methods are prohibitively expensive for online prediction-continual learning on every time step-which is the focus of this paper. Our proposed problems test the learning capabilities that animals readily exhibit and highlight the limitations of the current recurrent learning methods. While the proposed problems are nontrivial, they are still amenable to extensive testing and analysis in the small-compute regime, thereby enabling researchers to study issues in isolation, ultimately accelerating progress towards scalable online representation learning methods.
Collapse
Affiliation(s)
- Banafsheh Rafiee
- Department of Computing Science and the Alberta Machine Intelligence Institute (Amii), University of Alberta, Edmonton, AB, Canada
| | | | - Sina Ghiassian
- Department of Computing Science and the Alberta Machine Intelligence Institute (Amii), University of Alberta, Edmonton, AB, Canada
| | - Raksha Kumaraswamy
- Department of Computing Science and the Alberta Machine Intelligence Institute (Amii), University of Alberta, Edmonton, AB, Canada
| | - Richard S Sutton
- Department of Computing Science and the Alberta Machine Intelligence Institute (Amii), University of Alberta, Edmonton, AB, Canada
- DeepMind Alberta, Edmonton, AB, Canada
| | - Elliot A Ludvig
- Department of Psychology, University of Warwick, Coventry, UK
| | - Adam White
- Department of Computing Science and the Alberta Machine Intelligence Institute (Amii), University of Alberta, Edmonton, AB, Canada
- DeepMind Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Tiganj Z, Singh I, Esfahani ZG, Howard MW. Scanning a compressed ordered representation of the future. J Exp Psychol Gen 2022; 151:3082-3096. [PMID: 35913876 PMCID: PMC9670103 DOI: 10.1037/xge0001243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several authors have suggested a deep symmetry between the psychological processes that underlie our ability to remember the past and make predictions about the future. The judgment of recency (JOR) task measures temporal order judgments for the past by presenting pairs of probe stimuli; participants choose the probe that was presented more recently. We performed a short-term relative JOR task and introduced a novel judgment of imminence (JOI) task to study temporal order judgments for the future. In the JOR task, participants were presented with a sequence of stimuli and asked to choose which of two probe stimuli was presented closer to the present. In the JOI task, participants were trained on a probabilistic sequence. After training, the sequence was interrupted with probe stimuli. Participants were asked to choose which of two probe stimuli was expected to be presented closer to the present. Replicating prior work on JOR, we found that RT results supported a backward self-terminating search model operating on a temporally organized representation of the past. We also showed that RT distributions are consistent with this model and that the temporally organized representation is compressed. Critically, results for the JOI task probing expectations of the future suggest a forward self-terminating search model operating on a temporally organized representation of the future. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
15
|
Singh MF, Cole MW, Braver TS, Ching S. Developing control-theoretic objectives for large-scale brain dynamics and cognitive enhancement. ANNUAL REVIEWS IN CONTROL 2022; 54:363-376. [PMID: 38250171 PMCID: PMC10798814 DOI: 10.1016/j.arcontrol.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The development of technologies for brain stimulation provides a means for scientists and clinicians to directly actuate the brain and nervous system. Brain stimulation has shown intriguing potential in terms of modifying particular symptom clusters in patients and behavioral characteristics of subjects. The stage is thus set for optimization of these techniques and the pursuit of more nuanced stimulation objectives, including the modification of complex cognitive functions such as memory and attention. Control theory and engineering will play a key role in the development of these methods, guiding computational and algorithmic strategies for stimulation. In particular, realizing this goal will require new development of frameworks that allow for controlling not only brain activity, but also latent dynamics that underlie neural computation and information processing. In the current opinion, we review recent progress in brain stimulation and outline challenges and potential research pathways associated with exogenous control of cognitive function.
Collapse
Affiliation(s)
- Matthew F Singh
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 07102, NJ, USA
- Psychological and Brain Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 07102, NJ, USA
| | - Todd S Braver
- Psychological and Brain Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
| |
Collapse
|
16
|
Cariani P, Baker JM. Time Is of the Essence: Neural Codes, Synchronies, Oscillations, Architectures. Front Comput Neurosci 2022; 16:898829. [PMID: 35814343 PMCID: PMC9262106 DOI: 10.3389/fncom.2022.898829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Time is of the essence in how neural codes, synchronies, and oscillations might function in encoding, representation, transmission, integration, storage, and retrieval of information in brains. This Hypothesis and Theory article examines observed and possible relations between codes, synchronies, oscillations, and types of neural networks they require. Toward reverse-engineering informational functions in brains, prospective, alternative neural architectures incorporating principles from radio modulation and demodulation, active reverberant circuits, distributed content-addressable memory, signal-signal time-domain correlation and convolution operations, spike-correlation-based holography, and self-organizing, autoencoding anticipatory systems are outlined. Synchronies and oscillations are thought to subserve many possible functions: sensation, perception, action, cognition, motivation, affect, memory, attention, anticipation, and imagination. These include direct involvement in coding attributes of events and objects through phase-locking as well as characteristic patterns of spike latency and oscillatory response. They are thought to be involved in segmentation and binding, working memory, attention, gating and routing of signals, temporal reset mechanisms, inter-regional coordination, time discretization, time-warping transformations, and support for temporal wave-interference based operations. A high level, partial taxonomy of neural codes consists of channel, temporal pattern, and spike latency codes. The functional roles of synchronies and oscillations in candidate neural codes, including oscillatory phase-offset codes, are outlined. Various forms of multiplexing neural signals are considered: time-division, frequency-division, code-division, oscillatory-phase, synchronized channels, oscillatory hierarchies, polychronous ensembles. An expandable, annotative neural spike train framework for encoding low- and high-level attributes of events and objects is proposed. Coding schemes require appropriate neural architectures for their interpretation. Time-delay, oscillatory, wave-interference, synfire chain, polychronous, and neural timing networks are discussed. Some novel concepts for formulating an alternative, more time-centric theory of brain function are discussed. As in radio communication systems, brains can be regarded as networks of dynamic, adaptive transceivers that broadcast and selectively receive multiplexed temporally-patterned pulse signals. These signals enable complex signal interactions that select, reinforce, and bind common subpatterns and create emergent lower dimensional signals that propagate through spreading activation interference networks. If memory traces share the same kind of temporal pattern forms as do active neuronal representations, then distributed, holograph-like content-addressable memories are made possible via temporal pattern resonances.
