1
|
Schvartzman JB, Hernández P, Krimer DB, Dorier J, Stasiak A. Closing the DNA replication cycle: from simple circular molecules to supercoiled and knotted DNA catenanes. Nucleic Acids Res 2019; 47:7182-7198. [PMID: 31276584 PMCID: PMC6698734 DOI: 10.1093/nar/gkz586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 01/28/2023] Open
Abstract
Due to helical structure of DNA, massive amounts of positive supercoils are constantly introduced ahead of each replication fork. Positive supercoiling inhibits progression of replication forks but various mechanisms evolved that permit very efficient relaxation of that positive supercoiling. Some of these mechanisms lead to interesting topological situations where DNA supercoiling, catenation and knotting coexist and influence each other in DNA molecules being replicated. Here, we first review fundamental aspects of DNA supercoiling, catenation and knotting when these qualitatively different topological states do not coexist in the same circular DNA but also when they are present at the same time in replicating DNA molecules. We also review differences between eukaryotic and prokaryotic cellular strategies that permit relaxation of positive supercoiling arising ahead of the replication forks. We end our review by discussing very recent studies giving a long-sought answer to the question of how slow DNA topoisomerases capable of relaxing just a few positive supercoils per second can counteract the introduction of hundreds of positive supercoils per second ahead of advancing replication forks.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Hernández
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Dora B Krimer
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Julien Dorier
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Andrzej Stasiak
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Crozat E, Philippe N, Lenski RE, Geiselmann J, Schneider D. Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 2005; 169:523-32. [PMID: 15489515 PMCID: PMC1449116 DOI: 10.1534/genetics.104.035717] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 10/29/2004] [Indexed: 11/18/2022] Open
Abstract
The genetic bases of adaptation are being investigated in 12 populations of Escherichia coli, founded from a common ancestor and serially propagated for 20,000 generations, during which time they achieved substantial fitness gains. Each day, populations alternated between active growth and nutrient exhaustion. DNA supercoiling in bacteria is influenced by nutritional state, and DNA topology helps coordinate the overall pattern of gene expression in response to environmental changes. We therefore examined whether the genetic controls over supercoiling might have changed during the evolution experiment. Parallel changes in topology occurred in most populations, with the level of DNA supercoiling increasing, usually in the first 2000 generations. Two mutations in the topA and fis genes that control supercoiling were discovered in a population that served as the focus for further investigation. Moving the mutations, alone and in combination, into the ancestral background had an additive effect on supercoiling, and together they reproduced the net change in DNA topology observed in this population. Moreover, both mutations were beneficial in competition experiments. Clonal interference involving other beneficial DNA topology mutations was also detected. These findings define a new class of fitness-enhancing mutations and indicate that the control of DNA supercoiling can be a key target of selection in evolving bacterial populations.
Collapse
Affiliation(s)
- Estelle Crozat
- Laboratoire Adaptation et Pathogénie des Microorganismes, Université Joseph Fourier, Institut Jean Roget, CNRS UMR 5163, F-38041 Grenoble, France
| | | | | | | | | |
Collapse
|
3
|
Bordes P, Conter A, Morales V, Bouvier J, Kolb A, Gutierrez C. DNA supercoiling contributes to disconnect sigmaS accumulation from sigmaS-dependent transcription in Escherichia coli. Mol Microbiol 2003; 48:561-71. [PMID: 12675812 DOI: 10.1046/j.1365-2958.2003.03461.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sigmaS subunit of RNA polymerase is a key regulator of Escherichia coli transcription in stress conditions. sigmaS accumulates in cells subjected to stresses such as an osmotic upshift or the entry into stationary phase. We show here that, at elevated osmolarity, sigmaS accumulates long before the beginning of the sigmaS-dependent induction of osmEp, one of its target promoters. A combination of in vivo and in vitro evidence indicates that a high level of DNA negative supercoiling inhibits transcription by EsigmaS. The variations in superhelical densities occurring as a function of growth conditions can modulate transcription of a subset of sigmaS targets and thereby contribute to the temporal disconnection between the accumulation of sigmaS and sigmaS-driven transcription. We propose that, in stress conditions leading to the accumulation of sigmaS without lowering the growth rate, the level of DNA supercoiling acts as a checkpoint that delays the shift from the major (Esigma70) to the general stress (EsigmaS) transcriptional machinery, retarding the induction of a subset of the sigmaS regulon until the conditions become unfavourable enough to cause entry into stationary phase.
