1
|
Hessl D, Rojas KM, Ferrer E, Espinal G, Famula J, Schneider A, Hagerman R, Tassone F, Rivera SM. FMR1 Carriers Report Executive Function Changes Prior to Fragile X-Associated Tremor/Ataxia Syndrome: A Longitudinal Study. Mov Disord 2024; 39:519-525. [PMID: 38124331 PMCID: PMC11268876 DOI: 10.1002/mds.29695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies has made it difficult to address this hypothesis. OBJECTIVE To determine whether executive function deterioration experienced by premutation carriers (PC) in daily life precedes and predicts FXTAS. METHODS This study included 66 FMR1 PC ranging from 40 to 78 years (mean, 59.5) and 31 well-matched healthy controls (HC) ages 40 to 75 (mean, 57.7) at baseline. Eighty-four participants returned for 2 to 5 follow up visits over a duration of 1 to 9 years (mean, 4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. RESULTS Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, increased self-report executive function problems at baseline significantly predicted later development of FXTAS. CONCLUSIONS Executive function changes experienced by male PC represent a prodrome of the later movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David Hessl
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Karina Mandujano Rojas
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Glenda Espinal
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jessica Famula
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
- Family Caregiving Institute, Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Fielding-Gebhardt H, Kelly SE, Unruh KE, Schmitt LM, Pulver SL, Khemani P, Mosconi MW. Sensorimotor and inhibitory control in aging FMR1 premutation carriers. Front Hum Neurosci 2023; 17:1271158. [PMID: 38034068 PMCID: PMC10687573 DOI: 10.3389/fnhum.2023.1271158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Aging FMR1 premutation carriers are at risk of developing neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome (FXTAS), and there is a need to identify biomarkers that can aid in identification and treatment of these disorders. While FXTAS is more common in males than females, females can develop the disease, and some evidence suggests that patterns of impairment may differ across sexes. Few studies include females with symptoms of FXTAS, and as a result, little information is available on key phenotypes for tracking disease risk and progression in female premutation carriers. Our aim was to examine quantitative motor and cognitive traits in aging premutation carriers. We administered oculomotor tests of visually guided/reactive saccades (motor) and antisaccades (cognitive control) in 22 premutation carriers (73% female) and 32 age- and sex-matched healthy controls. Neither reactive saccade latency nor accuracy differed between groups. FMR1 premutation carriers showed increased antisaccade latencies relative to controls, both when considering males and females together and when analyzing females separately. Reduced saccade accuracy and increased antisaccade latency each were associated with more severe clinically rated neuromotor impairments. Findings indicate that together male and female premutation carriers show a reduced ability to rapidly exert volitional control over prepotent responses and that quantitative differences in oculomotor behavior, including control of visually guided and antisaccades, may track with FXTAS - related degeneration in male and female premutation carriers.
Collapse
Affiliation(s)
| | | | - Kathryn E. Unruh
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - Lauren M. Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Stormi L. Pulver
- Division of Autism and Related Disorders, Emory University School of Medicine, Atlanta, GA, United States
| | - Pravin Khemani
- Movement Disorders Program, Swedish Neuroscience Institute, Seattle, WA, United States
| | - Matthew W. Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
3
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Hessl D, Rojas KM, Ferrer E, Espinal G, Famula J, Schneider A, Elagerman R, Tassone F, Rivera SM. A Longitudinal Study of Executive Function in Daily Life in Male Fragile X Premutation Carriers and Association with FXTAS Conversion. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.31.23294855. [PMID: 37693384 PMCID: PMC10491369 DOI: 10.1101/2023.08.31.23294855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies have made it difficult to address this hypothesis. Methods This study included 66 FMR1 premutation carriers (PC) ranging from 40-78 years (Mean=59.5) and 31 well-matched healthy controls (HC) ages 40-75 (Mean 57.7) at baseline. Eighty-four participants returned for 2-5 follow up visits over a duration of 1 to 9 years (Mean=4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. Results Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, BRIEF-A executive function problems at baseline significantly predicted later development of FXTAS. Conclusions These findings suggest that executive function changes represent a prodrome of the later movement disorder.
