1
|
Gulmez Karaca K, Bahtiyar S, van Dongen L, Wolf OT, Hermans EJ, Henckens MJAG, Roozendaal B. Posttraining noradrenergic stimulation maintains hippocampal engram reactivation and episodic-like specificity of remote memory. Neuropsychopharmacology 2025:10.1038/s41386-025-02122-2. [PMID: 40341755 DOI: 10.1038/s41386-025-02122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Recent findings indicate that noradrenergic arousal maintains long-term episodic-like specificity of memory. However, the neural mechanism of how norepinephrine can alter the temporal dynamics of systems consolidation to maintain hippocampus dependency of remote memory is currently unknown. Memories are stored within ensembles of neurons that become activated during learning and display strengthened mutual plasticity and connectivity. This strengthened connectivity is believed to guide the coordinated reactivation of these neurons upon subsequent memory recall. Here, we used male transgenic FosTRAP2xtdTomato mice to investigate whether the noradrenergic stimulant yohimbine administered systemically immediately after an episodic-like object-in-context training experience maintained long-term memory specificity which was joined by an enhanced reactivation of training-activated cells within the hippocampus during remote retention testing. We found that saline-treated control mice time-dependently lost their episodic-like specificity of memory, which was associated with a shift in neuronal reactivation from the dorsal hippocampus to the prelimbic cortex at a 14-day retention test. Importantly, yohimbine-treated mice maintained episodic-like specificity of remote memory and retained high neuronal reactivation within the dorsal hippocampus, without a time-dependent increase in prelimbic cortex reactivation. These findings suggest that noradrenergic arousal shortly after training maintains episodic-like specificity of remote memory by strengthening the connectivity between training-activated hippocampal cells during consolidation, and provide a cellular model of how emotional memories remain vivid and detailed.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands.
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Sevgi Bahtiyar
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Linde van Dongen
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Oliver T Wolf
- Department of Cognitive Psychology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Erno J Hermans
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Benno Roozendaal
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Papassotiropoulos A, Freytag V, Schicktanz N, Gerhards C, Aerni A, Faludi T, Amini E, Müggler E, Harings-Kaim A, Schlitt T, de Quervain DJF. The effect of fampridine on working memory: a randomized controlled trial based on a genome-guided repurposing approach. Mol Psychiatry 2025; 30:2085-2094. [PMID: 39516710 PMCID: PMC12014476 DOI: 10.1038/s41380-024-02820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Working memory (WM), a key component of cognitive functions, is often impaired in psychiatric disorders such as schizophrenia. Through a genome-guided drug repurposing approach, we identified fampridine, a potassium channel blocker used to improve walking in multiple sclerosis, as a candidate for modulating WM. In a subsequent double-blind, randomized, placebo-controlled, crossover trial in 43 healthy young adults (ClinicalTrials.gov, NCT04652557), we assessed fampridine's impact on WM (3-back d-prime, primary outcome) after 3.5 days of repeated administration (10 mg twice daily). Independently of baseline cognitive performance, no significant main effect was observed (Wilcoxon P = 0.87, r = 0.026). However, lower baseline performance was associated with higher working memory performance after repeated intake of fampridine compared to placebo (rs = -0.37, P = 0.014, n = 43). Additionally, repeated intake of fampridine lowered resting motor threshold (F(1,37) = 5.31, P = 0.027, R2β = 0.01), the non-behavioral secondary outcome, indicating increased cortical excitability linked to cognitive function. Fampridine's capacity to enhance WM in low-performing individuals and to increase brain excitability points to its potential value for treating WM deficits.
Collapse
Affiliation(s)
- Andreas Papassotiropoulos
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland.
- Psychiatric University Clinics, University of Basel, CH-4055, Basel, Switzerland.
| | - Virginie Freytag
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Psychiatric University Clinics, University of Basel, CH-4055, Basel, Switzerland
| | - Nathalie Schicktanz
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
| | - Christiane Gerhards
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Psychiatric University Clinics, University of Basel, CH-4055, Basel, Switzerland
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
| | - Amanda Aerni
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
| | - Tamás Faludi
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
| | - Ehssan Amini
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
| | - Elia Müggler
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
| | - Annette Harings-Kaim
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
| | - Thomas Schlitt
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland
| | - Dominique J-F de Quervain
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland.
