1
|
Moore IL, Smith DE, Long NM. Mnemonic brain state engagement is diminished in healthy aging. Neurobiol Aging 2025; 151:76-88. [PMID: 40245780 PMCID: PMC12050195 DOI: 10.1016/j.neurobiolaging.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
Healthy older adults typically show impaired episodic memory - memory for when and where an event occurred. This selective episodic memory deficit may arise from differential engagement in the retrieval state, a brain state in which attention is focused internally in an attempt to access prior knowledge, and the encoding state, a brain state which supports the formation of new memories and that trades off with the retrieval state. We hypothesize that older adults are biased toward a retrieval state. We recorded scalp electroencephalography while young, middle-aged and older adults performed a memory task in which they were explicitly directed to either encode or retrieve on a given trial. We used multivariate pattern analysis of spectral activity to decode retrieval vs. encoding state engagement. We find that whereas all age groups can follow task demands to selectively engage in encoding or retrieval, mnemonic brain state engagement is diminished for older adults relative to young and middle-aged adults. These findings suggest that differential mnemonic state engagement may underlie age-related memory changes.
Collapse
Affiliation(s)
- Isabelle L Moore
- Department of Psychology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA.
| | - Devyn E Smith
- Department of Psychology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - Nicole M Long
- Department of Psychology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA.
| |
Collapse
|
2
|
Lohnas LJ. Temporal associations supporting repetitions in free recall. Psychon Bull Rev 2025:10.3758/s13423-025-02673-x. [PMID: 40274720 DOI: 10.3758/s13423-025-02673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 04/26/2025]
Abstract
The present studies use a novel approach to characterize how memory representations are updated with repetition. These studies use the free recall paradigm, which boasts greater memory advantages for spaced repetitions (Melton. Journal of Verbal Learning and Memory, 9, 596-606. 1970; Madigan. Journal of Verbal Learning and Verbal Behavior, 8, 828-835. 1969). However, a single recall of a twice-presented item precludes inferring whether the item's first or second presentation support its recall. The present studies leverage that, in free recall, transitions reflect stronger associations and are more likely between items studied nearby in time (Healey et al., Psychonomic Bulletin & Review, 26(3), 699-720. 2019). The critical analysis asks which transitions are more likely to a repeated item: temporal neighbors from its first presentation or from its second presentation? Transitions should be equally likely from neighbors of each presentation if the repeated item's presentations are stored independently. Transitions from second-presentation neighbors should be more likely if retrieval of item information from the first presentation strengthens the item representation during the second presentation, or if independent traces benefit from being studied more recently. Alternatively, retrieved context theory assumes that each studied item is associated with a slowly drifting temporal context, and repetition evokes study-phase retrieval of the context state from the first presentation (Howard & Kahana. Journal of Mathematical Psychology, 46, 269-299. 2002a; Siegel & Kahana. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 755-764. 2014). This context retrieval should strengthen the repeated item's associations to items with similar temporal contexts from its first presentation. As a result, retrieved context theory predicts more transitions to a repeated item from a first-presentation neighbor. Two studies provide support for the prediction of retrieved context theory, with implications for other theories.
Collapse
Affiliation(s)
- Lynn J Lohnas
- Department of Psychology, Syracuse University, 765 Irving Avenue Suite 352, Syracuse, NY, 13210, USA.
| |
Collapse
|
3
|
Wheelock JR, Long NM. Prior memory responses modulate behavior and brain state engagement. COMMUNICATIONS PSYCHOLOGY 2024; 2:121. [PMID: 39702690 DOI: 10.1038/s44271-024-00165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Memory encoding and retrieval constitute neurally dissociable brain states and prior behavioral work suggests that these states may linger in time. Thus memory states may influence both the current experience and subsequent events; however, this account has not been directly tested. To test the hypothesis that memory judgments induce brain states that persist for several hundred milliseconds, we recorded scalp electroencephalography while participants completed a recognition task. We used an independently validated multivariate mnemonic state classifier to assess memory state engagement. We replicate previous behavioral findings, yet we find that memory states are modulated by response congruency. We find strong retrieval state engagement on incongruent trials, when the response switches between two consecutive trials. These findings indicate that cortical brain states are influenced by prior judgments and suggest that a non-mnemonic, internal attention state may be recruited in the face of changing demands in a dynamic environment.
