1
|
Uyar E, Erdinç M, Kelle İ, Erdinç L, Şeker U, Nergiz Y. The Involvement of the Serotonergic System in Ketamine and Fluoxetine Combination-induced Cognitive Impairments in Mice. Eurasian J Med 2024; 56:102-107. [PMID: 39128082 PMCID: PMC11332274 DOI: 10.5152/eurasianjmed.2024.23219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/15/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Glutamatergic N-methyl-D-aspartate (NMDA) receptors play vital roles in memory formation. Changes in the activity of these receptors influence memory processes. Ketamine is a noncompetitive NMDA receptor antagonist drug with promising mood-altering and pain-reducing effects in low doses. These effects are believed to be related to altered serotonergic transmission. METHODS The present study investigated the involvement of the serotonergic system in low-dose ketamine administrations' effects on memory acquisition, consolidation, and retrieval processes. Sixty-four male BALB/c mice were used in this experiment and separated into 8t groups. Mice were treated subchronically with a selective serotonin reuptake inhibitor, fluoxetine, and a serotonin depletion agent, p-chlorophenylalanine (pCPA). A serotonin antagonist, methiothepin, and ketamine were acutely administered 60 minutes before or after the behavioral tests. A passive avoidance (PA) test measured emotional memory acquisition, consolidation, and retrieval processes. Hippocampi malondialdehyde (MDA) levels were analyzed, and histopathological examinations were performed. RESULTS Ketamine alone did not significantly affect memory encoding processes in the PA test, while the ketamine-fluoxetine combination disrupted memory consolidation. Fluoxetine negatively affected the memory acquisition process, which was normalized during the consolidation and retrieval trials. Drug applications did not significantly alter hippocampal MDA levels. In all ketamine-applied groups, histopathologic alterations were evident. CONCLUSION Low-dose ketamine administration induces neurodegeneration, and it also impairs memory functions when combined with fluoxetine, indicating increased serotonergic transmission may be involved in the memory-impairing and neurotoxic effects of ketamine.
Collapse
Affiliation(s)
- Emre Uyar
- Department of Medical Pharmacology, Uskudar University Faculty of Medicine, Istanbul, Türkiye
| | - Meral Erdinç
- Department of Medical Pharmacology, Uskudar University Faculty of Medicine, Istanbul, Türkiye
| | - İlker Kelle
- Department of Medical Pharmacology, Dicle University Faculty of Medicine, Diyarbakir, Türkiye
| | - Levent Erdinç
- Department of Biochemistry, Dicle University Faculty of Medicine, Diyarbakir, Türkiye
| | - Uğur Şeker
- Department of Histology and Embryology, Mardin Artuklu University Faculty of Medicine, Mardin, Türkiye
| | - Yusuf Nergiz
- Department of Histology and Embryology, Dicle University Faculty of Medicine, Diyarbakir, Türkiye
| |
Collapse
|
2
|
Pepe M, Di Nicola M, Cocciolillo F, Chiappini S, Martinotti G, Calcagni ML, Sani G. 3-Methoxy-Phencyclidine Induced Psychotic Disorder: A Literature Review and an 18F-FDG PET/CT Case Report. Pharmaceuticals (Basel) 2024; 17:452. [PMID: 38675413 PMCID: PMC11053433 DOI: 10.3390/ph17040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
New Psychoactive Substances (NPS) are modifying the drug scenario worldwide and have become a public health concern because of their toxicological profiles and their harmful physical/psychological effects. 3-Methoxy-Phencyclidine (3-MeO-PCP), a non-competitive antagonist of glutamate N-methyl-D-aspartate (NMDA) receptors, belongs to the phencyclidine-like subfamily of arylcyclohexylamines and has gained attention for its toxic, sometimes fatal, effects. Despite several cases of intoxication and death reported in the literature, little is known about substance-induced psychotic disorders (SIP) and potential cognitive impairment following 3-MeO-PCP intake. This literature review aimed to summarize available evidence about 3-MeO-PCP mechanisms of action and physical and psychotropic effects and to spread preliminary findings about persistent psychotic symptoms and impaired cognitive functioning. Additionally, the case of an SIP is reported in a 29-year-old man with small oral intakes of 3-MeO-PCP over two weeks until a high dose ingestion. Psychometric and neuropsychological assessment and brain [18F]-fluorodeoxyglucose positron emission tomography integrated with computed tomography were used to support clinical description. Identifying and addressing the characteristic clinical features and neural substrates of NPS-induced psychoses might help clinicians with a more precise differentiation from other psychotic disorders. Although further studies are required, phenotyping the cognitive profile of NPS users might provide targets for tailored therapeutic approaches.