- Psychiatric University Clinics, University of Basel, CH-4055, Basel, Switzerland.
- Division of Cognitive Neuroscience, Department of Biomedicine, University of Basel, CH-4055, Basel, Switzerland.
| |
Collapse
|
3
|
Daood M, Peled-Avron L, Ben-Hayun R, Nevat M, Aharon-Peretz J, Tomer R, Admon R. The impact of methylphenidate on choice impulsivity is inversely associated with corpus callosum fiber integrity across sexes. Neuroimage 2025; 311:121196. [PMID: 40210180 DOI: 10.1016/j.neuroimage.2025.121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Choice impulsivity represents preference towards smaller immediate rewards over larger delayed rewards. Extensive literature demonstrates that choice impulsivity can be manipulated using dopaminergic agonists such as methylphenidate (MPH), and that females exhibit elevated choice impulsivity compared to males. Sex differences are also frequently reported with respect to brain white matter (WM) fiber integrity. It has yet to be determined whether sex differences also exist in the impact of MPH on choice impulsivity, and whether these putative differences are accounted for by the integrity of differential WM fibers. METHODS Forty-eight healthy young adults completed the delay discounting (DD) task twice during MRI-DTI scans after receiving either MPH or placebo in a double-blind, placebo-controlled, within-subject design. WM fiber integrity was assessed using automated fiber quantification (AFQ) and tract-based spatial statistics (TBSS). RESULTS Compared to placebo, MPH yielded significantly reduced choice impulsivity in males but not in females. DTI data revealed reduced integrity in multiple WM fibers in females compared to males. Interestingly, the impact of MPH on choice impulsivity was negatively associated with fiber integrity in the forceps major of the corpus callosum for males only and positively associated with fiber integrity in the forceps minor of the corpus callosum for females only. CONCLUSIONS Taken together, results uncover sex-specific effects of MPH on choice impulsivity, accounted for by inverse associations between choice impulsivity under MPH and the structural integrity of distinct segments of the corpus callosum. These findings highlight the need to consider sex differences in the neurobiological mechanisms of impulsivity.
Collapse
Affiliation(s)
- Maryana Daood
- School of Psychological Sciences, University of Haifa, Haifa, Israel; Tandon School of Engineering, New York University, New York City, NY, United States of America
| | - Leehe Peled-Avron
- School of Psychological Sciences, University of Haifa, Haifa, Israel; Department of Psychology & Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Rachel Ben-Hayun
- Stroke and Cognition Institute, Department of Neurology, Rambam Health Care Campus, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Nevat
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Judith Aharon-Peretz
- Stroke and Cognition Institute, Department of Neurology, Rambam Health Care Campus, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rachel Tomer
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
4
|
Dingwall R, May C, Letschert J, Renoir T, Hannan AJ, Burrows EL. Attenuated responses to attention-modulating drugs in the neuroligin-3 R451C mouse model of autism. J Neurochem 2024; 168:2285-2302. [PMID: 39092656 DOI: 10.1111/jnc.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Attention deficits are frequently reported within the clinical autism population. Despite not being a core diagnostic feature, some aetiological theories place atypical attention at the centre of autism development. Drugs used to treat attention dysfunction are therefore increasingly prescribed to autistic patients, though currently off-label with uncertain efficacy. We utilised a rodent-translated touchscreen test of sustained attention in mice carrying an autism-associated R451C mutation in the neuroligin-3 gene (Nlgn3R451C). In doing so, we replicated their cautious but accurate response profile and probed it using two widely prescribed attention-modulating drugs: methylphenidate (MPH) and atomoxetine (ATO). In wild-type mice, acute administration of MPH (3 mg/kg) promoted impulsive responding at the expense of accuracy, while ATO (3 mg/kg) broadly reduced impulsive responding. These drug effects were absent in Nlgn3R451C mice, other than a small reduction in blank touches to the screen following ATO administration. The absence of drug effects in Nlgn3R451C mice likely arises from their altered behavioural baseline and underlying neurobiology, highlighting caveats to the use of classic attention-modulating drugs across disorders and autism subsets. It further suggests that altered dopaminergic and/or norepinephrinergic systems may drive behavioural differences in the Nlgn3R451C mouse model of autism, supporting further targeted investigation.