Collapse
Affiliation(s)
- Justin R Wheelock
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Nicole M Long
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Moore IL, Smith DE, Long NM. Mnemonic brain state engagement is diminished in healthy aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607567. [PMID: 39211196 PMCID: PMC11361038 DOI: 10.1101/2024.08.12.607567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Healthy older adults typically show impaired episodic memory - memory for when and where an event oc-curred - but intact semantic memory - knowledge for general information and facts. As older adults also have difficulty inhibiting the retrieval of prior knowledge from memory, their selective decline in episodic memory may be due to a tendency to over engage the retrieval state, a brain state in which attention is focused internally in an attempt to access prior knowledge. The retrieval state trades off with the encoding state, a brain state which supports the formation of new memories. Therefore, episodic memory declines in older adults may be the result of differential engagement in mnemonic brain states. Our hypothesis is that older adults are biased toward a retrieval state. We recorded scalp electroencephalography while young, middle-aged and older adults performed a memory task in which they were explicitly directed to either encode the currently presented object stimulus or retrieve a previously presented, categorically-related object stimulus. We used multivariate pattern analysis of spectral activity to decode engagement in the retrieval vs. encoding state. We find that all three age groups can follow top-down instructions to selectively engage in encoding or retrieval and that we can decode mnemonic states for all age groups. However, we find that mnemonic brain state engagement is diminished for older adults relative to middle-aged adults. Our interpretation is that a combination of executive control deficits and a modest bias to retrieve modulates older adults' mnemonic state engagement. Together, these findings suggest that dif-ferential mnemonic state engagement may underlie age-related memory changes.
Collapse
|
5
|
Moore IL, Long NM. Semantic associations restore neural encoding mechanisms. Learn Mem 2024; 31:a053996. [PMID: 38503491 PMCID: PMC11000581 DOI: 10.1101/lm.053996.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Lapses in attention can negatively impact later memory of an experience. Attention and encoding resources are thought to decline as more experiences are encountered in succession, accounting for the primacy effect in which memory is better for items encountered early compared to late in a study list. However, accessing prior knowledge during study can facilitate subsequent memory, suggesting a potential avenue to counteract this decline. Here, we investigated the extent to which semantic associations-shared meaning between experiences-can counteract declines in encoding resources. Our hypothesis is that semantic associations restore neural encoding mechanisms, which in turn improves memory. We recorded scalp electroencephalography (EEG) while male and female human participants performed a delayed free recall task. Half of the items from late in each study list were semantically associated with an item presented earlier in the list. We find that semantic associations improve memory specifically for late list items and selectively modulate the neural signals engaged during the study of late list items. Relative to other recalled items, late list items that are subsequently semantically clustered-recalled consecutively with their semantic associate-elicit increased high-frequency activity and decreased low-frequency activity, a hallmark of successful encoding. Our findings demonstrate that semantic associations restore neural encoding mechanisms and improve later memory. More broadly, these findings suggest that prior knowledge modulates the orientation of attention to influence encoding mechanisms.
Collapse
Affiliation(s)
- Isabelle L Moore
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Nicole M Long
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
6
|
Noguchi Y. Harmonic memory signals in the human cerebral cortex induced by semantic relatedness of words. NPJ SCIENCE OF LEARNING 2024; 9:6. [PMID: 38355685 PMCID: PMC10866900 DOI: 10.1038/s41539-024-00221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
When we memorize multiple words simultaneously, semantic relatedness among those words assists memory. For example, the information about "apple", "banana," and "orange" will be connected via a common concept of "fruits" and become easy to retain and recall. Neural mechanisms underlying this semantic integration in verbal working memory remain unclear. Here I used electroencephalography (EEG) and investigated neural signals when healthy human participants memorized five nouns semantically related (Sem trial) or not (NonSem trial). The regularity of oscillatory signals (8-30 Hz) during the retention period was found to be lower in NonSem than Sem trials, indicating that memorizing words unrelated to each other induced a non-harmonic (irregular) waveform in the temporal cortex. These results suggest that (i) semantic features of a word are retained as a set of neural oscillations at specific frequencies and (ii) memorizing words sharing a common semantic feature produces harmonic brain responses through a resonance or integration (sharing) of the oscillatory signals.
Collapse
Affiliation(s)
- Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
7
|
Smith DE, Wheelock JR, Long NM. Response-locked theta dissociations reveal potential feedback signal following successful retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575166. [PMID: 38260491 PMCID: PMC10802561 DOI: 10.1101/2024.01.11.575166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Successful memory retrieval relies on memory processes to access an internal representation and decision processes to evaluate and respond to the accessed representation, both of which are supported by fluctuations in theta (4-8Hz) activity. However, the extent to which decision making processes are engaged following a memory response is unclear. Here, we recorded scalp electroencephalography (EEG) while human participants performed a recognition memory task. We focused on response-locked data, allowing us to investigate the processes that occur prior to and following a memory response. We replicate previous work and find that prior to a memory response theta power is greater for identification of previously studied items (hits) relative to rejection of novel lures (correct rejections; CRs). Following the memory response, the theta power dissociation 'flips' whereby theta power is greater for CRs relative to hits. We find that the post-response 'flip' is more robust for hits that are committed quickly, potentially reflecting a positive feedback signal for strongly remembered experiences. Our findings suggest that there are potentially distinct processes occurring before and after a memory response that are modulated by successful memory retrieval.