Collapse
Affiliation(s)
- Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100 CNRS - Université Toulouse III, France
| | | | | | | | | | | |
Collapse
|
4
|
Vetcher AA, Napierala M, Wells RD. Sticky DNA: effect of the polypurine.polypyrimidine sequence. J Biol Chem 2002; 277:39228-34. [PMID: 12161438 DOI: 10.1074/jbc.m205210200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polypurine.polypyrimidine sequence requirements for the formation of sticky DNA were evaluated in Escherichia coli plasmid systems to determine the potential occurrence of this conformation throughout biological systems. A mirror repeat, dinucleotide tract of (GA.TC)(37), which is ubiquitous in eukaryotes, formed sticky DNA, but shorter sequences of 10 or 20 repeats were inert. (GGA.TCC)(n) inserts (where n = 126, 159, and 222 bp) also formed sticky DNA. As shown previously, the control sequence (GAA.TTC)(150) (450 bp) readily adopted the X-shaped sticky structure; however, this structure has never been found for the nonpathogenic (GAAGGA.TCCTTC)(65) of the same approximate length (390 bp). A sequence that is replete with polypurine.polypyrimidine tracts that can form triplexes and slipped structures but lacks long repeating motifs (the 2.5-kbp intron 21 sequence from the polycystic kidney disease gene 1) was also inert. Interestingly, tracts of (GAA.TTC)(n) (where n = 176 or 80) readily formed sticky DNA with (GAAGGA.TCCTTC)(65) cloned into the same plasmid when the pair of inserts was in the direct, but not in the indirect (inverted), orientation. The stabilities of the triple base (Watson-Crick and Hoogsteen) interactions in the DNA/DNA associated triplex region of the sticky conformations account for these observations. Our results have significant chemical and biological implications for the structure and function of this unusual DNA conformation in Friedreich's ataxia.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | |
Collapse
|
5
|
Vetcher AA, Napierala M, Iyer RR, Chastain PD, Griffith JD, Wells RD. Sticky DNA, a long GAA.GAA.TTC triplex that is formed intramolecularly, in the sequence of intron 1 of the frataxin gene. J Biol Chem 2002; 277:39217-27. [PMID: 12161437 DOI: 10.1074/jbc.m205209200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Friedreich's ataxia is caused by the massive expansion of GAA.TTC repeats in intron 1 of the frataxin (X25) gene. Our prior investigations showed that long GAA.TTC repeats formed very stable triplex structures which caused two repeat tracts to adhere to each other (sticky DNA). This process was dependent on negative supercoiling and the presence of divalent metal ions. Herein, we have investigated the formation of sticky DNA from plasmid monomers and dimers; sticky DNA is formed only when two tracts of sufficiently long (GAA.TTC)(n) (n = 59-270) are present in a single plasmid DNA and are in the direct repeat orientation. If the inserts are in the indirect (inverted) repeat orientation, no sticky DNA was observed. Furthermore, kinetic studies support the intramolecular nature of sticky DNA formation. Electron microscopy investigations also provide strong data for sticky DNA as a single long triplex. Hence, these results give new insights into our understanding of the capacity of sticky DNA to inhibit transcription and thereby reduce the level of frataxin protein as related to the etiology of Friedreich's ataxia.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | | | | | |
Collapse
|
6
|
Laine B, Chartier F, Culard F, Bélaïche D, Sautière P. The DNA-binding protein II from Zymomonas mobilis. Complete amino acid sequence and interaction with DNA. Biochimie 1998; 80:109-16. [PMID: 9587668 DOI: 10.1016/s0300-9084(98)80017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The primary structure of the DNA-binding protein II from Zymomonas mobilis has been determined from data provided by automated Edman degradation of the intact protein and of peptides derived from cleavage at aspartic acid and arginine residues. When compared with the homologous protein isolated from other bacteria, the DNA-binding protein II from Z mobilis shows many substitutions. Several non-conservative substitutions at positions usually highly conserved in this type of protein probably account for the weaker DNA-binding activity of this protein compared to that of the E coli protein.