Collapse
Affiliation(s)
- R Dingwall
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - C May
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
| | - J Letschert
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
| | - T Renoir
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - A J Hannan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - E L Burrows
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Vera JD, Freichel R, Michelini G, Loo SK, Lenartowicz A. A Network Approach to Understanding the Role of Executive Functioning and Alpha Oscillations in Inattention and Hyperactivity-Impulsivity Symptoms of ADHD. J Atten Disord 2024; 28:1357-1367. [PMID: 38798087 PMCID: PMC11292971 DOI: 10.1177/10870547241253999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
OBJECTIVE ADHD is a prevalent neurodevelopmental disorder characterized by symptoms of inattention and hyperactivity-impulsivity. Impairments in executive functioning (EF) are central to models of ADHD, while alpha-band spectral power event-related decreases (ERD) have emerged as a putative electroencephalography (EEG) biomarker of EF in ADHD. Little is known about the roles of EF and alpha ERD and their interactions with symptoms of ADHD. METHOD We estimated network models of ADHD symptoms and integrated alpha ERD measures into the symptom network. RESULTS EF emerges as a bridge network node connecting alpha ERD and the hyperactivity/impulsivity and inattention symptoms. We found that EF most closely relates to a subset of symptoms, namely the motoric symptoms, "seat" (difficulty staying seated), and "runs" (running or climbing excessively). CONCLUSIONS EF functions as a bridge node connecting alpha ERD and the ADHD symptom network. Motoric-type symptoms and EF deficits may constitute important nodes in the interplay between behavior/symptoms, cognition, and neurophysiological markers of ADHD.
Collapse
Affiliation(s)
| | | | - Giorgia Michelini
- University of California, Los Angeles, USA
- Queen Mary University of London, UK
| | | | | |
Collapse
|
6
|
Daood M, Magal N, Peled-Avron L, Nevat M, Ben-Hayun R, Aharon-Peretz J, Tomer R, Admon R. Graph analysis uncovers an opposing impact of methylphenidate on connectivity patterns within default mode network sub-divisions. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:15. [PMID: 38902791 PMCID: PMC11191242 DOI: 10.1186/s12993-024-00242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The Default Mode Network (DMN) is a central neural network, with recent evidence indicating that it is composed of functionally distinct sub-networks. Methylphenidate (MPH) administration has been shown before to modulate impulsive behavior, though it is not yet clear whether these effects relate to MPH-induced changes in DMN connectivity. To address this gap, we assessed the impact of MPH administration on functional connectivity patterns within and between distinct DMN sub-networks and tested putative relations to variability in sub-scales of impulsivity. METHODS Fifty-five right-handed healthy adults underwent two resting-state functional MRI (rs-fMRI) scans, following acute administration of either MPH (20 mg) or placebo, via a randomized double-blind placebo-controlled design. Graph modularity analysis was implemented to fractionate the DMN into distinct sub-networks based on the impact of MPH (vs. placebo) on DMN connectivity patterns with other neural networks. RESULTS MPH administration led to an overall decreased DMN connectivity, particularly with the auditory, cinguloopercular, and somatomotor networks, and increased connectivity with the parietomedial network. Graph analysis revealed that the DMN could be fractionated into two distinct sub-networks, with one exhibiting MPH-induced increased connectivity and the other decreased connectivity. Decreased connectivity of the DMN sub-network with the cinguloopercular network following MPH administration was associated with elevated impulsivity and non-planning impulsiveness. CONCLUSION Current findings highlight the intricate effects of MPH administration on DMN rs-fMRI connectivity, uncovering its opposing impact on distinct DMN sub-divisions. MPH-induced dynamics in DMN connectivity patterns with other neural networks may account for some of the effects of MPH administration on impulsive behavior.
