1
|
Elalaily T, Berke M, Lilja I, Savin A, Fülöp G, Kupás L, Kanne T, Nygård J, Makk P, Hakonen P, Csonka S. Switching dynamics in Al/InAs nanowire-based gate-controlled superconducting switch. Nat Commun 2024; 15:9157. [PMID: 39443447 PMCID: PMC11500174 DOI: 10.1038/s41467-024-53224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The observation of the gate-controlled supercurrent (GCS) effect in superconducting nanostructures increased the hopes for realizing a superconducting equivalent of semiconductor field-effect transistors. However, recent works attribute this effect to various leakage-based scenarios, giving rise to a debate on its origin. A proper understanding of the microscopic process underlying the GCS effect and the relevant time scales would be beneficial to evaluate the possible applications. In this work, we observed gate-induced two-level fluctuations between the superconducting state and normal state in Al/InAs nanowires (NWs). Noise correlation measurements show a strong correlation with leakage current fluctuations. The time-domain measurements show that these fluctuations have Poissonian statistics. Our detailed analysis of the leakage current measurements reveals that it is consistent with the stress-induced leakage current (SILC), in which inelastic tunneling with phonon generation is the predominant transport mechanism. Our findings shed light on the microscopic origin of the GCS effect and give deeper insight into the switching dynamics of the superconducting NW under the influence of the strong gate voltage.
Collapse
Affiliation(s)
- Tosson Elalaily
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Müegyetem rkp. 3., H-1111, Budapest, Hungary
- MTA-BME Superconducting Nanoelectronics Momentum Research Group, Müegyetem rkp. 3., H-1111, Budapest, Hungary
- Department of Physics, Faculty of Science, Tanta University, Al-Geish St., 31527, Tanta, Gharbia, Egypt
- Low-Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076, Aalto, Finland
| | - Martin Berke
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Müegyetem rkp. 3., H-1111, Budapest, Hungary
- MTA-BME Superconducting Nanoelectronics Momentum Research Group, Müegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Ilari Lilja
- Low-Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076, Aalto, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Alexander Savin
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - Gergő Fülöp
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Müegyetem rkp. 3., H-1111, Budapest, Hungary
- MTA-BME Superconducting Nanoelectronics Momentum Research Group, Müegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Lőrinc Kupás
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Müegyetem rkp. 3., H-1111, Budapest, Hungary
- MTA-BME Superconducting Nanoelectronics Momentum Research Group, Müegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Thomas Kanne
- Center for Quantum Devices and Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Jesper Nygård
- Center for Quantum Devices and Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Péter Makk
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Müegyetem rkp. 3., H-1111, Budapest, Hungary.
- MTA-BME Correlated van der Waals Structures Momentum Research Group, Müegyetem rkp. 3., H-1111, Budapest, Hungary.
| | - Pertti Hakonen
- Low-Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076, Aalto, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland.
| | - Szabolcs Csonka
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Müegyetem rkp. 3., H-1111, Budapest, Hungary
- MTA-BME Superconducting Nanoelectronics Momentum Research Group, Müegyetem rkp. 3., H-1111, Budapest, Hungary
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós út 29-33., 1121, Budapest, Hungary
| |
Collapse
|
2
|
Chakraborti H, Gorini C, Knothe A, Liu MH, Makk P, Parmentier FD, Perconte D, Richter K, Roulleau P, Sacépé B, Schönenberger C, Yang W. Electron wave and quantum optics in graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:393001. [PMID: 38697131 DOI: 10.1088/1361-648x/ad46bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
In the last decade, graphene has become an exciting platform for electron optical experiments, in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which gives the possibility of realising gap-less and compact p-n interfaces with high precision. The latter host non-trivial states,e.g., snake states in moderate magnetic fields, and serve as building blocks of complex electron interferometers. Thanks to the Dirac spectrum and its non-trivial Berry phase, the internal (valley and sublattice) degrees of freedom, and the possibility to tailor the band structure using proximity effects, such interferometers open up a completely new playground based on novel device architectures. In this review, we introduce the theoretical background of graphene electron optics, fabrication methods used to realise electron-optical devices, and techniques for corresponding numerical simulations. Based on this, we give a comprehensive review of ballistic transport experiments and simple building blocks of electron optical devices both in single and bilayer graphene, highlighting the novel physics that is brought in compared to conventional 2DEGs. After describing the different magnetic field regimes in graphene p-n junctions and nanostructures, we conclude by discussing the state of the art in graphene-based Mach-Zender and Fabry-Perot interferometers.