Collapse
|
8
|
Herz N, Bukala BR, Kragel JE, Kahana MJ. Hippocampal activity predicts contextual misattribution of false memories. Proc Natl Acad Sci U S A 2023; 120:e2305292120. [PMID: 37751551 PMCID: PMC10556612 DOI: 10.1073/pnas.2305292120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Failure of contextual retrieval can lead to false recall, wherein people retrieve an item or experience that occurred in a different context or did not occur at all. Whereas the hippocampus is thought to play a crucial role in memory retrieval, we lack understanding of how the hippocampus supports retrieval of items related to a target context while disregarding related but irrelevant information. Using direct electrical recordings from the human hippocampus, we investigate the neural process underlying contextual misattribution of false memories. In two large datasets, we characterize key physiological differences between correct and false recalls that emerge immediately prior to vocalization. By differentiating between false recalls that share high or low contextual similarity with the target context, we show that low-frequency activity (6 to 18 Hz) in the hippocampus tracks similarity between the current and retrieved context. Applying multivariate decoding methods, we were able to reliably predict the contextual source of the to-be-recalled item. Our findings elucidate one of the hallmark features of episodic memory: our ability to distinguish between memories that were formed on different occasions.
Collapse
Affiliation(s)
- Noa Herz
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - Bernard R. Bukala
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - James E. Kragel
- Department of Neurology, University of Chicago, Chicago, IL60637
| | - Michael J. Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
9
|
Lohnas LJ, Healey MK, Davachi L. Neural temporal context reinstatement of event structure during memory recall. J Exp Psychol Gen 2023; 152:1840-1872. [PMID: 37036669 PMCID: PMC10293072 DOI: 10.1037/xge0001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The transformation of experiences into meaningful events and memories is intertwined with the notion of time. Temporal perception can influence, and be influenced by, segmenting continuous experience into meaningful events. Episodic memories formed from these events become associated with temporal information as well. However, it is less clear how temporal perception contributes to structuring events and organizing memory: whether it plays a more active or passive role, and whether this temporal information is encoded initially during perception or influenced by retrieval processes. To address these questions, we examined how event segmentation influences temporal representations during initial perception and memory retrieval, without testing temporal information explicitly. Using a neural measure of temporal context extracted from scalp electroencephalography in human participants (N = 170), we found reduced temporal context similarity between studied items separated by an event boundary when compared to items from the same event. Furthermore, while participants freely recalled list items, neural activity reflected reinstatement of temporal context representations from the study phase, including temporal disruption. A computational model of episodic memory, the context maintenance and retrieval (CMR) model, predicted these results, and made novel predictions regarding the influence of temporal disruption on recall order. These findings implicate the impact of event structure on memory organization via temporal representations, underscoring the role of temporal information in event segmentation and episodic memory. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
|
10
|
Jayakumar M, Balusu C, Aly M. Attentional fluctuations and the temporal organization of memory. Cognition 2023; 235:105408. [PMID: 36893523 DOI: 10.1016/j.cognition.2023.105408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 03/10/2023]
Abstract
Event boundaries and temporal context shape the organization of episodic memories. We hypothesized that attentional fluctuations during encoding serve as "events" that affect temporal context representations and recall organization. Individuals encoded trial-unique objects during a modified sustained attention task. Memory was tested with free recall. Response time variability during the encoding tasks was used to characterize "in the zone" and "out of the zone" attentional states. We predicted that: 1) "in the zone", vs. "out of the zone", attentional states should be more conducive to maintaining temporal context representations that can cue temporally organized recall; and 2) temporally distant "in the zone" states may enable more recall "leaps" across intervening items. We replicated several important findings in the sustained attention and memory fields, including more online errors during "out of the zone" vs. "in the zone" attentional states and recall that was temporally structured. Yet, across four studies, we found no evidence for either of our main hypotheses. Recall was robustly temporally organized, and there was no difference in recall organization for items encoded "in the zone" vs. "out of the zone". We conclude that temporal context serves as a strong scaffold for episodic memory, one that can support organized recall even for items encoded during relatively poor attentional states. We also highlight the numerous challenges in striking a balance between sustained attention tasks (long blocks of a repetitive task) and memory recall tasks (short lists of unique items) and describe strategies for researchers interested in uniting these two fields.