Collapse
Affiliation(s)
- Maryana Daood
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
- Sakhnin College of Education, Sakhnin, Israel
| | - Noa Magal
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
| | - Leehe Peled-Avron
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Nevat
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
| | - Rachel Ben-Hayun
- Stroke and Cognition Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Judith Aharon-Peretz
- Stroke and Cognition Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rachel Tomer
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
7
|
Abstract
OBJECTIVE To report the characteristics associated with response to methylphenidate (MPH) in children and adolescents with ADHD. METHODS Studies reporting potentials predictors of response to MPH were searched in Medline and Embase from January 1998 to March 2022. Narrative synthesis was performed. RESULTS Fifty-seven reports of 46 studies totaling 6,656 ADHD patients were included. No association appears between response to MPH and age, gender, MPH dosage, ADHD subtype, comorbidities nor socioeconomic status when considering a specific patient. No conclusion could be drawn about body weight, ADHD severity, intelligence quotient, and parental symptoms of depression or ADHD. CONCLUSIONS None of these potential predictors have proven their usefulness to predict response to MPH on an individual basis in clinical practice. In research, potential predictors should be measured, their association with response to MPH assessed, in order to control for confounding variables when modeling response to MPH.
Collapse
Affiliation(s)
- Maryse Pagnier
- Université Paris Cité, Paris, France
- AP-HP, Hôpital Necker-Enfants-Malades, Paris, France
- Association Française de Pédiatrie Ambulatoire, Orléans, France
| |
Collapse
|
8
|
Cascone AD, Calabro F, Foran W, Larsen B, Nugiel T, Parr AC, Tervo-Clemmens B, Luna B, Cohen JR. Brain tissue iron neurophysiology and its relationship with the cognitive effects of dopaminergic modulation in children with and without ADHD. Dev Cogn Neurosci 2023; 63:101274. [PMID: 37453207 PMCID: PMC10372187 DOI: 10.1016/j.dcn.2023.101274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) exhibit impairments in response inhibition. These impairments are ameliorated by modulating dopamine (DA) via the administration of rewards or stimulant medication like methylphenidate (MPH). It is currently unclear whether intrinsic DA availability impacts these effects of dopaminergic modulation on response inhibition. Thus, we estimated intrinsic DA availability using magnetic resonance-based assessments of basal ganglia and thalamic tissue iron in 36 medication-naïve children with ADHD and 29 typically developing (TD) children (8-12 y) who underwent fMRI scans and completed standard and rewarded go/no-go tasks. Children with ADHD additionally participated in a double-blind, randomized, placebo-controlled, crossover MPH challenge. Using linear regressions covarying for age and sex, we determined there were no group differences in brain tissue iron. We additionally found that higher putamen tissue iron was associated with worse response inhibition performance in all participants. Crucially, we observed that higher putamen and caudate tissue iron was associated with greater responsivity to MPH, as measured by improved task performance, in participants with ADHD. These results begin to clarify the role of subcortical brain tissue iron, a measure associated with intrinsic DA availability, in the cognitive effects of reward- and MPH-related dopaminergic modulation in children with ADHD and TD children.
Collapse
Affiliation(s)
- Arianna D Cascone
- Neuroscience Curriculum, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tehila Nugiel
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica R Cohen
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Storebø OJ, Storm MRO, Pereira Ribeiro J, Skoog M, Groth C, Callesen HE, Schaug JP, Darling Rasmussen P, Huus CML, Zwi M, Kirubakaran R, Simonsen E, Gluud C. Methylphenidate for children and adolescents with attention deficit hyperactivity disorder (ADHD). Cochrane Database Syst Rev 2023; 3:CD009885. [PMID: 36971690 PMCID: PMC10042435 DOI: 10.1002/14651858.cd009885.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is one of the most commonly diagnosed and treated psychiatric disorders in childhood. Typically, children and adolescents with ADHD find it difficult to pay attention and they are hyperactive and impulsive. Methylphenidate is the psychostimulant most often prescribed, but the evidence on benefits and harms is uncertain. This is an update of our comprehensive systematic review on benefits and harms published in 2015. OBJECTIVES To assess the beneficial and harmful effects of methylphenidate for children and adolescents with ADHD. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, three other databases and two trials registers up to March 2022. In addition, we checked reference lists and requested published and unpublished data from manufacturers of methylphenidate. SELECTION CRITERIA We included all randomised clinical trials (RCTs) comparing methylphenidate versus placebo or no intervention in children and adolescents aged 18 years and younger with a diagnosis of ADHD. The search was not limited by publication year or language, but trial inclusion required that 75% or more of participants had a normal intellectual quotient (IQ > 70). We assessed two primary outcomes, ADHD symptoms and serious adverse events, and three secondary outcomes, adverse events considered non-serious, general behaviour, and quality of life. DATA COLLECTION AND ANALYSIS Two review authors independently conducted data extraction and risk of bias assessment for each trial. Six review authors including two review authors from the original publication participated in the update in 2022. We used standard Cochrane methodological procedures. Data from parallel-group trials and first-period data from cross-over trials formed the basis of our primary analyses. We undertook separate analyses using end-of-last period data from cross-over trials. We used Trial Sequential Analyses (TSA) to control for type I (5%) and type II (20%) errors, and we assessed and downgraded evidence according to the GRADE approach. MAIN RESULTS We included 212 trials (16,302 participants randomised); 55 parallel-group trials (8104 participants randomised), and 156 cross-over trials (8033 participants randomised) as well as one trial with a parallel phase (114 participants randomised) and a cross-over phase (165 participants randomised). The mean age of participants was 9.8 years ranging from 3 to 18 years (two trials from 3 to 21 years). The male-female ratio was 3:1. Most trials were carried out in high-income countries, and 86/212 included trials (41%) were funded or partly funded by the pharmaceutical industry. Methylphenidate treatment duration ranged from 1 to 425 days, with a mean duration of 28.8 days. Trials compared methylphenidate with placebo (200 trials) and with no intervention (12 trials). Only 165/212 trials included usable data on one or more outcomes from 14,271 participants. Of the 212 trials, we assessed 191 at high risk of bias and 21 at low risk of bias. If, however, deblinding of methylphenidate due to typical adverse events is considered, then all 212 trials were at high risk of bias. PRIMARY OUTCOMES methylphenidate versus placebo or no intervention may improve teacher-rated ADHD symptoms (standardised mean difference (SMD) -0.74, 95% confidence interval (CI) -0.88 to -0.61; I² = 38%; 21 trials; 1728 participants; very low-certainty evidence). This corresponds to a mean difference (MD) of -10.58 (95% CI -12.58 to -8.72) on the ADHD Rating Scale (ADHD-RS; range 0 to 72 points). The minimal clinically relevant difference is considered to be a change of 6.6 points on the ADHD-RS. Methylphenidate may not affect serious adverse events (risk ratio (RR) 0.80, 95% CI 0.39 to 1.67; I² = 0%; 26 trials, 3673 participants; very low-certainty evidence). The TSA-adjusted intervention effect was RR 0.91 (CI 0.31 to 2.68). SECONDARY OUTCOMES methylphenidate may cause more adverse events considered non-serious versus placebo or no intervention (RR 1.23, 95% CI 1.11 to 1.37; I² = 72%; 35 trials 5342 participants; very low-certainty evidence). The TSA-adjusted intervention effect was RR 1.22 (CI 1.08 to 1.43). Methylphenidate may improve teacher-rated general behaviour versus placebo (SMD -0.62, 95% CI -0.91 to -0.33; I² = 68%; 7 trials 792 participants; very low-certainty evidence), but may not affect quality of life (SMD 0.40, 95% CI -0.03 to 0.83; I² = 81%; 4 trials, 608 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS The majority of our conclusions from the 2015 version of this review still apply. Our updated meta-analyses suggest that methylphenidate versus placebo or no-intervention may improve teacher-rated ADHD symptoms and general behaviour in children and adolescents with ADHD. There may be no effects on serious adverse events and quality of life. Methylphenidate may be associated with an increased risk of adverse events considered non-serious, such as sleep problems and decreased appetite. However, the certainty of the evidence for all outcomes is very low and therefore the true magnitude of effects remain unclear. Due to the frequency of non-serious adverse events associated with methylphenidate, the blinding of participants and outcome assessors is particularly challenging. To accommodate this challenge, an active placebo should be sought and utilised. It may be difficult to find such a drug, but identifying a substance that could mimic the easily recognised adverse effects of methylphenidate would avert the unblinding that detrimentally affects current randomised trials. Future systematic reviews should investigate the subgroups of patients with ADHD that may benefit most and least from methylphenidate. This could be done with individual participant data to investigate predictors and modifiers like age, comorbidity, and ADHD subtypes.