Collapse
Affiliation(s)
- Maria Pepe
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Marco Di Nicola
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Fabrizio Cocciolillo
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Stefania Chiappini
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
- School of Medical Sciences, UniCamillus International University of Medical Sciences, Via di S. Alessandro 8, 00131 Rome, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Maria Lucia Calcagni
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Institute of Nuclear Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
3
|
Onofrychuk TJ, Glass AE, Greba Q, Howland JG. Evidence for novelty reward cross-cueing in the odor span task in rats: implications for odor-based reward-motivated tasks. Learn Mem 2024; 31:a053871. [PMID: 38286523 PMCID: PMC10903935 DOI: 10.1101/lm.053871.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
The odor span task (OST) infers working memory capacity (WMC) by requiring rodents to discriminate between previously presented and session-novel odors to obtain a hidden food reward. Here, rats' responses to session-novel odors and food rewards were assessed to determine whether rats use mitigating strategies in the OST. Rats accurately responded to session-novel odors but also reliably responded to the food reward alone and performed at chance when both a session-novel odor and food reward were presented in separate locations. The inclusion of unscented sand in the cups holding the food reward significantly reduced the rats' responses to the food reward alone. Collectively, these results demonstrate the need for rigorous tests of potential mitigating strategies and hold wide implications for rodent odor discrimination-based behavioral tasks.
Collapse
Affiliation(s)
- Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Aiden E Glass
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
4
|
Suárez Santiago JE, Roldán GR, Picazo O. Ketamine as a pharmacological tool for the preclinical study of memory deficit in schizophrenia. Behav Pharmacol 2023; 34:80-91. [PMID: 36094064 DOI: 10.1097/fbp.0000000000000689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a serious neuropsychiatric disorder characterized by the presence of positive symptoms (hallucinations, delusions, and disorganization of thought and language), negative symptoms (abulia, alogia, and affective flattening), and cognitive impairment (attention deficit, impaired declarative memory, and deficits in social cognition). Dopaminergic hyperactivity seems to explain the positive symptoms, but it does not completely clarify the appearance of negative and cognitive clinical manifestations. Preclinical data have demonstrated that acute and subchronic treatment with NMDA receptor antagonists such as ketamine (KET) represents a useful model that resembles the schizophrenia symptomatology, including cognitive impairment. This latter has been explained as a hypofunction of NMDA receptors located on the GABA parvalbumin-positive interneurons (near to the cortical pyramidal cells), thus generating an imbalance between the inhibitory and excitatory activity in the corticomesolimbic circuits. The use of behavioral models to explore alterations in different domains of memory is vital to learn more about the neurobiological changes that underlie schizophrenia. Thus, to better understand the neurophysiological mechanisms involved in cognitive impairment related to schizophrenia, the purpose of this review is to analyze the most recent findings regarding the effect of KET administration on these processes.
Collapse
Affiliation(s)
- José Eduardo Suárez Santiago
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel Roldán Roldán
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ofir Picazo
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
| |
Collapse
|
5
|
Cothren TO, Evonko CJ, MacQueen DA. Olfactory Dysfunction in Schizophrenia: Evaluating Olfactory Abilities Across Species. Curr Top Behav Neurosci 2023; 63:363-392. [PMID: 36059004 DOI: 10.1007/7854_2022_390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though understudied relative to perturbations in the auditory and visual domains, olfactory dysfunction is a common symptom of schizophrenia. Over the past two decades, the availability of standardized assessments to quantify human olfactory abilities, and enhance understanding of the neurophysiology supporting olfaction, has increased, enabling a more thorough characterization of these deficits. In contrast to other psychiatric conditions for which olfactory dysfunction has been observed (e.g., major depressive disorder, bipolar disorder, Alzheimer's disease), the impairments observed in schizophrenia are particularly global and profound. At this level, such deficits in olfactory abilities likely impact the enjoyment of food, detection of environmental hazards, and influence social relationships. More broadly, the study of olfactory phenotypes in schizophrenia presents new avenues for detection of those at-risk for the condition, identification of therapeutic targets for treatment development, and for the characterization of novel animal models relevant to schizophrenia and psychosis. This review will consider the olfactory performance of individuals with schizophrenia in domains for which standardized assessments are available (odor sensitivity, discrimination, identification, and memory). Paradigms available for assessing these abilities in rodents will also be discussed with the aim of facilitating translation. Thus, future studies will be able to include cross-species translation of mechanisms relevant to olfactory function and cognition, what has gone awry in the disease state, and test potential therapeutics.