Collapse
Affiliation(s)
- Peter Cariani
- Hearing Research Center, Boston University, Boston, MA, United States
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
17
|
Parker NF, Baidya A, Cox J, Haetzel LM, Zhukovskaya A, Murugan M, Engelhard B, Goldman MS, Witten IB. Choice-selective sequences dominate in cortical relative to thalamic inputs to NAc to support reinforcement learning. Cell Rep 2022; 39:110756. [PMID: 35584665 PMCID: PMC9218875 DOI: 10.1016/j.celrep.2022.110756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
How are actions linked with subsequent outcomes to guide choices? The nucleus accumbens, which is implicated in this process, receives glutamatergic inputs from the prelimbic cortex and midline regions of the thalamus. However, little is known about whether and how representations differ across these input pathways. By comparing these inputs during a reinforcement learning task in mice, we discovered that prelimbic cortical inputs preferentially represent actions and choices, whereas midline thalamic inputs preferentially represent cues. Choice-selective activity in the prelimbic cortical inputs is organized in sequences that persist beyond the outcome. Through computational modeling, we demonstrate that these sequences can support the neural implementation of reinforcement-learning algorithms, in both a circuit model based on synaptic plasticity and one based on neural dynamics. Finally, we test and confirm a prediction of our circuit models by direct manipulation of nucleus accumbens input neurons.
Collapse
Affiliation(s)
- Nathan F Parker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Avinash Baidya
- Center for Neuroscience, University of California, Davis, Davis, CA 95616, USA; Department of Physics and Astronomy, University of California, Davis, Davis, CA 95616, USA
| | - Julia Cox
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura M Haetzel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Anna Zhukovskaya
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Malavika Murugan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mark S Goldman
- Center for Neuroscience, University of California, Davis, Davis, CA 95616, USA; Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95616, USA.
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Hones VI, Mizumori SJY. Response Flexibility: The Role of the Lateral Habenula. Front Behav Neurosci 2022; 16:852235. [PMID: 35444521 PMCID: PMC9014270 DOI: 10.3389/fnbeh.2022.852235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 01/13/2023] Open
Abstract
The ability to make appropriate decisions that result in an optimal outcome is critical for survival. This process involves assessing the environment as well as integrating prior knowledge about the environment with information about one's current internal state. There are many neural structures that play critical roles in mediating these processes, but it is not yet known how such information coalesces to influence behavioral output. The lateral habenula (LHb) has often been cited as a structure critical for adaptive and flexible responding when environmental contexts and internal state changes. A challenge, however, has been understanding how LHb promotes response flexibility. In this review, we hypothesize that the LHb enables flexible responding following the integration of context memory and internal state information by signaling downstream brainstem structures known to drive hippocampal theta. In this way, animals respond more flexibly in a task situation not because the LHb selects a particular action, but rather because LHb enhances a hippocampal neural state that is often associated with greater attention, arousal, and exploration. In freely navigating animals, these are essential conditions that are needed to discover and implement appropriate alternative choices and behaviors. As a corollary to our hypothesis, we describe short- and intermediate-term functions of the LHb. Finally, we discuss the effects on the behavior of LHb dysfunction in short- and intermediate-timescales, and then suggest that new therapies may act on the LHb to alleviate the behavioral impairments following long-term LHb disruption.
Collapse
Affiliation(s)
- Victoria I. Hones
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Sheri J. Y. Mizumori
- Department of Psychology, University of Washington, Seattle, WA, United States
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Lu Q, Hasson U, Norman KA. A neural network model of when to retrieve and encode episodic memories. eLife 2022; 11:e74445. [PMID: 35142289 PMCID: PMC9000961 DOI: 10.7554/elife.74445] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Recent human behavioral and neuroimaging results suggest that people are selective in when they encode and retrieve episodic memories. To explain these findings, we trained a memory-augmented neural network to use its episodic memory to support prediction of upcoming states in an environment where past situations sometimes reoccur. We found that the network learned to retrieve selectively as a function of several factors, including its uncertainty about the upcoming state. Additionally, we found that selectively encoding episodic memories at the end of an event (but not mid-event) led to better subsequent prediction performance. In all of these cases, the benefits of selective retrieval and encoding can be explained in terms of reducing the risk of retrieving irrelevant memories. Overall, these modeling results provide a resource-rational account of why episodic retrieval and encoding should be selective and lead to several testable predictions.
Collapse
Affiliation(s)
- Qihong Lu
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Uri Hasson
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Kenneth A Norman
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
20
|
Wammes J, Norman KA, Turk-Browne N. Increasing stimulus similarity drives nonmonotonic representational change in hippocampus. eLife 2022; 11:e68344. [PMID: 34989336 PMCID: PMC8735866 DOI: 10.7554/elife.68344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Studies of hippocampal learning have obtained seemingly contradictory results, with manipulations that increase coactivation of memories sometimes leading to differentiation of these memories, but sometimes not. These results could potentially be reconciled using the nonmonotonic plasticity hypothesis, which posits that representational change (memories moving apart or together) is a U-shaped function of the coactivation of these memories during learning. Testing this hypothesis requires manipulating coactivation over a wide enough range to reveal the full U-shape. To accomplish this, we used a novel neural network image synthesis procedure to create pairs of stimuli that varied parametrically in their similarity in high-level visual regions that provide input to the hippocampus. Sequences of these pairs were shown to human participants during high-resolution fMRI. As predicted, learning changed the representations of paired images in the dentate gyrus as a U-shaped function of image similarity, with neural differentiation occurring only for moderately similar images.
Collapse
Affiliation(s)
- Jeffrey Wammes
- Department of Psychology, Yale UniversityNew HavenUnited States
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Kenneth A Norman
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | | |
Collapse
|
21
|
Neuroscience: Connecting the dots in memory. Curr Biol 2021; 31:R1485-R1487. [PMID: 34813755 DOI: 10.1016/j.cub.2021.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hippocampus supports the encoding and retrieval of event memories, but it is unclear how it organizes this information to facilitate efficient retrieval. A recent study suggests that it does so by integrating events based on their narrative structure.
Collapse
|
22
|
Zheng L, Gao Z, McAvan AS, Isham EA, Ekstrom AD. Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nat Commun 2021; 12:6231. [PMID: 34711830 PMCID: PMC8553856 DOI: 10.1038/s41467-021-26560-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
When we remember a city that we have visited, we retrieve places related to finding our goal but also non-target locations within this environment. Yet, understanding how the human brain implements the neural computations underlying holistic retrieval remains unsolved, particularly for shared aspects of environments. Here, human participants learned and retrieved details from three partially overlapping environments while undergoing high-resolution functional magnetic resonance imaging (fMRI). Our findings show reinstatement of stores even when they are not related to a specific trial probe, providing evidence for holistic environmental retrieval. For stores shared between cities, we find evidence for pattern separation (representational orthogonalization) in hippocampal subfield CA2/3/DG and repulsion in CA1 (differentiation beyond orthogonalization). Additionally, our findings demonstrate that medial prefrontal cortex (mPFC) stores representations of the common spatial structure, termed schema, across environments. Together, our findings suggest how unique and common elements of multiple spatial environments are accessed computationally and neurally.