Collapse
Affiliation(s)
- B Laine
- U459 INSERM, Laboratoire de Biochimie Structurale, Faculté de Médecine, Lille, France
| | | | | | | | | |
Collapse
|
7
|
Mojica FJ, Higgins CF. In vivo supercoiling of plasmid and chromosomal DNA in an Escherichia coli hns mutant. J Bacteriol 1997; 179:3528-33. [PMID: 9171396 PMCID: PMC179144 DOI: 10.1128/jb.179.11.3528-3533.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have used trimethylpsoralen to measure localized levels of unconstrained DNA supercoiling in vivo. The data provide direct evidence that plasmid and chromosomal DNA supercoiling is altered in vivo in an hns mutant. This increase in supercoiling is independent of transcription or changes in the activity of topoisomerase I. These data have implications for the mechanisms by which the chromatin-associated protein H-NS may influence chromosome organization and gene expression.
Collapse
Affiliation(s)
- F J Mojica
- Nuffield Department of Clinical Biochemistry, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | |
Collapse
|
8
|
Hildebrandt ER, Cozzarelli NR. Comparison of recombination in vitro and in E. coli cells: measure of the effective concentration of DNA in vivo. Cell 1995; 81:331-40. [PMID: 7736586 DOI: 10.1016/0092-8674(95)90386-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the extremely high concentration of DNA in nucleoid/nuclear regions, chromosomal dimerization and entanglement are avoided. To help understand this, we measured the effective concentration of DNA in E. coli, a value that reflects the functional impact of the cellular milieu on DNA site reactivity. We used as probes plasmid fusion reactions by two site-specific recombinases. The normalized extents and rates of fusion in these systems were much lower in vivo than in analogous in vitro reactions. We calculate that the effective concentration of plasmid DNA is about one order of magnitude lower than the chemical concentration. We suggest that in bacterial cells DNA accessibility is highly restricted and that this dominates the forces that increase DNA activity, such as macromolecular crowding.
Collapse
Affiliation(s)
- E R Hildebrandt
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
9
|
Su T, McClure W. Selective binding of Escherichia coli RNA polymerase to topoisomers of minicircles carrying the TAC16 and TAC17 promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36861-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Skarstad K, Boye E. The initiator protein DnaA: evolution, properties and function. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:111-30. [PMID: 8110826 DOI: 10.1016/0167-4781(94)90025-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Skarstad
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
11
|
Kohwi Y, Malkhosyan SR, Kohwi-Shigematsu T. Intramolecular dG.dG.dC triplex detected in Escherichia coli cells. J Mol Biol 1992; 223:817-22. [PMID: 1538396 DOI: 10.1016/0022-2836(92)90242-c] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The formation of an intramolecular dG.dG.dC triplex in Escherichia coli cells is demonstrated at single-base resolution. The intramolecular dG.dG.dC triplex structure was probed in situ for E. coli cells containing plasmid DNAs with varying lengths of poly(dG).poly(dC) tracts employing chloroacetaldehyde. This chemical probe reacts specifically with unpaired DNA bases. The triplex structure formed with the poly(dG).poly(dC) tracts of 35 and 44 base-pairs, but not with 25 base-pairs. The triplex was detected only one to two hours after the chloramphenicol treatment: the period at which the extracted plasmid DNA revealed the maximal superhelical density.
Collapse
Affiliation(s)
- Y Kohwi
- La Jolla Cancer Research Foundation, CA 92037
| | | | | |
Collapse
|
12
|
|
13
|
Kohwi-Shigematsu T, Kohwi Y. Detection of non-B-DNA structures at specific sites in supercoiled plasmid DNA and chromatin with haloacetaldehyde and diethyl pyrocarbonate. Methods Enzymol 1992; 212:155-80. [PMID: 1518447 DOI: 10.1016/0076-6879(92)12011-e] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- T Kohwi-Shigematsu
- Cancer Research Center, La Jolla Cancer Research Foundation, California 92037
| | | |
Collapse
|
14
|
Jaworski A, Higgins NP, Wells RD, Zacharias W. Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52284-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Abstract
The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.
Collapse
Affiliation(s)
- E Palecek
- Max-Planck Institut für Biophysikalische Chemie, Göttingen, BRD
| |
Collapse
|
16
|
Higgins CF, Hinton JC, Hulton CS, Owen-Hughes T, Pavitt GD, Seirafi A. Protein H1: a role for chromatin structure in the regulation of bacterial gene expression and virulence? Mol Microbiol 1990; 4:2007-12. [PMID: 2128526 DOI: 10.1111/j.1365-2958.1990.tb00559.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There has been a recent revival of interest in one of the most abundant Escherichia coli proteins, H1 (also called H-NS). This protein was first identified many years ago as a major component of the bacterial nucleoid, and has been characterized biochemically by several groups. However, no clear function for the protein emerged from these studies. Our thinking has been transformed by recent findings which complement the biochemistry with genetic data. Several mutations, selected over many years by virtue of their diverse effects on gene expression, have turned out to be allelic and to fall within the structural gene for H1. Bringing together the genetics and the biochemistry has demonstrated that the whole is worth more than the sum of the parts! These findings have far-reaching implications for the mechanisms by which gene expression is regulated and also, perhaps, for the control of bacterial virulence.