Collapse
Affiliation(s)
- Manasi Jayakumar
- Department of Psychology, Columbia University, New York, NY 10027, United States of America.
| | - Chinmayi Balusu
- Department of Psychology, Columbia University, New York, NY 10027, United States of America
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, NY 10027, United States of America
| |
Collapse
|
11
|
Abstract
High-frequency oscillatory events, termed ripples, represent synchrony of neural activity in the brain. Recent evidence suggests that medial temporal lobe (MTL) ripples support memory retrieval. However, it is unclear if ripples signal the reinstatement of episodic memories. Analyzing electrophysiological MTL recordings from 245 neurosurgical participants performing episodic recall tasks, we find that the rate of hippocampal ripples rises just prior to the free recall of recently formed memories. This prerecall ripple effect (PRE) is stronger in the CA1 and CA3/dentate gyrus (CA3/DG) subfields of the hippocampus than the neighboring MTL regions entorhinal and parahippocampal cortex. PRE is also stronger prior to the retrieval of temporally and semantically clustered, as compared with unclustered, recalls, indicating the involvement of ripples in contextual reinstatement, which is a hallmark of episodic memory.
Collapse
|
12
|
Abstract
Memory tends to be better when items are processed for their meaning (deep processing) rather than their perceptual features (shallow processing). This levels of processing (LOP) effect is well-replicated and has been applied in many settings, but the mechanisms involved are still not well understood. The temporal contiguity effect (TCE), the finding that recalling one event often triggers recall of another event experienced nearby in time, also predicts memory performance. This effect has given rise to several competing theories with specific contiguity-generating mechanisms related to how items are processed. Therefore, studying how LOP and the TCE interact may shed light on the mechanisms underlying both effects. However, it is unknown how LOP and the TCE interact-various theories make differing predictions. In this preregistered study, we tested predictions of three theoretical explanations: accounts which assume temporal information is automatically encoded, accounts based on a trade-off between item and order information, and accounts which emphasize the importance of strategic control processes. Participants completed an immediate free recall task where they either engaged in deep processing, shallow processing, or no additional task while studying each word. Recall and the TCE were highest for no-task lists and greater for deep than shallow processing. Our results support theories which assume temporal associations are automatically encoded and those which emphasize strategic control processes. Both perspectives should be considered in theory development. These findings also suggest temporal information may contribute to better recall under deeper processing with implications for determining which situations benefit from deep processing.
Collapse
|
13
|
Das A, de Los Angeles C, Menon V. Electrophysiological foundations of the human default-mode network revealed by intracranial-EEG recordings during resting-state and cognition. Neuroimage 2022; 250:118927. [PMID: 35074503 PMCID: PMC8928656 DOI: 10.1016/j.neuroimage.2022.118927] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
Investigations using noninvasive functional magnetic resonance imaging (fMRI) have provided significant insights into the unique functional organization and profound importance of the human default mode network (DMN), yet these methods are limited in their ability to resolve network dynamics across multiple timescales. Electrophysiological techniques are critical to address these challenges, yet few studies have explored the neurophysiological underpinnings of the DMN. Here we investigate the electrophysiological organization of the DMN in a common large-scale network framework consistent with prior fMRI studies. We used intracranial EEG (iEEG) recordings, and evaluated intra- and cross-network interactions during resting-state and its modulation during a cognitive task involving episodic memory formation. Our analysis revealed significantly greater intra-DMN phase iEEG synchronization in the slow-wave (< 4 Hz), while DMN interactions with other brain networks was higher in the beta (12-30 Hz) and gamma (30-80 Hz) bands. Crucially, slow-wave intra-DMN synchronization was observed in the task-free resting-state and during both verbal memory encoding and recall. Compared to resting-state, slow-wave intra-DMN phase synchronization was significantly higher during both memory encoding and recall. Slow-wave intra-DMN phase synchronization increased during successful memory retrieval, highlighting its behavioral relevance. Finally, analysis of nonlinear dynamic causal interactions revealed that the DMN is a causal outflow network during both memory encoding and recall. Our findings identify frequency specific neurophysiological signatures of the DMN which allow it to maintain stability and flexibility, intrinsically and during task-based cognition, provide novel insights into the electrophysiological foundations of the human DMN, and elucidate network mechanisms by which it supports cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA.
| | - Carlo de Los Angeles
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA; Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305 USA.
