1
|
Ladhari S, Vu NN, Boisvert C, Saidi A, Nguyen-Tri P. Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS APPLIED BIO MATERIALS 2023; 6:1398-1430. [PMID: 36912908 DOI: 10.1021/acsabm.3c00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The diseases caused by microorganisms are innumerable existing on this planet. Nevertheless, increasing antimicrobial resistance has become an urgent global challenge. Thus, in recent decades, bactericidal materials have been considered promising candidates to combat bacterial pathogens. Recently, polyhydroxyalkanoates (PHAs) have been used as green and biodegradable materials in various promising alternative applications, especially in healthcare for antiviral or antiviral purposes. However, it lacks a systematic review of the recent application of this emerging material for antibacterial applications. Therefore, the ultimate goal of this review is to provide a critical review of the state of the art recent development of PHA biopolymers in terms of cutting-edge production technologies as well as promising application fields. In addition, special attention was given to collecting scientific information on antibacterial agents that can potentially be incorporated into PHA materials for biological and durable antimicrobial protection. Furthermore, the current research gaps are declared, and future research perspectives are proposed to better understand the properties of these biopolymers as well as their possible applications.
Collapse
Affiliation(s)
- Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Alireza Saidi
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Institut de Recherche Robert-Sauvé en Santé et Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|
2
|
Samrot AV, Samanvitha SK, Shobana N, Renitta ER, Senthilkumar P, Kumar SS, Abirami S, Dhiva S, Bavanilatha M, Prakash P, Saigeetha S, Shree KS, Thirumurugan R. The Synthesis, Characterization and Applications of Polyhydroxyalkanoates (PHAs) and PHA-Based Nanoparticles. Polymers (Basel) 2021; 13:3302. [PMID: 34641118 PMCID: PMC8512352 DOI: 10.3390/polym13193302] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are storage granules found in bacteria that are essentially hydroxy fatty acid polyesters. PHA molecules appear in variety of structures, and amongst all types of PHAs, polyhydroxybutyrate (PHB) is used in versatile fields as it is a biodegradable, biocompatible, and ecologically safe thermoplastic. The unique physicochemical characteristics of these PHAs have made them applicable in nanotechnology, tissue engineering, and other biomedical applications. In this review, the optimization, extraction, and characterization of PHAs are described. Their production and application in nanotechnology are also portrayed in this review, and the precise and various production methods of PHA-based nanoparticles, such as emulsion solvent diffusion, nanoprecipitation, and dialysis are discussed. The characterization techniques such as UV-Vis, FTIR, SEM, Zeta Potential, and XRD are also elaborated.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Sree K. Samanvitha
- Department of Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Thanjavur 613401, Tamil Nadu, India;
| | - N. Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Emilin R. Renitta
- Department of Food Processing Technology, School of Agriculture and Biosciences, Karunya Institute of Science and Technology, Karunya Nagar, Coimbatore, 641114, Tamil Nadu, India;
| | - P. Senthilkumar
- Department of Chemical Engineering, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| | - Suresh S. Kumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600126, Tamil Nadu, India
| | - S. Abirami
- Department of Microbiology, Kamaraj College, Thoothukudi 628003, Tamil Nadu, India;
| | - S. Dhiva
- Department of Microbiology, Sree Narayana College, Alathur, Palakkad 678682, Kerala, India;
| | - M. Bavanilatha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - P. Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - S. Saigeetha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Krithika S. Shree
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - R. Thirumurugan
- Department of Transfusion Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India;
| |
Collapse
|
3
|
Sharma S, Sudhakara P, Singh J, Ilyas RA, Asyraf MRM, Razman MR. Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers (Basel) 2021; 13:2623. [PMID: 34451161 PMCID: PMC8399915 DOI: 10.3390/polym13162623] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
In the determination of the bioavailability of drugs administered orally, the drugs' solubility and permeability play a crucial role. For absorption of drug molecules and production of a pharmacological response, solubility is an important parameter that defines the concentration of the drug in systemic circulation. It is a challenging task to improve the oral bioavailability of drugs that have poor water solubility. Most drug molecules are either poorly soluble or insoluble in aqueous environments. Polymer nanocomposites are combinations of two or more different materials that possess unique characteristics and are fused together with sufficient energy in such a manner that the resultant material will have the best properties of both materials. These polymeric materials (biodegradable and other naturally bioactive polymers) are comprised of nanosized particles in a composition of other materials. A systematic search was carried out on Web of Science and SCOPUS using different keywords, and 485 records were found. After the screening and eligibility process, 88 journal articles were found to be eligible, and hence selected to be reviewed and analyzed. Biocompatible and biodegradable materials have emerged in the manufacture of therapeutic and pharmacologic devices, such as impermanent implantation and 3D scaffolds for tissue regeneration and biomedical applications. Substantial effort has been made in the usage of bio-based polymers for potential pharmacologic and biomedical purposes, including targeted deliveries and drug carriers for regulated drug release. These implementations necessitate unique physicochemical and pharmacokinetic, microbiological, metabolic, and degradation characteristics of the materials in order to provide prolific therapeutic treatments. As a result, a broadly diverse spectrum of natural or artificially synthesized polymers capable of enzymatic hydrolysis, hydrolyzing, or enzyme decomposition are being explored for biomedical purposes. This summary examines the contemporary status of biodegradable naturally and synthetically derived polymers for biomedical fields, such as tissue engineering, regenerative medicine, bioengineering, targeted drug discovery and delivery, implantation, and wound repair and healing. This review presents an insight into a number of the commonly used tissue engineering applications, including drug delivery carrier systems, demonstrated in the recent findings. Due to the inherent remarkable properties of biodegradable and bioactive polymers, such as their antimicrobial, antitumor, anti-inflammatory, and anticancer activities, certain materials have gained significant interest in recent years. These systems are also actively being researched to improve therapeutic activity and mitigate adverse consequences. In this article, we also present the main drug delivery systems reported in the literature and the main methods available to impregnate the polymeric scaffolds with drugs, their properties, and their respective benefits for tissue engineering.