Collapse
Affiliation(s)
- C F Higgins
- ICRF Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | | | | | | | | | |
Collapse
|
17
|
Karlovsky P, Pecinka P, Vojtiskova M, Makaturova E, Palecek E. Protonated triplex DNA in E. coli cells as detected by chemical probing. FEBS Lett 1990; 274:39-42. [PMID: 2253780 DOI: 10.1016/0014-5793(90)81324-h] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The triplex structure in vitro is well established; however, no direct evidence has been available concerning its existence in the cell. Using the direct chemical probing here we show that the triplex H structure can exist in E. coli cells at acidic intracellular pH values; this structure differs in some details from that observed in vitro.
Collapse
Affiliation(s)
- P Karlovsky
- Institute of Biophysics, Czechoslovak Academy of Sciences, Brno
| | | | | | | | | |
Collapse
|
18
|
McClellan JA, Boublíková P, Palecek E, Lilley DM. Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc Natl Acad Sci U S A 1990; 87:8373-7. [PMID: 2172986 PMCID: PMC54958 DOI: 10.1073/pnas.87.21.8373] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Superhelical tension of DNA in living bacteria is believed to be partially constrained by interaction with proteins. Yet DNA topology is a significant factor in a number of genetic functions and is apparently affected by both genetic and environmental influences. We have employed a technique that allows us to estimate the level of unconstrained superhelical tension inside the cell. We study the formation of cruciform structures by alternating adenine-thymine sequences in plasmid DNA by in situ chemical probing. This structural transition is driven by superhelical torsion in the DNA and thus reports directly on the level of such tension in the cellular DNA. We observe that the effect of osmotic shock is an elevation of superhelical tension; quantitative comparison with changes in plasmid linking number indicates that the alteration in DNA topology is all unconstrained. We also show that the synthesis of defective topoisomerase leads to increased superhelical tension in plasmid DNA. These experiments demonstrate that the effect of environmental and genetic influences is felt directly at the level of torsional stress in the cellular DNA.
Collapse
Affiliation(s)
- J A McClellan
- Department of Biochemistry, The University, Dundee, United Kingdom
| | | | | | | |
Collapse
|
19
|
Kozyavkin SA, Slesarev AI, Malkhosyan SR, Panyutin IG. DNA linking potential generated by gyrase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:105-13. [PMID: 2165903 DOI: 10.1111/j.1432-1033.1990.tb19099.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Whether or not DNA gyrase can supercoil DNA so that alternative structures will arise in it is the major question of this work. We have shown gyrase to produce in pAO3 DNA a superhelix density sufficient for cruciform formation. However, the transition does not take place because of too slow kinetics. A change of ionic conditions in favour of more intense DNA supercoiling by gyrase shifts the midpoint of the equilibrium transition to the cruciform structure toward more supercoiled topoisomers. The width of the equilibrium transition to the cruciform as a function of linking number has been revealed to be an order of magnitude larger in buffers containing magnesium and spermidine than in buffers with monovalent cations only. We ascribe this effect to the influence that the counter ions surrounding the DNA molecule have on its elasticity, the coefficient of elasticity being dependent on superhelix density sigma. Thus, the free energy of supercoiling (a) depends on the ionic conditions and (b) is not a quadratic function of sigma in the physiological range of parameters. We propose a description of DNA as a system of links that can be either closed or open; we also introduce a new concept of the DNA linking potential akin to the chemical and electric potentials. The linking potential is a suitable parameter for describing the equilibrium distribution of links in heterogeneous DNA, the coexistence of various DNA structures, the equilibrium input and output of DNA links by enzymes, and the nonequilibrium movement of links along DNA chains. Within the framework of this approach DNA gyrase is considered as the source of the DNA linking potential.