Collapse
Affiliation(s)
- Li Zheng
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Zhiyao Gao
- grid.5685.e0000 0004 1936 9668Department of Psychology, University of York, Heslington, York YO10 5DD UK
| | - Andrew S. McAvan
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Eve A. Isham
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Arne D. Ekstrom
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| |
Collapse
|
23
|
Abstract
There is growing appreciation for the role of long-term memory in guiding temporal preparation in speeded reaction time tasks. In experiments with variable foreperiods between a warning stimulus (S1) and a target stimulus (S2), preparation is affected by foreperiod distributions experienced in the past, long after the distribution has changed. These effects from memory can shape preparation largely implicitly, outside of participants' awareness. Recent studies have demonstrated the associative nature of memory-guided preparation. When distinct S1s predict different foreperiods, they can trigger differential preparation accordingly. Here, we propose that memory-guided preparation allows for another key feature of learning: the ability to generalize across acquired associations and apply them to novel situations. Participants completed a variable foreperiod task where S1 was a unique image of either a face or a scene on each trial. Images of either category were paired with different distributions with predominantly shorter versus predominantly longer foreperiods. Participants displayed differential preparation to never-before seen images of either category, without being aware of the predictive nature of these categories. They continued doing so in a subsequent Transfer phase, after they had been informed that these contingencies no longer held. A novel rolling regression analysis revealed at a fine timescale how category-guided preparation gradually developed throughout the task, and that explicit information about these contingencies only briefly disrupted memory-guided preparation. These results offer new insights into temporal preparation as the product of a largely implicit process governed by associative learning from past experiences.
Collapse
|
24
|
Abstract
We tend to mentally segment a series of events according to perceptual contextual changes, such that items from a shared context are more strongly associated in memory than items from different contexts. It is also known that timing context provides a scaffold to structure experiences in memory, but its role in event segmentation has not been investigated. We adapted a previous paradigm, which was used to investigate event segmentation using visual contexts, to study the effects of changes in timing contexts on event segmentation in associative memory. In two experiments, we presented lists of 36 items in which the interstimulus intervals (ISIs) changed after a series of six items ranging between 0.5 and 4 s in 0.5 s steps. After each list, participants judged which one of two test items were shown first (temporal order judgment) for items that were either drawn from the same context (within an ISI) or from consecutive contexts (across ISIs). Further, participants judged from memory whether the ISI associated to an item lasted longer than a standard interval (2.25 s) that was not previously shown (temporal source memory). Experiment 2 further included a time-item encoding task. Results revealed an effect of timing context changes in temporal order judgments, with faster responses (Experiment 1) or higher accuracy (Experiment 2) when items were drawn from the same context, as opposed to items drawn from across contexts. Further, in both experiments, we found that participants were well able to provide temporal source memory judgments based on recalled durations. Finally, replicated across experiments, we found subjective duration bias, as estimated by psychometric curve fitting parameters of the recalled durations, correlated negatively with within-context temporal order judgments. These findings show that changes in timing context support event segmentation in associative memory.
Collapse
|
25
|
Foudil SA, Pleche C, Macaluso E. Memory for spatio-temporal contextual details during the retrieval of naturalistic episodes. Sci Rep 2021; 11:14577. [PMID: 34272405 PMCID: PMC8285410 DOI: 10.1038/s41598-021-93960-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Episodic memory entails the storage of events together with their spatio-temporal context and retrieval comprises the subjective experience of a link between the person who remembers and the episode itself. We used an encoding procedure with mobile-phones to generate experimentally-controlled episodes in the real world: object-images were sent to the participants' phone, with encoding durations up to 3 weeks. In other groups of participants, the same objects were encoded during the exploration of a virtual town (45 min) or using a standard laboratory paradigm, with pairs of object/place-images presented in a sequence of unrelated trials (15 min). At retrieval, we tested subjective memory for the objects (remember/familiar) and memory for the context (place and time). We found that accurate and confident context-memory increased the likelihood of "remember" responses, in all encoding contexts. We also tested the participants' ability to judge the temporal-order of the encoded episodes. Using a model of temporal similarity, we demonstrate scale-invariant properties of order-retrieval, but also highlight the contribution of non-chronological factors. We conclude that the mechanisms governing episodic memory retrieval can operate across a wide range of spatio-temporal contexts and that the multi-dimensional nature of the episodic traces contributes to the subjective experience of retrieval.
Collapse
Affiliation(s)
- Samy-Adrien Foudil
- ImpAct Team, Lyon Neuroscience Research Center, Lyon, France.
- Lyon Neuroscience Research Center (ImpAct Team), 16 avenue Doyen Lépinel, 69500, Bron, France.
| | - Claire Pleche
- Lyon Neuroscience Research Center (ImpAct Team), 16 avenue Doyen Lépinel, 69500, Bron, France
| | - Emiliano Macaluso
- Lyon Neuroscience Research Center (ImpAct Team), 16 avenue Doyen Lépinel, 69500, Bron, France
| |
Collapse
|
26
|
Parish G, Michelmann S, Hanslmayr S, Bowman H. The Sync-Fire/deSync model: Modelling the reactivation of dynamic memories from cortical alpha oscillations. Neuropsychologia 2021; 158:107867. [PMID: 33905757 DOI: 10.1016/j.neuropsychologia.2021.107867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
We propose a neural network model to explore how humans can learn and accurately retrieve temporal sequences, such as melodies, movies, or other dynamic content. We identify target memories by their neural oscillatory signatures, as shown in recent human episodic memory paradigms. Our model comprises three plausible components for the binding of temporal content, where each component imposes unique limitations on the encoding and representation of that content. A cortical component actively represents sequences through the disruption of an intrinsically generated alpha rhythm, where a desynchronisation marks information-rich operations as the literature predicts. A binding component converts each event into a discrete index, enabling repetitions through a sparse encoding of events. A timing component - consisting of an oscillatory "ticking clock" made up of hierarchical synfire chains - discretely indexes a moment in time. By encoding the absolute timing between discretised events, we show how one can use cortical desynchronisations to dynamically detect unique temporal signatures as they are reactivated in the brain. We validate this model by simulating a series of events where sequences are uniquely identifiable by analysing phasic information, as several recent EEG/MEG studies have shown. As such, we show how one can encode and retrieve complete episodic memories where the quality of such memories is modulated by the following: alpha gate keepers to content representation; binding limitations that induce a blink in temporal perception; and nested oscillations that provide preferential learning phases in order to temporally sequence events.