Collapse
Affiliation(s)
- Ole Jakob Storebø
- Psychiatric Research Unit, Region Zealand Psychiatry, Slagelse, Denmark
- Child and Adolescent Psychiatric Department, Region Zealand, Roskilde, Denmark
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | | | | | - Maria Skoog
- Clinical Study Support, Clinical Studies Sweden - Forum South, Lund, Sweden
| | - Camilla Groth
- Pediatric Department, Herlev University Hospital, Herlev, Denmark
| | | | | | | | | | - Morris Zwi
- Islington Child and Adolescent Mental Health Service, Whittington Health, London, UK
| | - Richard Kirubakaran
- Cochrane India-CMC Vellore Affiliate, Prof. BV Moses Centre for Evidence Informed Healthcare and Health Policy, Christian Medical College, Vellore, India
| | - Erik Simonsen
- Research Unit, Mental Health services, Region Zealand Psychiatry, Roskilde, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital ─ Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Daood M, Peled-Avron L, Ben-Hayun R, Nevat M, Aharon-Peretz J, Tomer R, Admon R. Fronto-striatal connectivity patterns account for the impact of methylphenidate on choice impulsivity among healthy adults. Neuropharmacology 2022; 216:109190. [PMID: 35835210 DOI: 10.1016/j.neuropharm.2022.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Choice impulsivity depicts a preference towards smaller-sooner rewards over larger-delayed rewards, and is often assessed using a delay discounting (DD) task. Previous research uncovered the prominent role of dopaminergic signaling within fronto-striatal circuits in mediating choice impulsivity. Administration of methylphenidate (MPH), an indirect dopaminergic agonist, was shown to reduce choice impulsivity in animals and pathological populations, although significant inter-individual variability in these effects was reported. Whether MPH impacts choice impulsivity among healthy individuals, and whether variability in the impact of MPH is related to fronto-striatal activation and connectivity patterns, has yet to be assessed. Here, fifty-seven healthy young adults completed the DD task twice during fMRI scans, after acute administration of either MPH (20 mg) or placebo, in a randomized double-blind placebo-controlled design. Acute MPH administration was found to reduce choice impulsivity at the group level, yet substantial variability in this behavioral response was observed. MPH was also found to increase activation in the bilateral putamen and the right caudate, and to enhance functional connectivity between the left putamen and medial prefrontal cortex (mPFC), particularly during non-impulsive choices. Notably, the more putamen-mPFC functional connectivity increased during non-impulsive choices following MPH administration, the less an individual was likely to make impulsive choices. These findings reveal, for the first time in healthy adults, that acute MPH administration is associated with reduced choice impulsivity and increased striatal activation and fronto-striatal connectivity; and furthermore, that the magnitude of MPH-induced change in fronto-striatal connectivity may account for individual differences in the impact of MPH on impulsive behavior.
Collapse
Affiliation(s)
- Maryana Daood
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Leehe Peled-Avron
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Rachel Ben-Hayun
- The Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Michael Nevat
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | | | - Rachel Tomer
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
11
|
Moderators and Other Predictors of Methylphenidate Response in Children and Adolescents with ADHD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031640. [PMID: 35162663 PMCID: PMC8834961 DOI: 10.3390/ijerph19031640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022]
Abstract
Methylphenidate (MPH) is the treatment of first choice for developmental ADHD. To date, no reliable method to predict how patients will respond to MPH exists and conflicting results are reported on clinical characteristics of responders. The present study aims to give a more precise characterization of the patients who will respond best to MPH to help clinicians in defining the treatment plan. Age, neuropsychological functioning (i.e., attention and working memory), and behavioral/emotional symptoms of 48 drug-naïve children and adolescents with ADHD (42 boys and 6 girls, age-range 6–16 years, mean age 10.5 ± 2.5 years, mean IQ 101.3 ± 11.2) were studied to assess how these different characteristics affected a single-dose MPH response. Four hierarchical linear regression models were used to explore whether age, neuropsychological measures at baseline, and behavioral/emotional symptoms could predict attention and working memory measures after a single-dose MPH administration. We found that improvement in attention and working memory was predicted by age, neuropsychological measures at baseline, and severity of ADHD symptoms. No behavioral and emotional symptoms predicted single-dose MPH response with the exception of conduct symptoms.