| |
Collapse
|
14
|
Yoo HB, Umbach G, Lega B. Neurons in the human medial temporal lobe track multiple temporal contexts during episodic memory processing. Neuroimage 2021; 245:118689. [PMID: 34742943 PMCID: PMC8802214 DOI: 10.1016/j.neuroimage.2021.118689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Episodic memory requires associating items with temporal context, a process for which the medial temporal lobe (MTL) is critical. This study uses recordings from 27 human subjects who were undergoing surgical intervention for intractable epilepsy. These same data were also utilized in Umbach et al. (2020). We identify 103 memory-sensitive neurons in the hippocampus and entorhinal cortex, whose firing rates predicted successful episodic memory encoding as subjects performed a verbal free recall task. These neurons exhibit important properties. First, as predicted from the temporal context model, they demonstrate reinstatement of firing patterns observed during encoding at the time of retrieval. The magnitude of reinstatement predicted the tendency of subjects to cluster retrieved memory items according to input serial position. Also, we found that spiking activity of these neurons was locked to the phase of hippocampal theta oscillations, but that the mean phase of spiking shifted between memory encoding versus retrieval. This unique observation is consistent with predictions of the “Separate Phases at Encoding And Retrieval (SPEAR)” model. Together, the properties we identify for memory-sensitive neurons characterize direct electrophysiological mechanisms for the representation of contextual information in the human MTL.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Gray Umbach
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Murphy DH, Castel AD. The dynamics of memory for United States presidents in younger and older adults. Memory 2021; 29:1232-1244. [PMID: 34486936 DOI: 10.1080/09658211.2021.1974050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ABSTRACTSerial position effects are often observed within the free recall of unassociated words but also when recalling items from a semantic category like U.S. presidents. We investigated the dynamics of recall for U.S. presidents in younger and older adults to examine potential age-related differences in the organisation of retrieval from semantic long-term memory. Older adults recalled more presidents than younger adults and also demonstrated dual serial position effects such that, in addition to overall serial position effects, primacy (e.g., Eisenhower) and recency presidents (e.g., Obama) within older adults' lifetime were better recalled than presidents from the middle of their lives (e.g., Ford). Additionally, participants initiated recall with the most distinct presidents (highly familiar or memorable presidents like Washington, Obama, Trump), and conditional-response probabilities revealed that presidents from similar eras were recalled in close proximity, indicating that the retrieval of distinct presidents can facilitate memory for presidents from a similar era. Collectively, we demonstrate the potential interplay of the mechanisms that influence the organisation of retrieval such that distinctiveness and temporal contiguity effects may simultaneously impact recall. Specifically, semantic and temporal-contextual associations can drive semantic autobiographical memory and people likely organise retrieval from long-term memory according to familiarity and distinctiveness.
Collapse
Affiliation(s)
- Dillon H Murphy
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Alan D Castel
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Stern Y, Katz R, Sadeh T. Explicit Sequence Memory in Recall of Temporally-structured Episodes. Sci Rep 2020; 10:2666. [PMID: 32060365 PMCID: PMC7021684 DOI: 10.1038/s41598-020-59472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/20/2020] [Indexed: 12/05/2022] Open
Abstract
The order in which events unfold over time is an important scaffold aiding recollection. This study asks whether explicit order memory is enhanced for items sharing similar internally-driven temporal contexts. To tap internally-driven temporal context, we capitalized on the Temporal Contiguity Effect whereby recollection of one item promotes recall of adjacently-encoded items. We compared pairs encoded and retrieved contiguously (cont-enc-ret), whose items share internally-driven temporal contexts, to pairs retrieved, but not encoded, contiguously (cont-ret) and to pairs encoded, but not retrieved, contiguously (cont-enc). Cont-enc-ret pairs exhibited superior relative order over cont-ret pairs, supporting accounts emphasizing shared temporal context as opposed to temporal distinctiveness in driving sequence memory. No difference was found in absolute order between the pair types, in line with theories suggesting a dissociation between relative and absolute order. Additionally, cont-enc-ret and cont-enc pairs exhibited equivalent relative order, supporting the role of encoding as opposed to retrieval in the enhancement of relative order. Finally, cont-enc-ret pairs were perceived as closer than cont-enc pairs, supporting the claim that cont-enc-ret pairs constitute part of a temporally-coherent episode. Together, these results implicate internally-driven temporal context in the formation of temporally-structured episodes that enhances sequence memory of the items within the episode.