Collapse
Affiliation(s)
- George Parish
- School of Psychology and Centre for Human Brain Health, University of Birmingham, UK.
| | | | - Simon Hanslmayr
- Institute of Neuroscience and Psychology & Centre for Cognitive Neuroimaging, University of Glasgow, UK
| | - Howard Bowman
- School of Psychology and Centre for Human Brain Health, University of Birmingham, UK; School of Computing, University of Kent, UK
| |
Collapse
|
27
|
George D, Rikhye RV, Gothoskar N, Guntupalli JS, Dedieu A, Lázaro-Gredilla M. Clone-structured graph representations enable flexible learning and vicarious evaluation of cognitive maps. Nat Commun 2021; 12:2392. [PMID: 33888694 PMCID: PMC8062558 DOI: 10.1038/s41467-021-22559-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Cognitive maps are mental representations of spatial and conceptual relationships in an environment, and are critical for flexible behavior. To form these abstract maps, the hippocampus has to learn to separate or merge aliased observations appropriately in different contexts in a manner that enables generalization and efficient planning. Here we propose a specific higher-order graph structure, clone-structured cognitive graph (CSCG), which forms clones of an observation for different contexts as a representation that addresses these problems. CSCGs can be learned efficiently using a probabilistic sequence model that is inherently robust to uncertainty. We show that CSCGs can explain a variety of cognitive map phenomena such as discovering spatial relations from aliased sensations, transitive inference between disjoint episodes, and formation of transferable schemas. Learning different clones for different contexts explains the emergence of splitter cells observed in maze navigation and event-specific responses in lap-running experiments. Moreover, learning and inference dynamics of CSCGs offer a coherent explanation for disparate place cell remapping phenomena. By lifting aliased observations into a hidden space, CSCGs reveal latent modularity useful for hierarchical abstraction and planning. Altogether, CSCG provides a simple unifying framework for understanding hippocampal function, and could be a pathway for forming relational abstractions in artificial intelligence.
Collapse
Affiliation(s)
| | - Rajeev V Rikhye
- Vicarious AI, Union City, CA, USA
- Google, Mountain View, CA, USA
| | - Nishad Gothoskar
- Vicarious AI, Union City, CA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
28
|
Reeders PC, Hamm AG, Allen TA, Mattfeld AT. Medial prefrontal cortex and hippocampal activity differentially contribute to ordinal and temporal context retrieval during sequence memory. ACTA ACUST UNITED AC 2021; 28:134-147. [PMID: 33723033 PMCID: PMC7970742 DOI: 10.1101/lm.052365.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
Remembering sequences of events defines episodic memory, but retrieval can be driven by both ordinality and temporal contexts. Whether these modes of retrieval operate at the same time or not remains unclear. Theoretically, medial prefrontal cortex (mPFC) confers ordinality, while the hippocampus (HC) associates events in gradually changing temporal contexts. Here, we looked for evidence of each with BOLD fMRI in a sequence task that taxes both retrieval modes. To test ordinal modes, items were transferred between sequences but retained their position (e.g., AB3). Ordinal modes activated mPFC, but not HC. To test temporal contexts, we examined items that skipped ahead across lag distances (e.g., ABD). HC, but not mPFC, tracked temporal contexts. There was a mPFC and HC by retrieval mode interaction. These current results suggest that the mPFC and HC are concurrently engaged in different retrieval modes in support of remembering when an event occurred.
Collapse
Affiliation(s)
- Puck C Reeders
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, Florida 33199, USA
| | - Amanda G Hamm
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, Florida 33199, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, Florida 33199, USA.,Department of Environmental Health Sciences, Florida International University, Miami, Florida 33199, USA.,Center for Children and Families, Florida International University, Miami, Florida 33199, USA
| | - Aaron T Mattfeld
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, Florida 33199, USA.,Center for Children and Families, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
29
|
Kulkarni M, Hannula DE. Temporal Regularity May Not Improve Memory for Item-Specific Detail. Front Psychol 2021; 12:623402. [PMID: 33776845 PMCID: PMC7991072 DOI: 10.3389/fpsyg.2021.623402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Regularities in event timing allow for the allocation of attention to critical time-points when an event is most likely to occur, leading to improved visual perception. Results from recent studies indicate that similar benefits may extend to memory for scenes and objects. Here, we investigated whether benefits of temporal regularity are evident when detailed, item-specific representations are necessary for successful recognition memory performance. In Experiments 1 and 2, pictures of objects were presented with either predictable or randomized event timing, in separate encoding blocks. In the test phase, old and new objects were presented, intermixed with perceptually similar exemplars of encoded objects. In Experiment 3 we attempted to replicate previously reported memory enhancements for scenes. In contrast to predictions, temporal regularity did not affect response times (RT) or improve recognition memory accuracy in any of our experiments. These results suggest that any effects of temporal expectation on memory are subtle and may be sensitive to minor changes in task parameters. In sum, indirect upregulation of attention through imposed temporal structure may not be sufficient to have downstream effects on memory performance.
Collapse
Affiliation(s)
| | - Deborah E. Hannula
- Department of Psychology, University of Wisconsin – Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
30
|
Is Activity Silent Working Memory Simply Episodic Memory? Trends Cogn Sci 2021; 25:284-293. [PMID: 33551266 DOI: 10.1016/j.tics.2021.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022]
Abstract
Working memory (WM) maintains task-relevant information in a state ready for processing. While traditional theories assume that sustained neuronal activity is responsible for WM, the Activity Silent WM (ASWM) account proposes that maintenance can also be supported by short-term synaptic weight changes. Here, we argue that the evidence for ASWM can be explained more parsimoniously by the involvement of episodic memory (EM) in WM tasks. Like ASWM, EM relies on rapid synaptic modification that is also activity silent; however, while ASWM posits transient synaptic modifications, EM traces persist over longer time periods. We discuss how, despite this difference, well-established EM mechanisms can account for the key findings attributed to ASWM, and describe predictions of this account.
Collapse
|
31
|
Los SA, Nieuwenstein J, Bouharab A, Stephens DJ, Meeter M, Kruijne W. The warning stimulus as retrieval cue: The role of associative memory in temporal preparation. Cogn Psychol 2021; 125:101378. [PMID: 33524889 DOI: 10.1016/j.cogpsych.2021.101378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
In a warned reaction time task, the warning stimulus (S1) initiates a process of temporal preparation, which promotes a speeded response to the impending target stimulus (S2). According to the multiple trace theory of temporal preparation (MTP), participants learn the timing of S2 by storing a memory trace on each trial, which contains a temporal profile of the events on that trial. On each new trial, S1 serves as a retrieval cue that implicitly and associatively activates memory traces created on earlier trials, which jointly drive temporal preparation for S2. The idea that S1 assumes this role as a retrieval cue was tested across eight experiments, in which two different S1s were associated with two different distributions of S1-S2 intervals: one with predominantly short and one with predominantly long intervals. Experiments differed regarding the S1 features that made up a pair, ranging from highly distinct (e.g., tone and flash) to more similar (e.g., red and green flash) and verbal (i.e., "short" vs "long"). Exclusively for pairs of highly distinct S1s, the results showed that the S1 cue modified temporal preparation, even in participants who showed no awareness of the contingency. This cueing effect persisted in a subsequent transfer phase, in which the contingency between S1 and the timing of S2 was broken - a fact participants were informed of in advance. Together, these findings support the role of S1 as an implicit retrieval cue, consistent with MTP.