Collapse
Affiliation(s)
- David Hessl
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Karina Mandujano Rojas
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Glenda Espinal
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jessica Famula
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
- Family Caregiving Institute, Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Elagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
McLennan YA, Mosconi MW, McKenzie FJ, Famula J, Krawchuk B, Kim K, Clark CJ, Hessl D, Rivera SM, Simon TJ, Tassone F, Hagerman RJ. Prosaccade and Antisaccade Behavior in Fragile X-Associated Tremor/Ataxia Syndrome Progression. Mov Disord Clin Pract 2022; 9:473-478. [PMID: 35586536 PMCID: PMC9092736 DOI: 10.1002/mdc3.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
Background Quantitative measurement of eye movements can reveal subtle progression in neurodegenerative diseases. Objective To determine if quantitative measurements of eye movements may reveal subtle progression of fragile X-associated tremor and ataxia (FXTAS). Methods Prosaccade (PS) and antisaccade (AS) behavior was analyzed in 25 controls, 57 non-FXTAS carriers, and 46 carriers with FXTAS. Results Symptomatic individuals with FXTAS had longer AS latencies, increased rates of AS errors, and increased AS dysmetria relative to non-FXTAS carriers and controls. These deficits, along with PS latency and velocity, were greater in advanced FXTAS stages. Conclusion AS deficits differentiated FXTAS from non-FXTAS premutation carriers implicating top-down control and frontostriatal deterioration. However, the absence of group differences between non-FXTAS carriers and controls in AS and PS markers suggests saccade performance may not be a sensitive enough measure for detecting conversion to FXTAS, but instead more helpful as translational biomarkers of FXTAS progression.
Collapse
Affiliation(s)
- Yingratana A. McLennan
- The MIND InstituteUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
- Department of PediatricsUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| | - Matthew W. Mosconi
- Life Span Institute, Kansas Center for Autism Research and Training, and Clinical Child Psychology ProgramUniversity of KansasLawrenceKansasUSA
| | | | - Jessica Famula
- The MIND InstituteUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| | - Bennet Krawchuk
- University of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Kyoungmi Kim
- Department of PsychologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Courtney J. Clark
- The MIND InstituteUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
- Department of PediatricsUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| | - David Hessl
- The MIND InstituteUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
- University of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Susan M. Rivera
- The MIND InstituteUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
- Department of PsychologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Tony J. Simon
- The MIND InstituteUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
- University of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Flora Tassone
- The MIND InstituteUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Randi J. Hagerman
- The MIND InstituteUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
- Department of PediatricsUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| |
Collapse
|
6
|
Pešić M, Dragašević Mišković N, Marjanović A, Dobričić V, Maksimović N, Svetel M, Perović D, Novaković I, Cirković S, Stanković I, Kostić V. Premutations in the FMR1 gene in Serbian patients with undetermined tremor, ataxia and parkinsonism. Neurol Res 2021; 43:321-326. [PMID: 33403926 DOI: 10.1080/01616412.2020.1863697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction: Although one of the most common monogenic late-onset neurodegenerative disorders, fragile-X-associated tremor/ataxia syndrome (FXTAS) is still underdiagnosed. The aim of the present study was to estimate the frequency of premutation carriers in patients with unexplained degenerative ataxias, action tremor or parkinsonism, and action tremor with or without associated cognitive impairment.Methods: The study comprised 100 consecutive patients with the disease onset >49 years who had any form of unexplained action tremor, cerebellar ataxia, followed by parkinsonism with or without incipient dementia, and in whom the FMR1 repeats size was determined.Results: Premutation in the FMR1 was identified in two patients (2%): the first, male patient had 83 CGG repeats and the second, female patient had 32 and 58 CGG repeats.Discussion/Conclusion: FXTAS was relatively rare among older patients with unexplained ataxia and action tremor, with or without parkinsonism and/or cognitive impairment. Tremor and ataxia were major clinical features in our two patients, although parkinsonism, autonomic dysfunction and psychiatric problems might be an important part of the spectrum. Probable FXTAS should be considered in the differential diagnosis of patients with unexplained action tremor and ataxia, and undetermined parkinsonism, especially when there was a positive family history for involuntary movement disorders in other family members and/or autism spectrum disorders in younger cousins.