Collapse
MESH Headings
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA, Bacterial/metabolism
- DNA, Circular/analysis
- DNA, Circular/genetics
- DNA, Superhelical/analysis
- DNA, Superhelical/genetics
- Electrophoresis, Gel, Two-Dimensional
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genes, Bacterial
- Molecular Conformation
- Plasmids/genetics
Collapse
Affiliation(s)
- S A Kozyavkin
- R. E. Kavetsky Institute for Oncology Problems, Ukrainian SSR Academy of Sciences, Kiev
| | | | | | | |
Collapse
|
20
|
Thomas CD, Balson DF, Shaw WV. In vitro studies of the initiation of staphylococcal plasmid replication. Specificity of RepD for its origin (oriD) and characterization of the Rep-ori tyrosyl ester intermediate. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39392-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Naylor LH, Clark EM. d(TG)n.d(CA)n sequences upstream of the rat prolactin gene form Z-DNA and inhibit gene transcription. Nucleic Acids Res 1990; 18:1595-601. [PMID: 2158081 PMCID: PMC330531 DOI: 10.1093/nar/18.6.1595] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two alternating purine-pyrimidine sequences of the d(TG)n.d(CA)n-type (170bp and 60 bp in length) lie upstream of the rat prolactin (rPRL) gene. Conformational studies of plasmids containing these sequences indicate that both form left-handed (Z) DNA, with transitions initiating at superhelical densities of -0.041 and -0.044 respectively. These alternating purine-pyrimidine (APP) sequences are hypersensitive to cleavage with S1 nuclease both at the boundaries and within these APP repeats, where there is a loss in APP alternation. We have investigated the function of one of these Z-DNA sequences in the regulation of rPRL transcription, by linking regions of the 5' flanking sequence of the rPRL gene to a reporter gene encoding chloramphenicol acetyltransferase (CAT), and transferring these plasmids into GH3 pituitary tumour cell lines. The major conclusion from these studies is that the 170bp repeat exerts a negative effect on the transcription of the rPRL gene, and also down-regulates the expression of the fusion gene pRSVcat when cloned 50bp upstream of the Rous sarcoma virus promoter. However, despite its proximity to an estrogen response element in prolactin, this sequence does not affect the responsiveness of the rPRL gene to estrogen.
Collapse
Affiliation(s)
- L H Naylor
- MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, UK
| | | |
Collapse
|
22
|
|
23
|
Horwitz MS, Loeb LA. Structure-function relationships in Escherichia coli promoter DNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:137-64. [PMID: 2183292 DOI: 10.1016/s0079-6603(08)60710-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M S Horwitz
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle 98195
| | | |
Collapse
|
24
|
Freund AM, Bichara M, Fuchs RP. Z-DNA-forming sequences are spontaneous deletion hot spots. Proc Natl Acad Sci U S A 1989; 86:7465-9. [PMID: 2552445 PMCID: PMC298085 DOI: 10.1073/pnas.86.19.7465] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Z-DNA-forming sequences are shown to elicit a biological response in Escherichia coli. Plasmids containing sequences capable of adopting the Z conformation (GC and CA/GT) are shown to be hot spots for spontaneous deletions. All the deletions involve an even number of base pairs. The distribution of the deletion events shows that the process ends when the Z-DNA-forming sequence has been reduced to a size no longer capable of adopting the Z conformation at natural superhelical density.
Collapse
Affiliation(s)
- A M Freund
- Groupe de Cancérogénèse et de Mutagénèse Moléculaire et Structurale, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
25
|
Horwitz MS. Transcription regulation in vitro by an E. coli promoter containing a DNA cruciform in the '-35' region. Nucleic Acids Res 1989; 17:5537-45. [PMID: 2668890 PMCID: PMC318177 DOI: 10.1093/nar/17.14.5537] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A promoter with the potential to adopt a 50 basepair (bp) cruciform spanning from -19 to -69 has been constructed in the plasmid pBR322 tetracycline resistance gene (tet) by forming an inverted repeat from '-35' sequences. Compared to a control promoter, the sequence of this cruciform promoter differs only by a 22 bp insertion between -48 and -69, upstream from the usual location of promoter sequences. The cruciform is extruded in a supercoil-dependent manner, and transcription from this promoter in vitro by RNA polymerase decreases as the negative supercoil density of the plasmid DNA increases. In contrast, transcription from the control promoter increases with negative supercoiling. Thus, DNA secondary structure in the '-35' region can affect promoter-polymerase interaction. The tet promoter cruciform also influences expression of the pBR322 beta-lactamase gene (bla). This apparently results when extrusion of the cruciform reduces the superhelicity of the plasmid molecule to a level that is below the optimum for expression from the bla promoter, illustrating one mechanism for how DNA secondary structure may effect action-at-a-distance. Transcription from both promoters in vivo does not differ from controls, suggesting that this cruciform is not generated to a significant extent intracellularly, most probably as a result of the slow kinetics of extrusion.