Collapse
|
32
|
Aft T, Oprisan SA, Buhusi CV. Is the scalar property of interval timing preserved after hippocampus lesions? J Theor Biol 2021; 516:110605. [PMID: 33508325 PMCID: PMC7980776 DOI: 10.1016/j.jtbi.2021.110605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/28/2022]
Abstract
Time perception is fundamental for decision-making, adaptation, and survival. In the peak-interval (PI) paradigm, one of the critical features of time perception is its scale invariance, i.e., the error in time estimation increases linearly with the to-be-timed interval. Brain lesions can profoundly alter time perception, but do they also change its scalar property? In particular, hippocampus (HPC) lesions affect the memory of the reinforced durations. Experiments found that ventral hippocampus (vHPC) lesions shift the perceived durations to longer values while dorsal hippocampus (dHPC) lesions produce opposite effects. Here we used our implementation of the Striatal Beat Frequency (SBFML) model with biophysically realistic Morris-Lecar (ML) model neurons and a topological map of HPC memory to predict analytically and verify numerically the effect of HPC lesions on scalar property. We found that scalar property still holds after both vHPC and dHPC lesions in our SBFML-HPC network simulation. Our numerical results show that PI durations are shifted in the correct direction and match the experimental results. In our simulations, the relative peak shift of the behavioral response curve is controlled by two factors: (1) the lesion size, and (2) the cellular-level memory variance of the temporal durations stored in the HPC. The coefficient of variance (CV) of the behavioral response curve remained constant over the tested durations of PI procedure, which suggests that scalar property is not affected by HPC lesions.
Collapse
Affiliation(s)
- Tristan Aft
- Department of Physics and Astronomy, College of Charleston, United States
| | - Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, United States
| | | |
Collapse
|
33
|
Should context hold a special place in hippocampal memory? PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Lohnas LJ, Healey MK. The role of context in episodic memory: Behavior and neurophysiology. PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Diamond NB, Levine B. Linking Detail to Temporal Structure in Naturalistic-Event Recall. Psychol Sci 2020; 31:1557-1572. [DOI: 10.1177/0956797620958651] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Decades of memory research demonstrate the importance of temporal organization in recall dynamics, using laboratory stimuli (i.e., word lists) at seconds- to minutes-long delays. Little is known, however, about such organization in recall of richer and more remote real-world experiences, in which the focus is usually on memory content without reference to event order. Here, 119 younger and older adults freely recalled extended real-world experiences, for which the encoding sequence was controlled, after 2 days or 1 week. We paired analytical tools from the list-learning and autobiographical memory literatures to measure spontaneous contextual dynamics and details in these recall narratives. Recall dynamics were organized by temporal context (contiguity and forward asymmetry), and organization was reduced in older age, despite similar serial position effects and recall initiation across age groups. Across participants, organization was positively associated with richness of episodic detail, providing evidence for a link between reexperiencing past events and reinstating their spatiotemporal context.
Collapse
Affiliation(s)
- Nicholas B. Diamond
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto
- Department of Psychology, University of Pennsylvania
| | - Brian Levine
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto
- Department of Medicine (Neurology), University of Toronto
| |
Collapse
|
36
|
Kruijne W, Bohte SM, Roelfsema PR, Olivers CNL. Flexible Working Memory Through Selective Gating and Attentional Tagging. Neural Comput 2020; 33:1-40. [PMID: 33080159 DOI: 10.1162/neco_a_01339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Working memory is essential: it serves to guide intelligent behavior of humans and nonhuman primates when task-relevant stimuli are no longer present to the senses. Moreover, complex tasks often require that multiple working memory representations can be flexibly and independently maintained, prioritized, and updated according to changing task demands. Thus far, neural network models of working memory have been unable to offer an integrative account of how such control mechanisms can be acquired in a biologically plausible manner. Here, we present WorkMATe, a neural network architecture that models cognitive control over working memory content and learns the appropriate control operations needed to solve complex working memory tasks. Key components of the model include a gated memory circuit that is controlled by internal actions, encoding sensory information through untrained connections, and a neural circuit that matches sensory inputs to memory content. The network is trained by means of a biologically plausible reinforcement learning rule that relies on attentional feedback and reward prediction errors to guide synaptic updates. We demonstrate that the model successfully acquires policies to solve classical working memory tasks, such as delayed recognition and delayed pro-saccade/anti-saccade tasks. In addition, the model solves much more complex tasks, including the hierarchical 12-AX task or the ABAB ordered recognition task, both of which demand an agent to independently store and updated multiple items separately in memory. Furthermore, the control strategies that the model acquires for these tasks subsequently generalize to new task contexts with novel stimuli, thus bringing symbolic production rule qualities to a neural network architecture. As such, WorkMATe provides a new solution for the neural implementation of flexible memory control.
Collapse
Affiliation(s)
- Wouter Kruijne
- Faculty of Behavior and Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, Noord Holland, The Netherlands
| | - Sander M Bohte
- Machine Learning Group, Centrum voor Wiskunde & Informatica, 1098 XG Amsterdam, Noord Holland, The Netherlands; Swammerdam Institute of Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Noord Holland, The Netherlands; and Department of Computer Science, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, 1105BA Amsterdam, Noord Holland, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1981 HV Amsterdam, Noord Holland, The Netherlands; and Department of Computer Science, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Christian N L Olivers
- Faculty of Behavior and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Noord Holland, The Netherlands, Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
37
|
van Helvoort D, Stobbe E, Benning R, Otgaar H, van de Ven V. Physical exploration of a virtual reality environment: Effects on spatiotemporal associative recognition of episodic memory. Mem Cognit 2020; 48:691-703. [PMID: 32103427 PMCID: PMC7320060 DOI: 10.3758/s13421-020-01024-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Associative memory has been increasingly investigated in immersive virtual reality (VR) environments, but conditions that enable physical exploration remain heavily under-investigated. To address this issue, we designed two museum rooms in VR throughout which participants could physically walk (i.e., high immersive and interactive fidelity). Participants were instructed to memorize all room details, which each contained nine paintings and two stone sculptures. On a subsequent old/new recognition task, we examined to what extent shared associated context (i.e., spatial boundaries, ordinal proximity) and physically travelled distance between paintings facilitated recognition of paintings from the museum rooms. Participants more often correctly recognized a sequentially probed old painting when the directly preceding painting was encoded within the same room or in a proximal position, relative to those encoded across rooms or in a distal position. A novel finding was that sequentially probed paintings from the same room were also recognized better when the physically travelled spatial or temporal distance between the probed paintings was shorter, as compared with longer distances. Taken together, our results in highly immersive VR support the notion that spatiotemporal context facilitates recognition of associated event content.