Collapse
Affiliation(s)
- Milica Pešić
- Faculty of Medicine, Institute of Human Genetics, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Dragašević Mišković
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Ana Marjanović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Valerija Dobričić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Nela Maksimović
- Faculty of Medicine, Institute of Human Genetics, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Svetel
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Dijana Perović
- Faculty of Medicine, Institute of Human Genetics, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novaković
- Faculty of Medicine, Institute of Human Genetics, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Cirković
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Mother and Child Health Care Institute of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Iva Stanković
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Vladimir Kostić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| |
Collapse
|
7
|
Moser C, Schmitt L, Schmidt J, Fairchild A, Klusek J. Response Inhibition Deficits in Women with the FMR1 Premutation are Associated with Age and Fall Risk. Brain Cogn 2020; 148:105675. [PMID: 33387817 DOI: 10.1016/j.bandc.2020.105675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
One in 113-178 females worldwide carry a premutation allele on the FMR1 gene. The FMR1 premutation is linked to neurocognitive and neuromotor impairments, although the phenotype is not fully understood, particularly with respect to age effects. This study sought to define oculomotor response inhibition skills in women with the FMR1 premutation and their association with age and fall risk. We employed an antisaccade eye-tracking paradigm to index oculomotor inhibition skills in 35 women with the FMR1 premutation and 28 control women. The FMR1 premutation group exhibited longer antisaccade latency and reduced accuracy relative to controls, indicating deficient response inhibition skills. Longer response latency was associated with older age in the FMR1 premutation and was also predictive of fall risk. Findings highlight the utility of the antisaccade paradigm for detecting early signs of age-related executive decline in the FMR1 premutation, which is related to fall risk. Findings support the need for clinical prevention efforts to decrease and delay the trajectory of age-related executive decline in women with the FMR1 premutation during midlife.
Collapse
Affiliation(s)
- Carly Moser
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Lyndsay Schmitt
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Joseph Schmidt
- Department of Psychology, University of Central Florida, 4111 Pictor Lane, Orlando, FL 32816, Orlando, Florida 32816, USA
| | - Amanda Fairchild
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, South Carolina, 29208, USA
| | - Jessica Klusek
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
8
|
Shelton AL, Cornish K, Clough M, Gajamange S, Kolbe S, Fielding J. Disassociation between brain activation and executive function in fragile X premutation females. Hum Brain Mapp 2016; 38:1056-1067. [PMID: 27739609 DOI: 10.1002/hbm.23438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 11/11/2022] Open
Abstract
Executive dysfunction has been demonstrated among premutation (PM) carriers (55-199 CGG repeats) of the Fragile X mental retardation 1 (FMR1) gene. Further, alterations to neural activation patterns have been reported during memory and comparison based functional magnetic resonance imaging (fMRI) tasks in these carriers. For the first time, the relationships between fMRI neural activation during an interleaved ocular motor prosaccade/antisaccade paradigm, and concurrent task performance (saccade measures of latency, accuracy and error rate) in PM females were examined. Although no differences were found in whole brain activation patterns, regions of interest (ROI) analyses revealed reduced activation in the right ventrolateral prefrontal cortex (VLPFC) during antisaccade trials for PM females. Further, a series of divergent and group specific relationships were found between ROI activation and saccade measures. Specifically, for control females, activation within the right VLPFC and supramarginal gyrus correlated negatively with antisaccade latencies, while for PM females, activation within these regions was found to negatively correlate with antisaccade accuracy and error rate (right VLPFC only). For control females, activation within frontal and supplementary eye fields and bilateral intraparietal sulci correlated with prosaccade latency and accuracy; however, no significant prosaccade correlations were found for PM females. This exploratory study extends previous reports of altered prefrontal neural engagement in PM carriers, and clearly demonstrates dissociation between control and PM females in the transformation of neural activation into overt measures of executive dysfunction. Hum Brain Mapp 38:1056-1067, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annie L Shelton