Collapse
Affiliation(s)
- Shubham Sharma
- Regional Centre for Extension and Development, CSIR-Central Leather Research Institute, Leather Complex, Kapurthala Road, Jalandhar 144021, India
- PhD Research Scholar, IK Gujral Punjab Technical University, Jalandhar-Kapurthala, Highway, VPO, Ibban 144603, India
| | - P. Sudhakara
- Regional Centre for Extension and Development, CSIR-Central Leather Research Institute, Leather Complex, Kapurthala Road, Jalandhar 144021, India
| | - Jujhar Singh
- IK Gujral Punjab Technical University, Jalandhar-Kapurthala, Highway, VPO, Ibban 144603, India;
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - M. R. Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| |
Collapse
|
4
|
Barcelos MCS, Lupki FB, Campolina GA, Nelson DL, Molina G. The colors of biotechnology: general overview and developments of white, green and blue areas. FEMS Microbiol Lett 2018; 365:5106815. [DOI: 10.1093/femsle/fny239] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/22/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mayara C S Barcelos
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Fernanda B Lupki
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gabriela A Campolina
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - David Lee Nelson
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
5
|
Marszałek-Harych A, Jędrzkiewicz D, Ejfler J. Bio- and chemocatalysis cascades as a bridge between biology and chemistry for green polymer synthesis. Cell Mol Biol Lett 2017; 22:28. [PMID: 29225630 PMCID: PMC5715637 DOI: 10.1186/s11658-017-0061-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023] Open
Abstract
The development and integration of bio- and chemocatalytic processes to convert renewable or biomass feedstocks into polymers is a vibrant field of research with enormous potential for environmental protection and the mitigation of global warming. Here, we review the biotechnological and chemical synthetic strategies for producing platform monomers from bio-based sources and transforming them into eco-polymers. We also discuss their advanced bio-application using the example of polylactide (PLA), the most valuable green polymer on the market.
Collapse
Affiliation(s)
| | - Dawid Jędrzkiewicz
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Jolanta Ejfler
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
6
|
Senthilkumar P, Dawn S, Sree Samanvitha K, Sanjay Kumar S, Narendra Kumar G, Samrot AV. Optimization and characterization of poly[R]hydroxyalkanoate of Pseudomonas aeruginosa SU-1 to utilize in nanoparticle synthesis for curcumin delivery. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Tsuda H, Shiraki M, Inoue E, Saito T. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:9-16. [PMID: 27372278 DOI: 10.1016/j.jplph.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination.
Collapse
Affiliation(s)
- Hirohisa Tsuda
- Laboratory of Molecular Microbiology, Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 Japan.
| | - Mari Shiraki
- Laboratory of Molecular Microbiology, Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 Japan.
| | - Eri Inoue
- Laboratory of Molecular Microbiology, Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 Japan.
| | - Terumi Saito
- Laboratory of Molecular Microbiology, Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 Japan.
| |
Collapse
|
8
|
Yao K, Tang C. Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules 2013. [DOI: 10.1021/ma3019574] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kejian Yao
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
29208, United States
| |
Collapse
|
9
|
Tsuda H. Generation of poly-β-hydroxybutyrate from externally provided acetate in rice root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 50:35-43. [PMID: 22099517 DOI: 10.1016/j.plaphy.2011.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
During the investigation of the metabolism of ¹⁴C-acetate or ¹⁴C-succinate in rice seedlings, an unknown organic acid (X) with a high specific radioactivity was detected in 10,000 × g 30 min precipitate-fraction of rice roots. The X was hardly extracted by 0.1 N-H₂SO₄ boiling, but was extracted by 0.5 N-KOH boiling. The X was co-chromatographed with several known organic acids, and the radioactive peak of the X matched β-hydroxybutyric acid (β-hydroxybutyrate). The radioactive X and β-hydroxybutyrate were then heated with concentrated H₂SO₄. The radioactivity and the titration value were completely converted to crotonic acid. Thus, it was concluded that the X was β-hydroxybutyrate, and the original form of this acid was presumed to be poly-β-hydroxybutyrate (PHB). Then rice root incubated with 2-¹⁴C-acetate was extracted with hot-ethanol, ethanol/ether, and hot-chloroform. Approximately 10% of the radioactivity absorbed was detected in the chloroform fraction. The chloroform fraction was co-precipitated with authentic PHB by the addition of acetone/ether, and almost all the radioactivity was co-precipitated with the PHB. The radioactive co-precipitate was then heated with 0.5 N-NaOH, and chromatographed. The radioactivity of β-hydroxybutyrate plus crotonic acid almost matched that of the co-precipitate before alkaline-hydrolysis. Hence the radioactive co-precipitate was confirmed to be PHB. In wheat and radish seedlings, 2-¹⁴C-acetate was also assimilated into PHB. It is concluded that externally provided acetate was rapidly converted to PHB in higher plants.