Collapse
Affiliation(s)
- Taitum O Cothren
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Christopher J Evonko
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - David A MacQueen
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA.
| |
Collapse
|
6
|
Marti M, Talani G, Miliano C, Bilel S, Biggio F, Bratzu J, Diana M, De Luca MA, Fattore L. New insights into methoxetamine mechanisms of action: Focus on serotonergic 5-HT 2 receptors in pharmacological and behavioral effects in the rat. Exp Neurol 2021; 345:113836. [PMID: 34384790 DOI: 10.1016/j.expneurol.2021.113836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023]
Abstract
Methoxetamine (MXE) is a dissociative substance of the arylcyclohexylamine class that has been present on the designer drug market as a ketamine-substitute since 2010. We have previously shown that MXE (i) possesses ketamine-like discriminative and positive rewarding effects in rats, (ii) affects brain processing involved in cognition and emotional responses, (iii) causes long-lasting behavioral abnormalities and neurotoxicity in rats and (iv) induces neurological, sensorimotor and cardiorespiratory alterations in mice. To shed light on the mechanisms through which MXE exerts its effects, we conducted a multidisciplinary study to evaluate the various neurotransmitter systems presumably involved in its actions on the brain. In vivo microdialysis study first showed that a single administration of MXE (0.25 and 0.5 mg/kg, i.v.) is able to significantly alter serotonin levels in the rat medial prefrontal cortex (mPFC) and nucleus accumbens. Then, we observed that blockade of the serotonin 5-HT2 receptors through two selective antagonists, ketanserin (0.1 mg/kg, i.p.) and MDL 100907 (0.03 mg/kg, i.p.), at doses not affecting animals behavior per se, attenuated the facilitatory motor effect and the inhibition on visual sensory responses induced by MXE (3 mg/kg, i.p.) and ketamine (3 mg/kg, i.p.), and prevented MXE-induced reduction of the prepulse inhibition in rats, pointing to the 5-HT2 receptors as a key target for the recently described MXE-induced sensorimotor effects. Finally, in-vitro electrophysiological studies revealed that the GABAergic and glutamatergic systems are also likely involved in the mechanisms through which MXE exerts its central effects since MXE inhibits, in a concentration-dependent manner, NMDA-mediated field postsynaptic potentials and GABA-mediated spontaneous currents. Conversely, MXE failed to alter both the AMPA component of field potentials and presynaptic glutamate release, and seems not to interfere with the endocannabinoid-mediated effects on mPFC GABAergic synapses. Altogether, our results support the notion of MXE as a NMDA receptor antagonist and shed further lights into the central mechanisms of action of this ketamine-substitute by pointing to serotonin 5-HT2 receptors as crucial players in the expression of its sensorimotor altering effects and to the NMDA and GABA receptors as potential further important targets of action.
Collapse
Affiliation(s)
- Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| | - Giuseppe Talani
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Francesca Biggio
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Jessica Bratzu
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Marco Diana
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy.
| |
Collapse
|
7
|
Luo N, Liu S, Li X, Hu Y, Zhang K. Circular RNA circHIPK3 promotes breast cancer progression via sponging MiR-326. Cell Cycle 2021; 20:1320-1333. [PMID: 34152928 PMCID: PMC8331001 DOI: 10.1080/15384101.2021.1939476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 01/22/2023] Open
Abstract
Background: This study investigated the potential molecular mechanism of circular RNA HIPK3 (circHIPK3) in breast cancer (BCa). Methods: BCa cells were transfected with miR-326 mimic, miR-326 inhibitor, circHIPK3, sicircHIPK3. The expressions of circHIPK3 and miR-326 in BCa tissues and BCa cell lines were determined by RT-qPCR. Cell viability, colony formation, migration, invasion, and apoptosis of the cells were detected by CCK-8 and colony formation, wound-healing, transwell and flow cytometric assays, respectively. The relationship between circHIPK3 and miR-326 was analyzed and confirmed by circInteractome, dual-luciferase reporter, RT-qPCR, Pearson's correlation assays. Western blot and RT-qPCR were performed to determine the expressions of apoptosis-related molecules (Bcl-2, Bax, and cleaved Caspase-3) and EMT-related molecules (E-cadherin, N-cadherin, and Vimentin) in the BCa cells and tumor tissues. The tumor growth in mice was examined in a xenograft tumor model in which Ki-67 expression was determined by immunohistochemistry (IHC). Results: In BCa, the expression of circHIPK3 was up-regulated and that of miR-326 was down-regulated. CircHIPK3 knockdown inhibited the cell proliferation, invasion, and migration. MiR-326 was the direct target of circHIPK3, and was inversely correlated with circHIPK3 expression. CircHIPK3 overexpression promoted proliferation, migration, invasion, apoptosis resistance, and tumor growth and up-regulated Ki-67 expression, at the same time, the expressions of Bcl-2, N-cadherin, Vimentin were up-regulated, and those of Bax, cleaved Caspase-3 and E-cadherin were inhibited. These above expressions were partially reversed by miR-326 overexpression. Conclusion: CircHIPK3 sponges miR-326 to promote BCa growth and metastasis. The current findings provide a novel therapeutic target for treating BCa.