Collapse
Affiliation(s)
- Yonatan Stern
- The Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel. .,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel. .,Department of Psychology, University of Haifa, Haifa, Israel.
| | - Ron Katz
- The Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Talya Sadeh
- The Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
17
|
Age-related differences in the temporal dynamics of spectral power during memory encoding. PLoS One 2020; 15:e0227274. [PMID: 31945080 PMCID: PMC6964832 DOI: 10.1371/journal.pone.0227274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022] Open
Abstract
We examined oscillatory power in electroencephalographic recordings obtained while younger (18-30 years) and older (60+ years) adults studied lists of words for later recall. Power changed in a highly consistent way from word-to-word across the study period. Above 14 Hz, there were virtually no age differences in these neural gradients. But gradients below 14 Hz reliably discriminated between age groups. Older adults with the best memory performance showed the largest departures from the younger adult pattern of neural activity. These results suggest that age differences in the dynamics of neural activity across an encoding period reflect changes in cognitive processing that may compensate for age-related decline.
Collapse
|
18
|
Subramaniapillai S, Rajagopal S, Elshiekh A, Pasvanis S, Ankudowich E, Rajah MN. Sex Differences in the Neural Correlates of Spatial Context Memory Decline in Healthy Aging. J Cogn Neurosci 2019; 31:1895-1916. [DOI: 10.1162/jocn_a_01455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aging is associated with episodic memory decline and alterations in memory-related brain function. However, it remains unclear if age-related memory decline is associated with similar patterns of brain aging in women and men. In the current task fMRI study, we tested the hypothesis that there are sex differences in the effect of age and memory performance on brain activity during episodic encoding and retrieval of face–location associations (spatial context memory). Forty-one women and 41 men between the ages of 21 and 76 years participated in this study. Between-group multivariate partial least squares analysis of the fMRI data was conducted to directly test for sex differences and similarities in age-related and performance-related patterns of brain activity. Our behavioral analysis indicated no significant sex differences in retrieval accuracy on the fMRI tasks. In relation to performance effects, we observed similarities and differences in how retrieval accuracy related to brain activity in women and men. Both sexes activated dorsal and lateral PFC, inferior parietal cortex, and left parahippocampal gyrus at encoding, and this supported subsequent memory performance. However, there were sex differences in retrieval activity in these same regions and in lateral occipital-temporal and ventrolateral PFC. In relation to age effects, we observed sex differences in the effect of age on memory-related activity within PFC, inferior parietal cortex, parahippocampal gyrus, and lateral occipital-temporal cortices. Overall, our findings suggest that the neural correlates of age-related spatial context memory decline differ in women compared with men.
Collapse
Affiliation(s)
| | | | | | | | | | - M. Natasha Rajah
- McGill University
- Brain Imaging Centre, Douglas Institute Research Centre, Verdun, QC, Canada
| |
Collapse
|
19
|
Solomon EA, Lega BC, Sperling MR, Kahana MJ. Hippocampal theta codes for distances in semantic and temporal spaces. Proc Natl Acad Sci U S A 2019; 116:24343-24352. [PMID: 31723043 PMCID: PMC6883851 DOI: 10.1073/pnas.1906729116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The medial temporal lobe (MTL) is known to support episodic memory and spatial navigation, raising the possibility that its true function is to form "cognitive maps" of any kind of information. Studies in humans and animals support the idea that the hippocampal theta rhythm (4 to 8 Hz) is key to this mapping function, as it has been repeatedly observed during spatial navigation tasks. If episodic memory and spatial navigation are 2 sides of the same coin, we hypothesized that theta oscillations might reflect relations between explicitly nonspatial items, such as words. We asked 189 neurosurgical patients to perform a verbal free-recall task, of which 96 had indwelling electrodes placed in the MTL. Subjects were instructed to remember short lists of sequentially presented nouns. We found that hippocampal theta power and connectivity during item retrieval coded for semantic distances between words, as measured using word2vec-derived subspaces. Additionally, hippocampal theta indexed temporal distances between words after filtering lists on recall performance, to ensure adequate dynamic range in time. Theta effects were noted only for semantic subspaces of 1 dimension, indicating a substantial compression of the possible semantic feature space. These results lend further support to our growing confidence that the MTL forms cognitive maps of arbitrary representational spaces, helping to reconcile longstanding differences between the spatial and episodic memory literatures.
Collapse
Affiliation(s)
- Ethan A Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA 19107
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
20
|
Abstract
Contiguity is one of the major predictors of recall dynamics in human episodic memory. But there are many competing theories of how the memory system gives rise to contiguity. Here we provide a set of benchmark findings for which any such theory should account. These benchmarks are drawn from a review of the existing literature as well as analyses of both new and archival data. They include 34 distinct findings on how various factors including individual and group differences, task parameters, and type of stimuli influence the magnitude of the contiguity effect. We will see that contiguity is observed in a range of tasks including recognition, paired associates, and autobiographical recall and across a range of time scales including minutes, days, weeks, and years. The broad pattern of data point toward a theory in which contiguity arises from fundamental memory mechanisms that encode and search an approximately time scale invariant representation of temporal distance.
