1
|
Distribution of water phase near the poles of the Moon from gravity aspects. Sci Rep 2022; 12:4501. [PMID: 35296705 PMCID: PMC8927600 DOI: 10.1038/s41598-022-08305-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Our Moon periodically moves through the magnetic tail of the Earth that contains terrestrial ions of hydrogen and oxygen. A possible density contrast might have been discovered that could be consistent with the presence of water phase of potential terrestrial origin. Using novel gravity aspects (descriptors) derived from harmonic potential coefficients of gravity field of the Moon, we discovered gravity strike angle anomalies that point to water phase locations in the polar regions of the Moon. Our analysis suggests that impact cratering processes were responsible for specific pore space network that were subsequently filled with the water phase filling volumes of permafrost in the lunar subsurface. In this work, we suggest the accumulation of up to ~ 3000 km3 of terrestrial water phase (Earth’s atmospheric escape) now filling the pore spaced regolith, portion of which is distributed along impact zones of the polar regions of the Moon. These unique locations serve as potential resource utilization sites for future landing exploration and habitats (e.g., NASA Artemis Plan objectives).
Collapse
|
2
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Smolyar I, Bromage T, Wikelski M. Layered patterns in nature, medicine, and materials: quantifying anisotropic structures and cyclicity. PeerJ 2019; 7:e7813. [PMID: 31632849 PMCID: PMC6797002 DOI: 10.7717/peerj.7813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022] Open
Abstract
Various natural patterns-such as terrestrial sand dune ripples, lamellae in vertebrate bones, growth increments in fish scales and corals, aortas and lamellar corpuscles in humans and animals-comprise layers of different thicknesses and lengths. Microstructures in manmade materials-such as alloys, perlite steels, polymers, ceramics, and ripples induced by laser on the surface of graphen-also exhibit layered structures. These layered patterns form a record of internal and external factors regulating pattern formation in their various systems, making it potentially possible to recognize and identify in their incremental sequences trends, periodicities, and events in the formation history of these systems. The morphology of layered systems plays a vital role in developing new materials and in biomimetic research. The structures and sizes of these two-dimensional (2D) patterns are characteristically anisotropic: That is, the number of layers and their absolute thicknesses vary significantly in different directions. The present work develops a method to quantify the morphological characteristics of 2D layered patterns that accounts for anisotropy in the object of study. To reach this goal, we use Boolean functions and an N-partite graph to formalize layer structure and thickness across a 2D plane and to construct charts of (1) "layer thickness vs. layer number" and (2) "layer area vs. layer number." We present a parameter disorder of layer structure (DStr) to describe the deviation of a study object's anisotropic structure from an isotropic analog and illustrate that charts and DStr could be used as local and global morphological characteristics describing various layered systems such as images of, for example, geological, atmospheric, medical, materials, forensic, plants, and animals. Suggested future experiments could lead to new insights into layered pattern formation.
Collapse
Affiliation(s)
- Igor Smolyar
- National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Ashvelle, NC, USA
| | - Tim Bromage
- Department of Biomaterials & Biomimetics and Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York City, NY, USA
| | - Martin Wikelski
- Max-Planck Institute for Ornithology and Department of Biology, Konstanz University, Radolfzell and Konstanz, Germany
| |
Collapse
|
4
|
Linzmeier BJ, Kozdon R, Peters SE, Valley JW. Oxygen Isotope Variability within Nautilus Shell Growth Bands. PLoS One 2016; 11:e0153890. [PMID: 27100183 PMCID: PMC4839723 DOI: 10.1371/journal.pone.0153890] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/05/2016] [Indexed: 11/19/2022] Open
Abstract
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.
Collapse
Affiliation(s)
- Benjamin J. Linzmeier
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Reinhard Kozdon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, United States of America
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shanan E. Peters
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John W. Valley
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Brown JH. Personal Reflections on Environmental Science. Bioscience 2013. [DOI: 10.1525/bio.2013.63.8.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
New Titles. Bioscience 2013. [DOI: 10.1525/bio.2013.63.8.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Abstract
Study of Nautilus belauensis i its natural habitat in Palau, West Caroline Islands, shows that growth is slow (0.1 millimeter of shell per day on the average) and decreases as maturity is approached and that individuals may live at least 4 years beyond maturity. Age estimates for seven animals marked and recaptured between 45 and 355 days after release range from 14.5 to 17.2 years. These data indicate that the life-span of Nautilus may exceed 20 years and that its life strategy is very different from that of other living cephalopods.
Collapse
|
8
|
Abstract
Circadian clocks are ubiquitous and are found in organisms ranging from bacteria to mammals. This ubiquity of occurrence implies adaptive significance, but to date there has been no rigorous empirical evidence to support this. It is believed that an organism possessing circadian clocks gains fitness advantage in two ways: (i) by synchronizing its behavioral and physiological processes to cyclic environmental factors (extrinsic adaptive value); (ii) by coordinating its internal metabolic processes (intrinsic adaptive value). There is preliminary circumstantial evidence to support both. Several studies using organisms living in constant environments have shown that these organisms possess functional circadian clocks, suggesting that circadian clocks may have some intrinsic adaptive value. Studies to assess the adaptive value of circadian clocks in periodic environments suggest that organisms may have a fitness advantage in those periodic environments, which closely match their own intrinsic periodicity. Furthermore, evidence from organisms living in the wild, selection studies, and studies on latitudinal clines suggest that circadian clocks may have an extrinsic adaptive value as well. In this paper, I have presented several hypotheses for the emergence of circadian clocks and have reviewed some major empirical studies suggesting adaptive significance of circadian clocks.
Collapse
Affiliation(s)
- Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka, India.
| |
Collapse
|
9
|
Bucher H, Landman NH, Klofak SM, Guex J. Mode and Rate of Growth in Ammonoids. TOPICS IN GEOBIOLOGY 1996. [DOI: 10.1007/978-1-4757-9153-2_12] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Ward PD, Chamberlain J. Radiographic observation of chamber formation in Nautilus pompilius. Nature 1983. [DOI: 10.1038/304057a0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Abstract
Lamarck and Darwin agreed on the inconstancy of species and on the exclusive gradualism of evolution (nature does not jump). Darwinism, revived as neo-Darwinism, was almost generally accepted from about 1930 till 1960. In the sixties the evolutionary importance of selection has been called in question by the neutralists. The traditional conception of the gene is disarranged by recent molecular-biological findings. Owing to the increasing confusion about the concept of genotype, this concept is reconsidered. The idea of the genotype as a cluster of genes is replaced by a cybernetical interpretation of the genotype. As nature does jump, exclusive gradualism is dismissed. Saltatory evolution is a natural phenomenon, provided by a sudden collapse of the thresholds which resist against evolution. The fossil record and the taxonomic system call for a macromutational interpretation. As Lamarck and Darwin overlooked the resistance of evolutionary thresholds, an alternative evolution model is needed, the first to be constructed on a palaeontological and taxonomic basis.
Collapse
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
|
18
|
|
19
|
LABARBERA MICHAEL. Origin of the Metazoa (reply). Nature 1979. [DOI: 10.1038/278580b0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|