Collapse
Affiliation(s)
- Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| | - Shiqin Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
8
|
Matey JM, López-Fernández A, García-Ruiz C, Montalvo G, Moreno MD, Martínez MA. Potential Of High-Resolution Mass Spectrometry For The Detection Of Drugs And Metabolites In Hair: Methoxetamine In A Real Forensic Case. J Anal Toxicol 2020; 46:e1-e10. [PMID: 33104803 DOI: 10.1093/jat/bkaa168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
The analysis of drugs of abuse in hair and other biological matrices of forensic interest requires great selectivity and sensitivity. This is done traditionally through target analysis, with one or more analytical methods, or with different and specific preanalytical phases, and complex procedures performed by the toxicological laboratories, and there is no exception with ketamine-like compounds, such as methoxetamine, a new psychoactive substance (NPS) whose use has increased in the last decades, and continues to grow quickly year by year. More validated methods of analysis are needed to detect these substances in low concentrations selectively. Reanalyzing the samples of a former case of a polydrug consumer accused of a crime against public health in Spain, five metabolites of methoxetamine (normethoxetamine, O-desmethylmethoxetamine, dehydromethoxetamine, dihydronormethoxetamine and hydroxynormethoxetamine) were tentatively detected using a high-resolution technique that is liquid chromatography coupled to high-resolution mass spectrometry (LC-HR-MS/MS). The most selective analytical LC-HR-MS/MS method together a universal and simpler pretreatment stages has demonstrated to allow faster analysis and more sensitivity than the one performed traditionally at the INTCF laboratories, which was gas chromatography coupled to mass spectrometry (GC-MS).
Collapse
Affiliation(s)
- J M Matey
- National Institute of Toxicology and Forensic Sciences, Department of Chemical and Drugs. José Echegaray, 4. 28232 Las Rozas de Madrid, Madrid, Spain.,University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering.,University Institute of Research in Police Sciences (IUICP)
| | - Adrián López-Fernández
- University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering
| | - Carmen García-Ruiz
- University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering.,University Institute of Research in Police Sciences (IUICP)
| | - Gemma Montalvo
- University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering.,University Institute of Research in Police Sciences (IUICP)
| | - M D Moreno
- National Institute of Toxicology and Forensic Sciences, Department of Chemical and Drugs. José Echegaray, 4. 28232 Las Rozas de Madrid, Madrid, Spain
| | - M A Martínez
- National Institute of Toxicology and Forensic Sciences, Department of Chemical and Drugs. José Echegaray, 4. 28232 Las Rozas de Madrid, Madrid, Spain.,University Institute of Research in Police Sciences (IUICP)
| |
Collapse
|
9
|
Methocinnamox (MCAM) antagonizes the behavioral suppressant effects of morphine without impairing delayed matching-to-sample accuracy in rhesus monkeys. Psychopharmacology (Berl) 2020; 237:3057-3065. [PMID: 32772146 PMCID: PMC8114947 DOI: 10.1007/s00213-020-05592-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Opioid abuse remains a serious public health problem. The pseudoirreversible mu opioid receptor antagonist methocinnamox (MCAM) might be useful for treating opioid abuse and overdose. Because endogenous opioid systems can modulate cognition and decision-making, it is important to evaluate whether long-term blockade of mu opioid receptors by MCAM adversely impacts complex operant behavior involving memory. OBJECTIVE This study tested the effects of MCAM in rhesus monkeys responding under a delayed matching-to-sample task, with correct responses reinforced by sucrose pellets. Because MCAM did not alter performance, antagonism of the rate-decreasing effects of morphine was used to confirm that an effective dose of MCAM was administered. Moreover, the muscarinic receptor antagonist scopolamine and the N-methyl-D-aspartate antagonist phencyclidine were studied as positive controls to demonstrate sensitivity of this procedure to memory disruption. RESULTS Neither MCAM (0.32 mg/kg) nor morphine (1-5.6 mg/kg) impaired delayed matching-to-sample