Collapse
Affiliation(s)
- M S Horwitz
- Department of Pathology, School of Medicine, University of Washington, Seattle 98195
| |
Collapse
|
26
|
Dorman CJ, Lynch AS, Ni Bhriain N, Higgins CF. DNA supercoiling in Escherichia coli: topA mutations can be suppressed by DNA amplifications involving the tolC locus. Mol Microbiol 1989; 3:531-40. [PMID: 2548062 DOI: 10.1111/j.1365-2958.1989.tb00199.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The level of DNA supercoiling is crucial for many cellular processes, including gene expression, and is determined, primarily, by the opposing actions of two enzymes: topoisomerase I and DNA gyrase. Escherichia coli strains lacking topoisomerase I (topA mutants) normally fail to grow in the absence of compensatory mutations which are presumed to relax DNA. We have found that, in media of low osmolarity, topA mutants are viable in the absence of any compensatory mutation, consistent with the view that decreased extracellular osmolarity causes a relaxation of cellular DNA. At higher osmolarity most compensatory mutations, as expected, are in the gyrA and gyrB genes. The only other locus at which compensatory mutations arise, designated toc, is shown to involve the amplification of a region of chromosomal DNA which includes the tolC gene. However, amplification of tolC alone is insufficient to explain the phenotypes of toc mutants. tolC insertion mutations alter the distribution of plasmid topoisomers in vivo. This effect is probably indirect, possibly a result of altered membrane structure and an alteration in the cell's osmotic barrier. As tolC is a highly pleiotropic locus, affecting the expression of many genes, it is possible that some of the TolC phenotypes are a direct result of this topological change. The possible relationship between toc and tolC mutations, and the means by which tolC mutations might affect DNA supercoiling, are discussed.
Collapse
MESH Headings
- Blotting, Southern
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/physiology
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/physiology
- DNA, Bacterial/genetics
- DNA, Superhelical/genetics
- DNA, Superhelical/physiology
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Amplification
- Gene Rearrangement
- Genes, Bacterial
- Genes, Regulator
- Osmolar Concentration
- Oxygen/pharmacology
- Phenotype
- Plasmids
- Species Specificity
- Suppression, Genetic
Collapse
Affiliation(s)
- C J Dorman
- Department of Biochemistry, University of Dundee, UK
| | | | | | | |
Collapse
|
27
|
Ueshima R, Fujita N, Ishihama A. DNA supercoiling and temperature shift affect the promoter activity of the Escherichia coli rpoH gene encoding the heat-shock sigma subunit of RNA polymerase. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:185-9. [PMID: 2651877 DOI: 10.1007/bf00339716] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of DNA supercoiling and temperature shift on the activity of two major promoters of the Escherichia coli rpoH gene, which codes for the heat-shock sigma subunit of RNA polymerase, were examined using an in vitro transcription system. Upstream promoter P1 is not affected by DNA supercoiling nor temperature upshift but downstream promoter P2 is enhanced by both of these factors. Both factors facilitate the formation of an open complex on rpoH P2, and these two effects are not additive. Hence these two factors act at the same step of transcription, probably the local unwinding of the DNA double helix at the promoter region. The different sensitivities of the rpoH major promoters to DNA supercoiling and temperature shift indicate that these promoters are under differential control. Taken together with the in vivo enhancement by heat shock of rpoH P2 transcription, we propose that at least one of the mechanism(s) of induction of sigma 32 synthesis by heat shock is the activation of the rpoH P2 promoter by temperature up-shift.
Collapse
Affiliation(s)
- R Ueshima
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | |
Collapse
|
28
|
Baker TA, Kornberg A. Transcriptional activation of initiation of replication from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell 1988; 55:113-23. [PMID: 2458841 DOI: 10.1016/0092-8674(88)90014-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription by RNA polymerase preceding the initiation of replication from the E. coli chromosomal origin (oriC) in vitro enables dnaA protein to open the DNA duplex under conditions when its action alone is insufficient. The RNA polymerases of phages T7 and T3 are as effective as the E. coli enzyme in activating initiation. The persistent RNA transcript hybridized to the template creates an R-loop that is responsible for activation. The activating RNA need not cross oriC, but must be less then 500 bp away. Transcripts lacking a 3' OH group are effective, proving that priming of DNA synthesis is not involved in the activation. Thus, transcription activates the origin of an otherwise inert plasmid by altering the local DNA structure, facilitating its opening by dnaA protein during the assembly of replication forks.