Collapse
Affiliation(s)
- Daniël van Helvoort
- Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, the Netherlands.
| | - Emil Stobbe
- Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, the Netherlands
| | - Richard Benning
- Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, the Netherlands
| | - Henry Otgaar
- Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, the Netherlands
- Leuven Institute of Criminology, Catholic University of Leuven, P.O. Box 3418, Leuven, 3000, Belgium
| | - Vincent van de Ven
- Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
38
|
Ukraintseva Y, Liaukovich K, Shilov M. Time as a dimension of consciousness. Subjective passage of time during wakefulness, REM, and NREM sleep. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:13-21. [DOI: 10.17116/jnevro202012009213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Tesli N, van der Meer D, Rokicki J, Storvestre G, Røsæg C, Jensen A, Hjell G, Bell C, Fischer-Vieler T, Tesli M, Andreassen OA, Melle I, Agartz I, Haukvik UK. Hippocampal subfield and amygdala nuclei volumes in schizophrenia patients with a history of violence. Eur Arch Psychiatry Clin Neurosci 2020; 270:771-782. [PMID: 31980898 PMCID: PMC7423802 DOI: 10.1007/s00406-020-01098-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
Schizophrenia (SCZ) is associated with an increased risk of violence compared to the general population. Previous studies have indicated smaller hippocampal and amygdala volumes in violent than non-violent psychotic patients. However, little is known about volumetric differences at the subdivision level of these structures. In the present study, hippocampal subfields and amygdala nuclei volumes were estimated with FreeSurfer from 3 T MRI of SCZ patients with (SCZ-V, n = 24) and without (SCZ-NV, n = 51) a history of severe violence and 90 healthy controls (HC). Volumetric differences between groups were explored with a general linear model covarying for confounders, in addition to follow-up analyses in patient groups controlling for clinical characteristics such as antipsychotic medication, duration of illness and illicit substance use. SCZ-V had smaller total hippocampal volume and smaller CA1, HATA, fimbria, and molecular layer of DG volumes compared to HC. Total amygdala volume together with basal nucleus, accessory basal nucleus, CTA, and paralaminar nucleus volumes were smaller in SCZ-V compared to HC. In SCZ-NV, compared to HC, the observed smaller volumes were limited to basal and paralaminar nucleus. There were no significant differences in hippocampal subfield and amygdala nuclei volumes between SCZ-V and SCZ-NV. Follow-up analyses showed that the results in patient groups were not affected by clinical characteristics. The results suggest that smaller hippocampal subfield and amygdala nuclei volumes may be relevant to violence risk in SCZ. However, the neurobiological signature of violence in SCZ should be further investigated in larger cohorts.
Collapse
Affiliation(s)
- Natalia Tesli
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Nydalen, P.O. Box 4956, 0424 Oslo, Norway ,Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,Department of Psychology, University of Oslo, Oslo, Norway
| | - Guttorm Storvestre
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,Department of Psychiatry, Ostfold Hospital Trust, Graalum, Norway
| | - Cato Røsæg
- Department of Psychiatry, Ostfold Hospital Trust, Graalum, Norway
| | - Arvid Jensen
- Department of Psychiatry, Ostfold Hospital Trust, Graalum, Norway
| | - Gabriela Hjell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,Department of Psychiatry, Ostfold Hospital Trust, Graalum, Norway
| | - Christina Bell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,Department of Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Thomas Fischer-Vieler
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,Department of Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Martin Tesli
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Nydalen, P.O. Box 4956, 0424 Oslo, Norway ,Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A. Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Nydalen, P.O. Box 4956, 0424 Oslo, Norway ,Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Nydalen, P.O. Box 4956, 0424 Oslo, Norway ,Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Unn K. Haukvik
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Nydalen, P.O. Box 4956, 0424 Oslo, Norway ,Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
40
|
Alexander AS, Robinson JC, Dannenberg H, Kinsky NR, Levy SJ, Mau W, Chapman GW, Sullivan DW, Hasselmo ME. Neurophysiological coding of space and time in the hippocampus, entorhinal cortex, and retrosplenial cortex. Brain Neurosci Adv 2020; 4:2398212820972871. [PMID: 33294626 PMCID: PMC7708714 DOI: 10.1177/2398212820972871] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Neurophysiological recordings in behaving rodents demonstrate neuronal response properties that may code space and time for episodic memory and goal-directed behaviour. Here, we review recordings from hippocampus, entorhinal cortex, and retrosplenial cortex to address the problem of how neurons encode multiple overlapping spatiotemporal trajectories and disambiguate these for accurate memory-guided behaviour. The solution could involve neurons in the entorhinal cortex and hippocampus that show mixed selectivity, coding both time and location. Some grid cells and place cells that code space also respond selectively as time cells, allowing differentiation of time intervals when a rat runs in the same location during a delay period. Cells in these regions also develop new representations that differentially code the context of prior or future behaviour allowing disambiguation of overlapping trajectories. Spiking activity is also modulated by running speed and head direction, supporting the coding of episodic memory not as a series of snapshots but as a trajectory that can also be distinguished on the basis of speed and direction. Recent data also address the mechanisms by which sensory input could distinguish different spatial locations. Changes in firing rate reflect running speed on long but not short time intervals, and few cells code movement direction, arguing against path integration for coding location. Instead, new evidence for neural coding of environmental boundaries in egocentric coordinates fits with a modelling framework in which egocentric coding of barriers combined with head direction generates distinct allocentric coding of location. The egocentric input can be used both for coding the location of spatiotemporal trajectories and for retrieving specific viewpoints of the environment. Overall, these different patterns of neural activity can be used for encoding and disambiguation of prior episodic spatiotemporal trajectories or for planning of future goal-directed spatiotemporal trajectories.
Collapse
Affiliation(s)
| | | | | | | | - Samuel J. Levy
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - William Mau
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | | | | | | |
Collapse
|
41
|
Görler R, Wiskott L, Cheng S. Improving sensory representations using episodic memory. Hippocampus 2019; 30:638-656. [DOI: 10.1002/hipo.23186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Richard Görler
- Institute for Neural ComputationRuhr University Bochum Bochum Germany
- International Graduate School of NeuroscienceRuhr University Bochum Bochum Germany
| | - Laurenz Wiskott
- Institute for Neural ComputationRuhr University Bochum Bochum Germany
| | - Sen Cheng
- Institute for Neural ComputationRuhr University Bochum Bochum Germany
| |
Collapse
|
42
|
Gallistel CR, Papachristos EB. Number and time in acquisition, extinction and recovery. J Exp Anal Behav 2019; 113:15-36. [PMID: 31856323 DOI: 10.1002/jeab.571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/13/2023]
Abstract
We measured rate of acquisition, trials to extinction, cumulative responses in extinction, and the spontaneous recovery of anticipatory hopper poking in a Pavlovian protocol with mouse subjects. We varied by factors of 4 number of sessions, trials per session, intersession interval, and span of training (number of days over which training extended). We find that different variables affect each measure: Rate of acquisition [1/(trials to acquisition)] is faster when there are fewer trials per session. Terminal rate of responding is faster when there are more total training trials. Trials to extinction and amount of responding during extinction are unaffected by these variables. The number of training trials has no effect on recovery in a 4-trial probe session 21 days after extinction. However, recovery is greater when the span of training is greater, regardless of how many sessions there are within that span. Our results and those of others suggest that the numbers and durations and spacings of longer-duration "episodes" in a conditioning protocol (sessions and the spans in days of training and extinction) are important variables and that different variables affect different aspects of subjects' behavior. We discuss the theoretical and clinical implications of these and related findings and conclusions-for theories of conditioning and for neuroscience.