accuracy. Morphine dose-dependently decreased the number of trials completed before MCAM administration, and a single injection of MCAM blocked the behavioral suppressant effects of morphine for at least 7 days. Scopolamine (0.01-0.056 mg/kg) and phencyclidine (0.1-0.56 mg/kg) dose-dependently decreased delayed matching-to-sample accuracy and the number of trials completed. CONCLUSIONS MCAM did not impair memory (as measured by accuracy in a delayed matching-to-sample task) and did not decrease responding for or consumption of sucrose pellets. This dose of MCAM attenuates self-administration of opioids and reverses as well as prevents opioid-induced respiratory depression. These results provide further support for a favorable adverse effect profile for MCAM.
Collapse
|
10
|
Ketamine induces endoplasmic reticulum stress in rats and SV-HUC-1 human uroepithelial cells by activating NLRP3/TXNIP aix. Biosci Rep 2020; 39:220824. [PMID: 31652453 PMCID: PMC6811748 DOI: 10.1042/bsr20190595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/02/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Many clinical studies have been conducted on ketamine-associated cystitis. However, the underlying mechanisms of ketamine-associated cystitis still remain unclear. Bladder tissues of rats were stained by Hematoxylin and Eosin (HE). The viability of human uroepithelial cells (SV-HUC-1 cells) was determined by cell counting kit-8 (CCK-8). Apoptosis and reactive oxygen species (ROS) were examined by flow cytometry. Additionally, the expressions of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β and IL-18 were respectively determined by reverse transcription quantitative (RTq)-PCR and enzyme-linked immunosorbent assay (ELISA). The mRNA and protein levels of B-cell lymphoma/leukemia-2 (Bcl2), Bcl-2-associated X protein (Bax), cleaved caspase 3, glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), NOD-like receptor 3 (NLRP3), thioredoxin-interacting protein (TXNIP), Catalase and MnSOD were examined by RT-qPCR and Western blot. Small interfering RNA target TXNIP transfection was performed using Lipofectamine™ 2000. We found that ketamine effectively damaged bladder tissues of rats and promoted apoptosis through regulating the expression levels of GRP78, CHOP, Bcl-2, Bax and cleaved Caspase-3 proteins in vivo and in vitro. NLRP3 inflammatory body and TXNIP were activated by ketamine, which was supported by the changes in TNF-α, IL-6, IL-1 and IL-18 in vivo and in vitro. Furthermore, knocking down TXNIP reversed the effects of ketamine on apoptosis and NLRP3 inflammatory body in SV-HUC-1 cells. Meanwhile, the changes of Catalase and MnSOD showed that ROS was enhanced by ketamine, however, such an effect was ameliorated by down-regulation of TXNIP in SV-HUC-1 cells. Ketamine promoted cell apoptosis and induced inflammation in vivo and in vitro by regulating NLRP3/TXNIP aix.
Collapse
|
11
|
Exposure Level of Neonicotinoid Insecticides in the Food Chain and the Evaluation of Their Human Health Impact and Environmental Risk: An Overview. SUSTAINABILITY 2020. [DOI: 10.3390/su12187523] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neonicotinoid insecticides (neonics) were the most rapidly growing class of insecticides over the past few decades, and are used mainly for vegetables, fruits, and grains. Although neonics exhibit lower toxicity in mammals and humans compared to traditional insecticides, increasing numbers of studies are demonstrating that neonics may accumulate in the food chain and environmental media. Long-term exposure to neonics may raise potential risks to animals and even to humans. The present report reviews the development, application, and prohibition of neonics in the farmland ecosystem, and summarizes the exposure level and harmful effects of these insecticides in the food chain. In addition, the present review analyzes and summarizes the evaluation of the human health impact and environmental risk of the neonics, and overviews the unresolved problems and future research directions in this field. The aim of the present report was to review the exposure level, potential toxicity, human health impact, and environmental risk assessment of neonics in various media in order to provide reliable technical support for strengthening the environmental and food safety supervision and green pesticide designing.