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Kim Cornish
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Sanuji Gajamange
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Scott Kolbe
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Foote M, Arque G, Berman RF, Santos M. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) Motor Dysfunction Modeled in Mice. CEREBELLUM (LONDON, ENGLAND) 2016; 15:611-22. [PMID: 27255703 PMCID: PMC5014696 DOI: 10.1007/s12311-016-0797-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some carriers of the fragile X premutation (PM). In PM carriers, there is a moderate expansion of a CGG trinucleotide sequence (55-200 repeats) in the fragile X gene (FMR1) leading to increased FMR1 mRNA and small to moderate decreases in the fragile X mental retardation protein (FMRP) expression. The key symptoms of FXTAS include cerebellar gait ataxia, kinetic tremor, sensorimotor deficits, neuropsychiatric changes, and dementia. While the specific trigger(s) that causes PM carriers to progress to FXTAS pathogenesis remains elusive, the use of animal models has shed light on the underlying neurobiology of the altered pathways involved in disease development. In this review, we examine the current use of mouse models to study PM and FXTAS, focusing on recent advances in the field. Specifically, we will discuss the construct, face, and predictive validities of these PM mouse models, the insights into the underlying disease mechanisms, and potential treatments.
Collapse
Affiliation(s)
- Molly Foote
- Department of Neurological Surgery, University of California, Davis, CA, USA.
| | - Gloria Arque
- Department of Molecular Neuroscience, Medical University of Vienna, Vienna, Austria
| | - Robert F Berman
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Mónica Santos
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Abnormalities of oculomotor control accompany the pathological changes underlying many neurodegenerative diseases. Clinical examination of eye movements can contribute to differential diagnosis, whereas quantitative laboratory measures can provide detailed insight into the disease process. In this review of eye movements in neurodegenerative disease, we summarise recent empirical findings and conceptual advances. RECENT FINDINGS Oculomotor researchers continue to be particularly prolific in studying Parkinson's disease but there is also substantial activity in Alzheimer's disease and spinocerebellar ataxia. Interesting findings have been reported in Huntington's, motor neuron disease, and glaucoma. Most studies report laboratory-based investigations but useful progress in clinical description continues to be made. SUMMARY Eye movements remain an active field of investigation across a variety of neurodegenerative conditions. Progress continues to be made at the clinical level as well by using laboratory techniques.
Collapse
Affiliation(s)
- Michael R MacAskill
- aNew Zealand Brain Research Institute bDepartment of Medicine, University of Otago cDepartment of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | | |
Collapse
|
11
|
Muzar Z, Lozano R. Current research, diagnosis, and treatment of fragile X-associated tremor/ataxia syndrome. Intractable Rare Dis Res 2014; 3:101-9. [PMID: 25606360 PMCID: PMC4298640 DOI: 10.5582/irdr.2014.01029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/30/2014] [Indexed: 12/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is caused by a premutation CGG-repeat expansion in the 5'UTR of the fragile X mental retardation 1 (FMR1) gene. The classical clinical manifestations include tremor, cerebellar ataxia, cognitive decline and psychiatric disorders. Other less frequent features are peripheral neuropathy and autonomic dysfunction. Cognitive decline, a form of frontal subcortical dementia, memory loss and executive function deficits are also characteristics of this disorder. In this review, we present an expansion of recommendations for genetic testing for adults with suspected premutation disorders and provide an update of the clinical, radiological and molecular research of FXTAS, as well as the current research in the treatment for this intractable complex neurodegenerative genetic disorder.
Collapse
Affiliation(s)
- Zukhrofi Muzar
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| | - Reymundo Lozano
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
- Address correspondence to: Dr. Reymundo Lozano, UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA. E-mail:
| |
Collapse
|