Collapse
Affiliation(s)
- T A Baker
- Department of Biochemistry, Stanford University Medical School, California 94305
| | | |
Collapse
|
29
|
Zacharias W, Jaworski A, Larson JE, Wells RD. The B- to Z-DNA equilibrium in vivo is perturbed by biological processes. Proc Natl Acad Sci U S A 1988; 85:7069-73. [PMID: 3050986 PMCID: PMC282125 DOI: 10.1073/pnas.85.19.7069] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Right-handed B and left-handed Z conformations coexist in equilibrium in portions of plasmids in Escherichia coli. The equilibria are influenced by the length of the sequences that undergo the structural transitions and are perturbed by biological processes. The composite results of three types of determinations indicate a supercoil density of -0.025 in vivo. The coexistence of alternative DNA conformations in living cells implies the potential of these structures or their transitions for important functions in genetic regulatory processes.
Collapse
Affiliation(s)
- W Zacharias
- University of Alabama School of Medicine, Department of Biochemistry, Birmingham 35294
| | | | | | | |
Collapse
|
30
|
McLean MJ, Wells RD. The role of sequence in the stabilization of left-handed DNA helices in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 950:243-54. [PMID: 3048405 DOI: 10.1016/0167-4781(88)90120-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M J McLean
- Department of Pharmacology, University of Cambridge, U.K
| | | |
Collapse
|
31
|
|
32
|
|
33
|
Horwitz MS, Loeb LA. An E. coli promoter that regulates transcription by DNA superhelix-induced cruciform extrusion. Science 1988; 241:703-5. [PMID: 2456617 DOI: 10.1126/science.2456617] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA can form structures other than the Watson-Crick double helix. The potential contributions to gene regulation from one such structure have been investigated by assembling a promoter capable of adopting cruciform base-pairing. Transcription from this promoter by RNA polymerase in vitro was repressed as the cruciform was extruded by increasing negative DNA supercoiling. Transcription in vivo was induced as supercoiling was relaxed by growth in conditions that inhibit DNA gyrase. A DNA conformational change is therefore capable of regulating the initiation of transcription.
Collapse
Affiliation(s)
- M S Horwitz
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle 98195
| | | |
Collapse
|
34
|
Characteristics of Z-DNA helices formed by imperfect (purine-pyrimidine) sequences in plasmids. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68653-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer E. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 1988; 52:569-84. [PMID: 2830029 DOI: 10.1016/0092-8674(88)90470-9] [Citation(s) in RCA: 554] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The proU locus encodes an osmotically inducible glycine betaine transport system that is important in the adaptation to osmotic stress. We present evidence that DNA supercoiling plays a key role in the osmotic induction of proU transcription. An increase in extracellular osmolarity increases in vivo DNA supercoiling, and the expression of proU is highly sensitive to these changes. Furthermore, topA mutations can mimic an increase in osmolarity, facilitating proU expression even in media of low osmolarity in which it is not normally expressed. Selection for trans-acting mutations that affect proU expression has yielded only mutations that alter DNA supercoiling, either in topA or a new genetic locus, osmZ, which strongly influences in vivo supercoiling. Mutations in osmZ are highly pleiotropic, affecting expression of a variety of chromosomal genes including ompF, ompC, fimA, and the bgl operon, as well as increasing the frequency of site-specific DNA inversions that mediate fimbrial phase variation.
Collapse
Affiliation(s)
- C F Higgins
- Department of Biochemistry, University of Dundee, Scotland
| | | | | | | | | | | | | |
Collapse
|
36
|
Merchlinsky M, Garon CF, Moss B. Molecular cloning and sequence of the concatemer junction from vaccinia virus replicative DNA. Viral nuclease cleavage sites in cruciform structures. J Mol Biol 1988; 199:399-413. [PMID: 3351934 DOI: 10.1016/0022-2836(88)90613-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The concatemer junction from replicative forms of vaccinia virus DNA was cloned into plasmid vectors and shown to be a precise duplex copy of the viral terminal hairpin structure, with each strand corresponding to one of the alternative sequence isomers. The plasmids were relaxed circles with extruded cruciforms representing two copies of the vaccinia telomere hairpin structure. Head-to-head dimers containing two copies of the vaccinia virus concatemer junction were observed to contain only one set of stem-loop structures per molecule, suggesting that the initial formation of a small cruciform, and not branch migration, was the rate-limiting step in cruciform formation. The plasmids containing the concatemer junction were converted into nicked circular, linear and cross-linked linear molecules by a nuclease isolated from vaccinia virions. The region-specific cleavage near the border of the hairpin loop and the formation of DNA cross-links in some of the molecules is consistent with the nuclease acting as a nicking-closing enzyme that participates in the resolution of mature termini from replicative concatemer intermediates.