Collapse
|
12
|
Galizio M, Mason MG, Bruce K. Successive incrementing non-matching-to-samples in rats: An automated version of the odor span task. J Exp Anal Behav 2020; 114:248-265. [PMID: 32725820 DOI: 10.1002/jeab.619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The odor span task is a procedure frequently used to study remembering of multiple stimuli in rodents. A large arena is used and odor stimuli are presented using scented cups. Selection of each odor is reinforced when first presented, but not on subsequent presentations; correct selections depend on remembering which stimuli were previously presented. The use of an arena setting with manual stimulus presentation makes the odor span task labor-intensive and limits experimental control; thus, an automated version of the task would be of value. The present study used an operant chamber equipped with an olfactometer and trained rats using successive conditional discrimination procedures under an incrementing non-matching-to-samples contingency. High rates of responding developed to odor stimuli when they were session-novel with low rates of responding to subsequent presentations of that odor. Additional experiments assessed variations of the procedure to determine the role of the frequency of odor presentation and the retention interval separating sample and comparison. Discrimination was impaired with long retention intervals suggesting the importance of this variable. These findings confirmed that rats differentiate between stimuli that are session-novel and those previously encountered and support the use of an automated procedure as an alternative to the odor span task.
Collapse
|
13
|
Zhou C, Kong W, Ju T, Xie Q, Zhai L. MiR-185-3p mimic promotes the chemosensitivity of CRC cells via AQP5. Cancer Biol Ther 2020; 21:790-798. [PMID: 32588739 DOI: 10.1080/15384047.2020.1761238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies showed that microRNAs (miRNAs) are important regulators in drug resistance. The current study investigated the role of miR-185-3p and its predicted target gene AQP5 in 5-FU-insensitive colorectal cancer (CRC) cells. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and Spearman's correlation analysis were conducted to determine the correlation of expression levels of miR-185-3p and AQP5 from CRC tissues. HCT-116 and HCT-8 cells were treated by gradient concentration of 5-FU to construct 5-FU-resistant CRC model. The inhibition and viability of 5-FU-resistant cells were detected by MTT assay, and cell migration and invasion ability were determined by wound healing and transwell assay. The expressions of miR-185-3p and AQP5 were measured by qRT-PCR. StarBase and dual-luciferase reporter assay were used to predict and confirm the interaction between miR-185-3p and AQP5. Further experiments were performed to explore the function of miR-185-3p in 5-FU-resistant cells through regulating aquaporin-5 (AQP5). The levels of EMT-associated markers and AQP5 were determined by conducting Western Blot and qRT-PCR. RESULTS We found that 5-FU-resistant CRC cells showed a lower inhibition rate, and higher migration and invasion abilities. MiR-185-3p was low-expressed in CRC tissues and 5-FU-resistance cells, and it targeted and regulated the expression of AQP5, which was found up-regulated in CRC and 5-FU-resistance CRC cells (r = -0.29, P < .05). Furthermore, miR-185-3p mimic enhanced the chemo-sensitivity of 5-FU-resistant cells, while overexpressed AQP5 reversed such an effect produced by miR-185-3p mimic. CONCLUSION MiR-185-3p mimic enhances the chemosensitivity of CRC cells via AQP5. Our research provides a potential therapeutic target for 5-FU-resistant CRC cells.
Collapse
Affiliation(s)
- Chunhua Zhou
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| | - Wencheng Kong
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| | - Tongfa Ju
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| | - Qi Xie
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| | - Lulu Zhai
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Abstract
The opioid epidemic underscores the need for safer and more effective treatments for pain. Combining opioid receptor agonists with drugs that relieve pain through nonopioid mechanisms could be a useful strategy for reducing the dose of opioid needed to treat pain, thereby reducing risks associated with opioids alone. Opioid/cannabinoid mixtures might be useful in this context; individually, opioids and cannabinoids have modest effects on cognition, and it is important to determine whether those effects occur with mixtures. Delay discounting and delayed matching-to-sample tasks were used to examine effects of the mu-opioid receptor agonist morphine (0.32-5.6 mg/kg), the cannabinoid CB1/CB2 receptor agonist CP55940 (0.0032-0.1 mg/kg), and morphine/CP55940 mixtures on impulsivity (n = 3) and memory (n = 4) in rhesus monkeys. Alone, each drug decreased rate of responding without modifying choice in the delay-discounting task, and morphine/CP55940 mixtures reduced choice of one pellet in a delay dependent manner, with monkeys instead choosing delayed delivery of the larger number of pellets. With the exception of one dose in one monkey, accuracy in the delayed matching-to-sample task was not altered by either drug alone. Morphine/CP55940 mixtures decreased accuracy in two monkeys, but the doses in the mixture were equal to or greater than doses that decreased accuracy or response rate with either drug alone. Rate-decreasing effects of morphine/CP55940 mixtures were additive. These data support the notion that opioid/cannabinoid mixtures that might be effective for treating pain do not have greater, and might have less, adverse effects compared with larger doses of each drug alone.