Collapse
|
43
|
Depannemaecker D, Canton Santos LE, Rodrigues AM, Scorza CA, Scorza FA, Almeida ACGD. Realistic spiking neural network: Non-synaptic mechanisms improve convergence in cell assembly. Neural Netw 2019; 122:420-433. [PMID: 31841876 DOI: 10.1016/j.neunet.2019.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/26/2023]
Abstract
Learning in neural networks inspired by brain tissue has been studied for machine learning applications. However, existing works primarily focused on the concept of synaptic weight modulation, and other aspects of neuronal interactions, such as non-synaptic mechanisms, have been neglected. Non-synaptic interaction mechanisms have been shown to play significant roles in the brain, and four classes of these mechanisms can be highlighted: (i) electrotonic coupling; (ii) ephaptic interactions; (iii) electric field effects; and iv) extracellular ionic fluctuations. In this work, we proposed simple rules for learning inspired by recent findings in machine learning adapted to a realistic spiking neural network. We show that the inclusion of non-synaptic interaction mechanisms improves cell assembly convergence. By including extracellular ionic fluctuation represented by the extracellular electrodiffusion in the network, we showed the importance of these mechanisms to improve cell assembly convergence. Additionally, we observed a variety of electrophysiological patterns of neuronal activity, particularly bursting and synchronism when the convergence is improved.
Collapse
Affiliation(s)
- Damien Depannemaecker
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil; Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz Eduardo Canton Santos
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil; Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Antônio Márcio Rodrigues
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil
| | - Carla Alessandra Scorza
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), Brazil.
| |
Collapse
|
44
|
Lee ACH, Thavabalasingam S, Alushaj D, Çavdaroğlu B, Ito R. The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective. Neuropsychologia 2019; 137:107300. [PMID: 31836410 DOI: 10.1016/j.neuropsychologia.2019.107300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Although a large body of research has implicated the hippocampus in the processing of memory for temporal duration, there is an exigent degree of inconsistency across studies that obfuscates the precise contributions of this structure. To shed light on this issue, the present review article surveys both historical and recent cross-species evidence emanating from a wide variety of experimental paradigms, identifying areas of convergence and divergence. We suggest that while factors such as time-scale (e.g. the length of durations involved) and the nature of memory processing (e.g. prospective vs. retrospective memory) are very helpful in the interpretation of existing data, an additional important consideration is the context in which the duration information is experienced and processed, with the hippocampus being preferentially involved in memory for durations that are embedded within a sequence of events. We consider the mechanisms that may underpin temporal duration memory and how the same mechanisms may contribute to memory for other aspects of event sequences such as temporal order.
Collapse
Affiliation(s)
- Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Rotman Research Institute, Baycrest Centre, Toronto, M6A 2E1, Canada.
| | | | - Denada Alushaj
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Bilgehan Çavdaroğlu
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, M5S 3G5, Canada
| |
Collapse
|
45
|
Córdova NI, Turk-Browne NB, Aly M. Focusing on what matters: Modulation of the human hippocampus by relational attention. Hippocampus 2019; 29:1025-1037. [PMID: 30779473 PMCID: PMC6699927 DOI: 10.1002/hipo.23082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/19/2018] [Accepted: 02/03/2019] [Indexed: 11/07/2022]
Abstract
Hippocampal episodic memory is fundamentally relational, comprising links between events and the spatiotemporal contexts in which they occurred. Such relations are also important over shorter timescales, during online perception. For example, how do we assess the relative spatial positions of objects, their temporal order, or the relationship between their features? Here, we investigate the role of the hippocampus in online relational processing by manipulating attention to different kinds of relations. While undergoing fMRI, participants viewed two images in rapid succession on each trial and performed one of three relational tasks, judging the images' relative: spatial positions, temporal onsets, or sizes. Additionally, they sometimes judged whether one image was tilted, irrespective of the other. This served as a baseline item task with no demands on relational processing. The hippocampus showed reliable deactivation when participants attended to relational vs. item information. Attention to temporal relations was associated with the most robust deactivation. One interpretation of such deactivation is that it reflects hippocampal disengagement. If true, there should be reduced information content and noisier activity patterns for the temporal vs. other tasks. Instead, multivariate pattern analysis revealed more stable hippocampal representations in the temporal task. This increased pattern similarity was not simply a reflection of lower univariate activity. Thus, the hippocampus differentiates between relational and item processing even during online perception, and its representations of temporal relations are particularly robust. These findings suggest that the relational computations of the hippocampus extend beyond long-term memory, enabling rapid extraction of relational information in perception.
Collapse
Affiliation(s)
- Natalia I. Córdova
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Department of Psychology, Yale University, New Haven, Connecticut
| | | | - Mariam Aly
- Department of Psychology, Columbia University, New York City, New York
| |
Collapse
|
46
|
Johndro H, Jacobs L, Patel AD, Race E. Temporal predictions provided by musical rhythm influence visual memory encoding. Acta Psychol (Amst) 2019; 200:102923. [PMID: 31759191 DOI: 10.1016/j.actpsy.2019.102923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 11/18/2022] Open
Abstract
Selective attention plays a key role in determining what aspects of our environment are encoded into long-term memory. Auditory rhythms with a regular beat provide temporal expectations that entrain attention and facilitate perception of visual stimuli aligned with the beat. The current study investigated whether entrainment to background auditory rhythms also facilitates higher-level cognitive functions such as episodic memory. In a series of experiments, we manipulated temporal attention through the use of rhythmic, instrumental music. In Experiment 1A and 1B, we found that background musical rhythm influenced the encoding of visual targets into memory, evident in enhanced subsequent memory for targets that appeared in-synchrony compared to out-of-synchrony with the background beat. Response times at encoding did not differ for in-synchrony compared to out-of-synchrony stimuli, suggesting that the rhythmic modulation of memory does not simply reflect rhythmic effects on perception and action. Experiment 2 investigated whether rhythmic effects on response times emerge when task procedures more closely match prior studies that have demonstrated significant auditory entrainment effects. Responses were faster for in-synchrony compared to out-of-synchrony stimuli when participants performed a more perceptually-oriented task that did not contain intervening recognition memory tests, suggesting that rhythmic effects on perception and action depend on the nature of the task demands. Together, these results support the hypothesis that rhythmic temporal regularities provided by background music can entrain attention and influence the encoding of visual stimuli into memory.