Collapse
|
21
|
Abstract
The human body is a remarkable example of the process of evolution which ultimately created a sentient being with cognitive, motor, and information-processing abilities. The body can also be thought of as an amazing feat of engineering, and specifically as an example of molecular nanotechnology, positioning trillions of cells throughout the body, and creating the billions of unique individuals that have existed since the beginning of humanity. On the other hand, from an engineering perspective, there are numerous limitations associated with the human body and the process of evolution to effect changes in the body is exceedingly slow. For example, our skeletal structure is only so strong, our body is subject to disease, and we are programmed by our DNA to age. Further, it took millions of years for Homo sapiens to evolve and hundreds of thousands of years for hominids to invent the most basic technology. To allow humans to go beyond the capabilities that evolution provided Homo sapiens, current research is leading to technologies that could significantly enhance the cognitive and motor abilities of humans and eventually create the conditions in which humans and technology could merge to form a cybernetic being. Much of this technology is being developed from three fronts: due to medical necessity, an interest within the military to create a cyborg soldier, and the desire among some people to self-enhance their body with technology. This article discusses the processes of biological evolution which led to the current anatomical, physiological, and cognitive capabilities of humans and concludes with a discussion of emerging technologies which are directed primarily at enhancing the cognitive functions performed by the brain. This article also discusses a timeframe in which the body will become increasingly equipped with technology directly controlled by the brain, then as a major paradigm shift in human evolution, humans will merge with the technology itself.
Collapse
|
22
|
Long NM, Kahana MJ. Hippocampal contributions to serial-order memory. Hippocampus 2018; 29:252-259. [PMID: 30178573 DOI: 10.1002/hipo.23025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 07/18/2018] [Accepted: 08/21/2018] [Indexed: 01/10/2023]
Abstract
Our memories form a record not only of our experiences, but also of their temporal structure. Although memory for the temporal structure of experience likely relies on multiple neural systems, numerous studies have implicated the hippocampus in the encoding and retrieval of temporal information. This review evaluates the literature on hippocampal contributions to human serial-order memory from the perspective of three cognitive theories: associative chaining theory, positional-coding theory and retrieved-context theory. Evaluating neural findings through the lens of cognitive theories enables us to draw more incisive conclusions about the relations between brain and behavior.
Collapse
Affiliation(s)
- Nicole M Long
- Department of Psychology, University of Oregon, Eugene, OR
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Neural Pattern Classification Tracks Transfer-Appropriate Processing in Episodic Memory. eNeuro 2018; 5:eN-NWR-0251-18. [PMID: 30225363 PMCID: PMC6140125 DOI: 10.1523/eneuro.0251-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 11/21/2022] Open
Abstract
The transfer-appropriate processing (TAP) account holds that episodic memory depends on the overlap between encoding and retrieval processing. In the current study, we employed multivariate pattern analysis (MVPA) of electroencephalography to examine the relevance of spontaneously engaged visual processing during encoding for later retrieval. Human participants encoded word-picture associations, where the picture could be a famous face, a landmark, or an object. At test, we manipulated the retrieval demands by asking participants to retrieve either visual or verbal information about the pictures. MVPA revealed classification between picture categories during early perceptual stages of encoding (∼170 ms). Importantly, these visual category-specific neural patterns were predictive of later episodic remembering, but the direction of the relationship was contingent on the particular retrieval demand of the memory task: a benefit for the visual and a cost for the verbal. A reinstatement of the category-specific neural patterns established during encoding was observed during retrieval, and again the relationship with behavior varied with retrieval demands. Reactivation of visual representations during retrieval was associated with better memory in the visual task, but with lower performance in the verbal task. Our findings support and extend the TAP account by demonstrating that processing of particular aspects during memory formation can also have detrimental effects on later episodic remembering when other aspects of the event are called-for and shed new light on encoding and retrieval interactions in episodic memory.