Collapse
Affiliation(s)
- M Merchlinsky
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | | | | |
Collapse
|
37
|
Abstract
DNA topoisomerase mutants of Escherichia coli and Saccharomyces cerevisiae were used to study the topological state of intracellular DNA. In E. coli, it is shown that switching off the gene topA encoding DNA topoisomerase I leads to an increase in the degree of negative supercoiling of intracellular DNA and inhibition of the growth of the cells: a d(pCpG)16.d(pCpG)16 sequence on a plasmid is also shown to flip from a right-handed B-helical structure to a left-handed Z-helical structure in vivo when topA is switched off. In S. cerevisiae, the topological state of intracellular DNA is little affected by the cellular levels of the topoisomerases.
Collapse
Affiliation(s)
- G N Giaever
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | | | |
Collapse
|
38
|
Abstract
Left-handed DNA is shown to exist and elicit a biological response in Escherichia coli. A plasmid encoding the gene for a temperature-sensitive Eco RI methylase (MEco RI) was cotransformed with different plasmids containing inserts that had varying capacities to form left-handed helices or cruciforms with a target Eco RI site in the center or at the ends of the inserts. Inhibition of methylation in vivo was found for the stable inserts with the longest left-handed (presumably Z) helices. In vitro methylation with the purified MEco RI agreed with the results in vivo. Supercoil-induced changes in the structure of the primary helix in vitro provided confirmation that left-handed helices were responsible for this behavior. The presence in vivo of left-handed inserts elicits specific deletions and plasmid incompatibilities in certain instances.
Collapse
Affiliation(s)
- A Jaworski
- Department of Biochemistry, School of Medicine, University of Alabama, Birmingham 35294
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
The Clarke-Carbon library with Escherichia coli DNA cloned into plasmid ColE1 was partially screened for Z-DNA with the monoclonal antibody Z-D11 using the retardation of the covalently closed circular DNA-protein complex by nitrocellulose filters. About 85% of the plasmids tested at "natural" supercoil density bound to the filter. Together with binding studies of the iodinated antibody, one Z-DNA segment per about 18,000 base-pairs of E. coli DNA is observed. One clone containing the region around the lactose operon, pLC20-30, was studied in detail. Subcloning a partial Sau3A digest and selection with antibodies gave three different Z-forming sites. They were mapped to within about +/- 20 base-pairs by preparing unidirectional deletion clones, selection of protein binding plasmids on nitrocellulose filters and subsequent sizing on agarose gels. The size of the Z-DNA-forming segments was estimated from two-dimensional gels of topoisomer mixtures. Together with results from sequencing of the plasmid DNA using exonuclease III to create single-stranded templates, stretches of alternating purine-pyrimidine tracts of 12 to 15 base-pairs were found to be responsible for Z-DNA formation. One of the sites was found in the middle of the lacZ gene, where it might be an obstacle for RNA polymerase. The methods used here should also be helpful for studying other DNA-protein sites, especially if they exist only in supercoiled DNA.
Collapse
|
41
|
Greaves DR, Patient RK. RecBC, sbcB independent, (AT)n-mediated deletion of sequences flanking a Xenopus laevis beta globin gene on propagation in E. coli. Nucleic Acids Res 1986; 14:4147-58. [PMID: 3012463 PMCID: PMC339851 DOI: 10.1093/nar/14.10.4147] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasmids containing sequences 3' of the adult beta 1 globin gene of Xenopus laevis are unstable on propagation in a range of E. coli host strains. Up to 300 bp of Xenopus DNA are lost by rec A independent recombination between (AT)37 and (AT)17 sequences. Additionally, smaller deletions occurring in or around the (AT)37 sequence are observed. Deletion of these potential cruciform structures occurs in the absence of exonuclease I, exonuclease V and exonuclease VIII as the same pattern of deletion events is observed in recA recBC sbcB and recBC sbcA recE strains.
Collapse
|