Collapse
|
12
|
Blair RJR, Bashford-Largo J, Zhang R, Lukoff J, Elowsky JS, Leibenluft E, Hwang S, Dobbertin M, Blair KS. Temporal Discounting Impulsivity and Its Association with Conduct Disorder and Irritability. J Child Adolesc Psychopharmacol 2020; 30:542-548. [PMID: 32882144 PMCID: PMC7699000 DOI: 10.1089/cap.2020.0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Objectives: Temporal reward discounting impulsivity (TDI) reflects a propensity to choose smaller immediate rather than larger delayed rewards relative to age/IQ-matched peers. Previous work with adults has linked TDI to an increased risk for antisocial behavior but also psychopathology in general. However, little work has examined TDI in adolescents with conduct disorder (CD), or considered whether TDI might be associated dimensionally with traits associated with antisocial behavior, that is, impulsivity, irritability, and/or callous-unemotional traits. In this study TDI was investigated in a large adolescent group with varying levels of antisocial behavior. Methods: Participants consisted of 195 adolescents (67 with CD, 77 in a psychiatric comparison group and 51 typically developing adolescents). Participants performed a temporal discounting task and individual differences were measured through the Connors rating scale for attention-deficit/hyperactivity disorder (impulsivity), Affective Reactivity Index (irritability), and Inventory of Callous-Unemotional traits. Results: The adolescents with CD and those in the psychiatric comparison group showed significantly greater TDI than typically developing adolescents. However, these group differences were abolished when dimensional covariates were included. Irritability was significantly associated with TDI. Conclusions: We conclude that TDI reflects a transdiagnostic form of dysfunction that particularly manifests in adolescents with increased irritability.
Collapse
Affiliation(s)
- R. James R. Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebraska, USA.,Address correspondence to: R. James R. Blair, PhD, Center for Neurobehavioral Research, Boys Town National Research Hospital, 14100 Crawford Street, Boys Town, NE 68154, USA
| | - Johannah Bashford-Largo
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Ru Zhang
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Jennie Lukoff
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Jamie S. Elowsky
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew Dobbertin
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Karina S. Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| |
Collapse
|
13
|
Abstract
Nootropics are drugs used to either treat or benefit cognition deficits. Among this class, methylphenidate is a popular agent, which acts through indirect dopaminergic and noradrenergic agonism and, therefore, is proposed to enhance performance in catecholamine-dependent cognitive domains such as attention, memory and prefrontal cortex-dependent executive functions. However, investigation into the efficacy of methylphenidate as a cognitive enhancer has yielded variable results across all domains, leading to debate within the scientific community surrounding its off-label use in healthy individuals seeking scholaristic benefit or increased productivity. Through analysis of experimental data and methodological evaluation, it is apparent that there are dose-, task- and domain-dependent considerations surrounding the use of methylphenidate in healthy individuals, whereby tailored dose administration is likely to provide benefit on an individual basis dependent on the domain of cognition in which benefit is required. Additionally, it is apparent that there are subjective effects of methylphenidate, which may increase user productivity irrespective of cognitive benefit. Whilst there is not extensive study in healthy older adults, it is plausible that there are dose-dependent benefits to methylphenidate in older adults in selective cognitive domains that might improve quality of life and reduce fall risk. Methylphenidate appears to produce dose-dependent benefits to individuals with attention-deficit/hyperactivity disorder, but the evidence for benefit in Parkinson's disease and schizophrenia is inconclusive. As with any off-label use of pharmacological agents, and especially regarding drugs with neuromodulatory effects, there are inherent safety concerns; epidemiological and experimental evidence suggests there are sympathomimetic, cardiovascular and addictive considerations, which might further restrict their use within certain demographics.
Collapse
|