Collapse
|
24
|
Kuhn JR, Lohnas LJ, Kahana MJ. A spacing account of negative recency in final free recall. J Exp Psychol Learn Mem Cogn 2018; 44:1180-1185. [PMID: 29648866 PMCID: PMC6066445 DOI: 10.1037/xlm0000491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The well-known recency effect in immediate free recall reverses when subjects attempt to recall items studied and tested on a series of prior lists, as in the final-free-recall procedure (Craik, 1970). In this case, the last few items on each list are actually remembered less well than are the midlist items. Because dual-store theories of recall naturally predict negative recency, this phenomenon has long been cited as evidence favoring these models. In a final-free-recall study, we replicate the negative-recency effect for the within-list serial position curve and the positive-recency effect for the between-list serial position curve. Whereas we find prominent negative recency for items recalled early in the initial recall period, this effect is markedly reduced for items recalled later in the recall period. When considering initial recall as a second presentation of studied items, we find that the probability of final free recall increases as the number of items between initial presentation and initial recall increases. These results suggest that negative recency may reflect the beneficial effects of spaced practice, in which end-of-list items recalled early constitute massed repetitions and end-of-list items recalled late are spaced repetitions. To help distinguish between the spacing account and the prevailing dual-store, rehearsal-based account, we examined negative recency in continual-distractor free recall. Contrary to the dual-store account, but in accord with the spacing account, we find robust negative recency in continual-distractor free recall, which is greater for those items recalled early in output. (PsycINFO Database Record
Collapse
Affiliation(s)
- Joel R Kuhn
- Department of Psychology, University of California-San Diego
| | | | | |
Collapse
|
25
|
Herweg NA, Kahana MJ. Spatial Representations in the Human Brain. Front Hum Neurosci 2018; 12:297. [PMID: 30104966 PMCID: PMC6078001 DOI: 10.3389/fnhum.2018.00297] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
While extensive research on the neurophysiology of spatial memory has been carried out in rodents, memory research in humans had traditionally focused on more abstract, language-based tasks. Recent studies have begun to address this gap using virtual navigation tasks in combination with electrophysiological recordings in humans. These studies suggest that the human medial temporal lobe (MTL) is equipped with a population of place and grid cells similar to that previously observed in the rodent brain. Furthermore, theta oscillations have been linked to spatial navigation and, more specifically, to the encoding and retrieval of spatial information. While some studies suggest a single navigational theta rhythm which is of lower frequency in humans than rodents, other studies advocate for the existence of two functionally distinct delta-theta frequency bands involved in both spatial and episodic memory. Despite the general consensus between rodent and human electrophysiology, behavioral work in humans does not unequivocally support the use of a metric Euclidean map for navigation. Formal models of navigational behavior, which specifically consider the spatial scale of the environment and complementary learning mechanisms, may help to better understand different navigational strategies and their neurophysiological mechanisms. Finally, the functional overlap of spatial and declarative memory in the MTL calls for a unified theory of MTL function. Such a theory will critically rely upon linking task-related phenomena at multiple temporal and spatial scales. Understanding how single cell responses relate to ongoing theta oscillations during both the encoding and retrieval of spatial and non-spatial associations appears to be key toward developing a more mechanistic understanding of memory processes in the MTL.
Collapse
Affiliation(s)
- Nora A. Herweg
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael J. Kahana
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Does Semantic Congruency Accelerate Episodic Encoding, or Increase Semantic Elaboration? J Neurosci 2017; 37:4861-4863. [PMID: 28490637 DOI: 10.1523/jneurosci.0570-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 11/21/2022] Open
|
27
|
Long NM, Sperling MR, Worrell GA, Davis KA, Gross RE, Lega BC, Jobst BC, Sheth SA, Zaghloul K, Stein JM, Kahana MJ. Contextually Mediated Spontaneous Retrieval Is Specific to the Hippocampus. Curr Biol 2017; 27:1074-1079. [PMID: 28343962 DOI: 10.1016/j.cub.2017.02.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 02/22/2017] [Indexed: 12/22/2022]
Abstract
Although it is now well established that the hippocampus supports memory encoding [1, 2], little is known about hippocampal activity during spontaneous memory retrieval. Recent intracranial electroencephalographic (iEEG) work has shown that hippocampal activity during encoding predicts subsequent temporal organization of memories [3], supporting a role in contextual binding. It is an open question, however, whether the hippocampus similarly supports contextually mediated processes during retrieval. Here, we analyzed iEEG recordings obtained from 215 epilepsy patients as they performed a free recall task. To identify neural activity specifically associated with contextual retrieval, we compared correct recalls, intrusions (incorrect recall of either items from prior lists or items not previously studied), and deliberations (matched periods during recall when no items came to mind). Neural signals that differentiate correct recalls from both other retrieval classes reflect contextual retrieval, as correct recalls alone arise from the correct context. We found that in the hippocampus, high-frequency activity (HFA, 44-100 Hz), a proxy for neural activation [4], was greater prior to correct recalls relative to the other retrieval classes, with no differentiation between intrusions and deliberations. This pattern was not observed in other memory-related cortical regions, including DLPFC, thus supporting a specific hippocampal contribution to contextually mediated memory retrieval.
Collapse
Affiliation(s)
- Nicole M Long
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA.
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | | | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth Medical Center, Lebanon, NH 03756, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institutes of Health, Bethesda, MD 20814, USA
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|