Collapse
|
15
|
The D2-family receptor agonist bromocriptine but, not nicotine, reverses NMDA receptor antagonist-induced working memory deficits in the radial arm maze in mice. Neurobiol Learn Mem 2020; 168:107159. [PMID: 31911198 DOI: 10.1016/j.nlm.2020.107159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/22/2022]
Abstract
Hypofunction of the NMDA receptor (NMDAr) may underlie cognitive deficits associated with schizophrenia and other psychiatric conditions including working memory (WM) impairments. Given that these deficits link closely to functional outcome, treatments remediating such deficits require identification. NMDAr hypofunction can be modeled via treatment with the antagonist MK-801. Hence, the present study determined whether cholinergic or dopaminergic agonists attenuate MK-801-induced WM deficits in mice. WM was assessed in male C57BL/6 mice trained on an automated 12-arm radial arm maze (RAM) paradigm, wherein rewards were delivered after the first but, not after subsequent entries into WM arms (8/12) and never delivered for entries into reference memory (RM) arms (4/12). Mice were then treated with MK-801 (vehicle or 0.3 mg/kg) and nicotine (vehicle, 0.03 or 0.30 mg/kg) in a cross-over design. After a 2-week washout, mice were then retested with MK-801 and the dopamine D2-family receptor agonist bromocriptine (vehicle, 3 or 10 mg/kg). In both experiments, MK-801 reduced WM span and increased RM and WM error rates. Nicotine did not attenuate these deficits. In contrast, a bromocriptine/MK-801 interaction was observed on WM error rate, where bromocriptine attenuated MK-801 induced deficits without affecting MK-801-induced RM errors. Additionally, bromocriptine produced the main effect of slowing latency to collect rewards. Hence, while NMDAr hypofunction-induced deficits in WM was unaffected by nicotine, it was remediated by treatment with the dopamine D2-family agonist bromocriptine. Future studies should determine whether selective activation of dopamine D2, D3, or D4 receptors remediate this NMDAr hypofunction-induced WM deficit.
Collapse
|
16
|
Moccia L, Tofani A, Mazza M, Covino M, Martinotti G, Schifano F, Janiri L, Di Nicola M. Dorsolateral Prefrontal Cortex Impairment in Methoxetamine-Induced Psychosis: An 18F-FDG PET/CT Case Study. J Psychoactive Drugs 2019; 51:254-259. [PMID: 30741111 DOI: 10.1080/02791072.2019.1578444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
Novel psychoactive substances (NPSs) have currently become a major public health concern because of relatively easy accessibility to these compounds and difficulty in identifying them with routine laboratory techniques. Here, we report the 18F-fluorodeoxyglucose positron emission tomography/computerized tomography (18F-FDG PET/CT) case study of a 23-year-old man who developed a substance-induced psychotic disorder after having intravenously injected himself with an unspecified amount of methoxetamine (MXE), a ketamine derivative hallucinogen. From a clinical perspective, a blunted affective responsiveness with diminished social drive and sense of purpose, along with a profound detachment from the environment, was observed. Psychometric and neuropsychological assessments highlighted severe dissociative symptoms and lack of motivation, along with a mild impairment of verbal fluency, working memory, and attention. Patient's 18F-FDG PET/CT scans displayed a significant bilateral deficit of tracer uptake within the dorsolateral prefrontal cortex (DLPFC). DLPFC activity is critical to goal-oriented cognitive functions, including working memory and sustained attention. DLPFC is also involved in both the temporal integration across multiple sensory modes and in the volitional control of actions, leading to the possibility to construct logically coherent temporal configurations of thought, speech, and behavior. This report highlights that a single acute MXE intoxication may produce severe brain impairment.