Collapse
Affiliation(s)
| | | | - Aniruddh D Patel
- Tufts University, United States of America; Azrieli Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research (CIFAR), Canada
| | | |
Collapse
|
47
|
Bladon JH, Sheehan DJ, De Freitas CS, Howard MW. In a Temporally Segmented Experience Hippocampal Neurons Represent Temporally Drifting Context But Not Discrete Segments. J Neurosci 2019; 39:6936-6952. [PMID: 31253754 PMCID: PMC6733554 DOI: 10.1523/jneurosci.1420-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 11/21/2022] Open
Abstract
There is widespread agreement that episodic memory is organized into a timeline of past experiences. Recent work suggests that the hippocampus may parse the flow of experience into discrete episodes separated by event boundaries. A complementary body of work suggests that context changes gradually as experience unfolds. We recorded from hippocampal neurons as male Long-Evans rats performed 6 blocks of an object discrimination task in sets of 15 trials. Each block was separated by removal from the testing chamber for a delay to enable segmentation. The reward contingency reversed from one block to the next to incentivize segmentation. We expected animals to hold two distinct, recurring representations of context to match the two distinct rule contingencies. Instead, we found that overtrained rats began each block neither above nor below chance but by guessing randomly. While many units had clear firing fields selective to the conjunction of objects in places, a significant population also reflected a continuously drifting code both within block and across blocks. Despite clear boundaries between blocks, we saw no neural evidence for event segmentation in this experiment. Rather, the hippocampal ensemble drifted continuously across time. This continuous drift in the neural representation was consistent with the lack of segmentation observed in behavior.SIGNIFICANCE STATEMENT The neuroscience literature yet to reach consensus on how the hippocampus supports the organization of events across time in episodic memory. Initial studies reported stable hippocampal maps segmented by remapping events. However, it remains unclear whether segmentation is an artifact of cue responsivity. Recently, research has shown that the hippocampal code exhibits continuous drift. Drift may represent a continually evolving context; however, it is unclear whether this is an artifact of changing experiences. We recorded dCA1 in rats performing an object discrimination task designed to segment time. Overtrained rats could not anticipate upcoming context switches but used context boundaries to their advantage. Hippocampal ensembles showed neither evidence of alternating between stable contexts nor sensitivity to boundaries, but showed robust temporal drift.
Collapse
Affiliation(s)
- John H Bladon
- Center for Memory and Brain, and
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
| | | | | | | |
Collapse
|
48
|
Evidence for the incorporation of temporal duration information in human hippocampal long-term memory sequence representations. Proc Natl Acad Sci U S A 2019; 116:6407-6414. [PMID: 30862732 DOI: 10.1073/pnas.1819993116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There has been much interest in how the hippocampus codes time in support of episodic memory. Notably, while rodent hippocampal neurons, including populations in subfield CA1, have been shown to represent the passage of time in the order of seconds between events, there is limited support for a similar mechanism in humans. Specifically, there is no clear evidence that human hippocampal activity during long-term memory processing is sensitive to temporal duration information that spans seconds. To address this gap, we asked participants to first learn short event sequences that varied in image content and interval durations. During fMRI, participants then completed a recognition memory task, as well as a recall phase in which they were required to mentally replay each sequence in as much detail as possible. We found that individual sequences could be classified using activity patterns in the anterior hippocampus during recognition memory. Critically, successful classification was dependent on the conjunction of event content and temporal structure information (with unsuccessful classification of image content or interval duration alone), and further analyses suggested that the most informative voxels resided in the anterior CA1. Additionally, a classifier trained on anterior CA1 recognition data could successfully identify individual sequences from the mental replay data, suggesting that similar activity patterns supported participants' recognition and recall memory. Our findings complement recent rodent hippocampal research, and provide evidence that long-term sequence memory representations in the human hippocampus can reflect duration information in the order of seconds.
Collapse
|
49
|
Clewett D, DuBrow S, Davachi L. Transcending time in the brain: How event memories are constructed from experience. Hippocampus 2019; 29:162-183. [PMID: 30734391 PMCID: PMC6629464 DOI: 10.1002/hipo.23074] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/06/2022]
Abstract
Our daily lives unfold continuously, yet when we reflect on the past, we remember those experiences as distinct and cohesive events. To understand this phenomenon, early investigations focused on how and when individuals perceive natural breakpoints, or boundaries, in ongoing experience. More recent research has examined how these boundaries modulate brain mechanisms that support long-term episodic memory. This work has revealed that a complex interplay between hippocampus and prefrontal cortex promotes the integration and separation of sequential information to help organize our experiences into mnemonic events. Here, we discuss how both temporal stability and change in one's thoughts, goals, and surroundings may provide scaffolding for these neural processes to link and separate memories across time. When learning novel or familiar sequences of information, dynamic hippocampal processes may work both independently from and in concert with other brain regions to bind sequential representations together in memory. The formation and storage of discrete episodic memories may occur both proactively as an experience unfolds. They may also occur retroactively, either during a context shift or when reactivation mechanisms bring the past into the present to allow integration. We also describe conditions and factors that shape the construction and integration of event memories across different timescales. Together these findings shed new light on how the brain transcends time to transform everyday experiences into meaningful memory representations.
Collapse
Affiliation(s)
| | - Sarah DuBrow
- Neuroscience Institute, Princeton University, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| |
Collapse
|
50
|
Sadeh T, Chen J, Goshen-Gottstein Y, Moscovitch M. Overlap between hippocampal pre-encoding and encoding patterns supports episodic memory. Hippocampus 2019; 29:836-847. [PMID: 30779457 DOI: 10.1002/hipo.23079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/15/2018] [Accepted: 01/15/2019] [Indexed: 01/13/2023]
Abstract
It is well-established that whether the information will be remembered or not depends on the extent to which the learning context is reinstated during post-encoding rest and/or at retrieval. It has yet to be determined, however, if the fundamental importance of contextual reinstatement to memory extends to periods of spontaneous neurocognitive activity prior to learning. We thus asked whether memory performance can be predicted by the extent to which spontaneous pre-encoding neural patterns resemble patterns elicited during encoding. Individuals studied and retrieved lists of words while undergoing fMRI-scanning. Multivoxel hippocampal patterns during resting periods prior to encoding resembled hippocampal patterns at encoding most strongly for items that were subsequently remembered. Furthermore, across subjects, the magnitude of similarity correlated with a behavioral measure of episodic recall. The results indicate that the neural context before learning is an important determinant of memory.
Collapse
Affiliation(s)
- Talya Sadeh
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| | - Janice Chen
- Psychological & Brain Sciences, Johns Hopkins University, Baltimore, Maryland
| | | | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| |
Collapse
|