Collapse
Affiliation(s)
- Hirohisa Tsuda
- Laboratory of Plant Nutrition and Fertilizer, Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
10
|
Dennis ES, Ellis J, Green A, Llewellyn D, Morell M, Tabe L, Peacock W. Genetic contributions to agricultural sustainability. Philos Trans R Soc Lond B Biol Sci 2008; 363:591-609. [PMID: 17656342 PMCID: PMC2610172 DOI: 10.1098/rstb.2007.2172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The current tools of enquiry into the structure and operation of the plant genome have provided us with an understanding of plant development and function far beyond the state of knowledge that we had previously. We know about key genetic controls repressing or stimulating the cascades of gene expression that move a plant through stages in its life cycle, facilitating the morphogenesis of vegetative and reproductive tissues and organs. The new technologies are enabling the identification of key gene activity responses to the range of biotic and abiotic challenges experienced by plants. In the past, plant breeders produced new varieties with changes in the phases of development, modifications of plant architecture and improved levels of tolerance and resistance to environmental and biotic challenges by identifying the required phenotypes in a few plants among the large numbers of plants in a breeding population. Now our increased knowledge and powerful gene sequence-based diagnostics provide plant breeders with more precise selection objectives and assays to operate in rationally planned crop improvement programmes. We can expect yield potential to increase and harvested product quality portfolios to better fit an increasing diversity of market requirements. The new genetics will connect agriculture to sectors beyond the food, feed and fibre industries; agri-business will contribute to public health and will provide high-value products to the pharmaceutical industry as well as to industries previously based on petroleum feedstocks and chemical modification processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - W.J Peacock
- CSIRO Plant IndustryGPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
11
|
Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review. Biotechnol Adv 2006; 25:148-75. [PMID: 17222526 DOI: 10.1016/j.biotechadv.2006.11.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/23/2006] [Accepted: 11/23/2006] [Indexed: 11/18/2022]
Abstract
The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.
Collapse
Affiliation(s)
- Pornpa Suriyamongkol
- Plant Biotechnology Unit, Alberta Research Council, Vegreville, Alberta, Canada T9C 1T4
| | | | | | | | | |
Collapse
|
13
|
Lütke-Eversloh T, Steinbüchel A. Novel precursor substrates for polythioesters (PTE) and limits of PTE biosynthesis in Ralstonia eutropha. FEMS Microbiol Lett 2003; 221:191-6. [PMID: 12725926 DOI: 10.1016/s0378-1097(03)00185-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A novel class of biopolymers referred to as polythioesters (PTE) was recently detected when the polyhydroxyalkanoate (PHA) accumulating bacterium Ralstonia eutropha was cultivated in the presence of 3-mercaptopropionic acid (3MP) or 3,3'-thiodipropionic acid (TDP). In this study, 3,3'-dithiodipropionic acid (DTDP) and 3-mercaptovaleric acid (3MV) were identified as two additional precursor carbon sources for in vivo biosynthesis of PTE in R. eutropha. Biosynthesis of copolymers of 3-hydroxybutyrate (3HB) and 3MP, which contributed 19-25% of cell dry matter, was compared referring to the different precursor substrates. Using DTDP as carbon source, which is probably cleaved into two molecules 3MP, yielded an about 2.3-fold higher molar 3MP content of the copolyester than TDP, which is probably cleaved into only one molecule 3MP. Furthermore, cultivation of R. eutropha in the presence of 3MV resulted in biosynthesis of copolymers consisting predominantly of 3HB with low amounts of 3MV and 3-hydroxyvalerate, each contributing less than 5 mol% of the constituents. In contrast, 4-mercaptobutyric acid could be not incorporated into PHAs, although - as documented in this study - five different strategies, various precursor substrates, R. eutropha and also a recombinant strain of Escherichia coli were employed. Therefore, this study not only extended the range of substrates suitable for PTE biosynthesis and also the range of PTE constituents in R. eutropha, it also demonstrates limits for PTE biosynthesis in this bacterium.
Collapse
Affiliation(s)
- Tina Lütke-Eversloh
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Germany
| | | |
Collapse
|