Collapse
Affiliation(s)
- Lorenzo Moccia
- a Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Anna Tofani
- b Unit of Nuclear Medicine, Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome , Rome , Italy
| | - Marianna Mazza
- a Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Marcello Covino
- c Emergency Medicine, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giovanni Martinotti
- d Department of Neuroscience and Imaging, Institute of Psychiatry, "G. D'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Fabrizio Schifano
- e Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, University of Hertfordshire , Hatfield , UK
| | - Luigi Janiri
- a Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Marco Di Nicola
- a Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
17
|
Taghizadehghalehjoughi A, Naldan ME. Is Ketamine Suitable for Use in Glutamate Toxicity Conditions?: An In Vitro Study. J INVEST SURG 2019; 34:121-128. [PMID: 30885019 DOI: 10.1080/08941939.2019.1582739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ketamine is an anesthetic agent with sedative and analgesic properties frequently used in surgery. However, particular anesthetic substances need to be applied for different diseases and surgical procedures. Can ketamine be used in all operations and in all patients with an additional disease? The purpose of this study was to determine the neurotoxic or neuroprotective effects of different dosages of ketamine in a glutamate-derived toxicity model in olfactory, cortex and cerebellum cell cultures. Glutamate 10-5 mM was added to all culture groups with the exception of the negative control group. Cells were exposed to four different dosages of ketamine for 24 h. At the end of the experiment, analyses were conducted using MTT, total antioxidant capacity (TAC), total oxidant status (TOS) and flow cytometry (annexin V apoptosis marker) tests. The highest viability rate was obtained at the lowest ketamine dosage, at approximately 80% in cerebellum cells, but less than 75% in cortex and olfactory culture cells. Based on our study findings, although ketamine is an NMDA antagonist, it causes an increase in toxicity levels and a decrease in cell viability. Ketamine use should therefore be avoided in neurological events in which glutamate levels increase significantly.
Collapse
Affiliation(s)
- Ali Taghizadehghalehjoughi
- Department of Pharmacology and Toxicology, Faculty of Veterinary medicine, Science, Atatürk University, Erzurum, Turkey
| | - Muhammet Emin Naldan
- Department of Anesthesia and Reanimation, Erzurum Regional Training and Research Hospital, Turkey Health Sciences University, Erzurum, Turkey
| |
Collapse
|
18
|
Effects of NMDA antagonist dizocilpine (MK-801) are modulated by the number of distractor stimuli in the rodent odor span task of working memory. Neurobiol Learn Mem 2019; 161:51-56. [PMID: 30862525 DOI: 10.1016/j.nlm.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 11/22/2022]
Abstract
The rodent odor span task (OST) uses an incrementing non-matching to sample procedure in which a series of odors is presented and selection of the session-novel odor is reinforced. An OST is frequently used to test the effects of neurobiological variables on memory capacity as the number of odors to remember increases during the course of the session. In this regard, one important finding has been that NMDA receptor antagonists selectively impair OST performance at doses that spare accuracy on control tasks. However, in many versions of the odor span task the number of stimuli to remember is confounded with the number of distractor odors presented to the rat on each trial. The present study compared the effects of the NMDA antagonist dizocilpine when the number of choices was held constant at two (one novel odor-S+ and one previously presented distractor odor-S-) and when the number of choice stimuli was permitted to increase up to 10 (one S+ and 9 S-). Dizocilpine impaired OST accuracy at doses that had no effect on a reference memory control task in both 2-choice and 10-choice conditions; however, the dose-response function was shifted to the left in the 10-choice tests. The impairments produced by dizocilpine were exacerbated as the memory load increased in both 2- and 10-choice conditions. These findings support the hypothesis that NMDA antagonism reduces the number of stimuli that rats can remember accurately, but the interaction between the effective DZP dose and the number of distractors shows that drug effects on OST performances may involve attentional factors in addition to memory capacity. The findings also demonstrate that variations in number of OST distractors can be used to alter sensitivity of the task.
Collapse
|
19
|
Costa G, Serra M, Pintori N, Casu MA, Zanda MT, Murtas D, De Luca MA, Simola N, Fattore L. The novel psychoactive substance methoxetamine induces persistent behavioral abnormalities and neurotoxicity in rats. Neuropharmacology 2019; 144:219-232. [DOI: 10.1016/j.neuropharm.2018.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
|