Collapse
Affiliation(s)
| | - Cosimo Gorini
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Angelika Knothe
- Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Ming-Hao Liu
- Department of Physics and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
| | - Péter Makk
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest H-1111, Hungary
- MTA-BME Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3., Budapest H-1111, Hungary
| | | | - David Perconte
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Klaus Richter
- Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Preden Roulleau
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Benjamin Sacépé
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | | | - Wenmin Yang
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
3
|
Ubbelohde N, Freise L, Pavlovska E, Silvestrov PG, Recher P, Kokainis M, Barinovs G, Hohls F, Weimann T, Pierz K, Kashcheyevs V. Two electrons interacting at a mesoscopic beam splitter. NATURE NANOTECHNOLOGY 2023; 18:733-740. [PMID: 37169898 DOI: 10.1038/s41565-023-01370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/10/2023] [Indexed: 05/13/2023]
Abstract
The nonlinear response of a beam splitter to the coincident arrival of interacting particles enables numerous applications in quantum engineering and metrology. Yet, it poses considerable challenges to control interactions on the individual particle level. Here, we probe the coincidence correlations at a mesoscopic constriction between individual ballistic electrons in a system with unscreened Coulomb interactions and introduce concepts to quantify the associated parametric nonlinearity. The full counting statistics of joint detection allows us to explore the interaction-mediated energy exchange. We observe an increase from 50% up to 70% in coincidence counts between statistically indistinguishable on-demand sources and a correlation signature consistent with the independent tomography of the electron emission. Analytical modelling and numerical simulations underpin the consistency of the experimental results with Coulomb interactions between two electrons counterpropagating in a quadratic saddle potential. Coulomb repulsion energy and beam splitter dispersion define a figure of merit, which in this experiment is demonstrated to be sufficiently large to enable future applications, such as single-shot in-flight detection and quantum logic gates.
Collapse
Affiliation(s)
- Niels Ubbelohde
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany.
| | - Lars Freise
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | | | - Peter G Silvestrov
- Institut für Mathematische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Patrik Recher
- Institut für Mathematische Physik, Technische Universität Braunschweig, Braunschweig, Germany
- Laboratory for Emerging Nanometrology Braunschweig, Braunschweig, Germany
| | - Martins Kokainis
- Department of Physics, University of Latvia, Riga, Latvia
- Faculty of Computing, University of Latvia, Riga, Latvia
| | - Girts Barinovs
- Department of Physics, University of Latvia, Riga, Latvia
| | - Frank Hohls
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Thomas Weimann
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Klaus Pierz
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | | |
Collapse
|
4
|
Wang J, Edlbauer H, Richard A, Ota S, Park W, Shim J, Ludwig A, Wieck AD, Sim HS, Urdampilleta M, Meunier T, Kodera T, Kaneko NH, Sellier H, Waintal X, Takada S, Bäuerle C. Coulomb-mediated antibunching of an electron pair surfing on sound. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01368-5. [PMID: 37169896 DOI: 10.1038/s41565-023-01368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/10/2023] [Indexed: 05/13/2023]
Abstract
Electron flying qubits are envisioned as potential information links within a quantum computer, but also promise-like photonic approaches-to serve as self-standing quantum processing units. In contrast to their photonic counterparts, electron-quantum-optics implementations are subject to Coulomb interactions, which provide a direct route to entangle the orbital or spin degree of freedom. However, controlled interaction of flying electrons at the single-particle level has not yet been established experimentally. Here we report antibunching of a pair of single electrons that is synchronously shuttled through a circuit of coupled quantum rails by means of a surface acoustic wave. The in-flight partitioning process exhibits a reciprocal gating effect which allows us to ascribe the observed repulsion predominantly to Coulomb interaction. Our single-shot experiment marks an important milestone on the route to realize a controlled-phase gate for in-flight quantum manipulations.
Collapse
Affiliation(s)
- Junliang Wang
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Hermann Edlbauer
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Aymeric Richard
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Shunsuke Ota
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba, Japan
| | - Wanki Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jeongmin Shim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arne Ludwig
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany
| | - Andreas D Wieck
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany
| | - Heung-Sun Sim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | - Tristan Meunier
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Tetsuo Kodera
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Nobu-Hisa Kaneko
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba, Japan
| | - Hermann Sellier
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Xavier Waintal
- Université Grenoble Alpes, CEA, INAC-Pheliqs, Grenoble, France
| | - Shintaro Takada
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba, Japan
| | | |
Collapse
|
5
|
Lee JYM, Hong C, Alkalay T, Schiller N, Umansky V, Heiblum M, Oreg Y, Sim HS. Partitioning of diluted anyons reveals their braiding statistics. Nature 2023; 617:277-281. [PMID: 37100910 DOI: 10.1038/s41586-023-05883-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/23/2023] [Indexed: 04/28/2023]
Abstract
Correlations of partitioned particles carry essential information about their quantumness1. Partitioning full beams of charged particles leads to current fluctuations, with their autocorrelation (namely, shot noise) revealing the particles' charge2,3. This is not the case when a highly diluted beam is partitioned. Bosons or fermions will exhibit particle antibunching (owing to their sparsity and discreteness)4-6. However, when diluted anyons, such as quasiparticles in fractional quantum Hall states, are partitioned in a narrow constriction, their autocorrelation reveals an essential aspect of their quantum exchange statistics: their braiding phase7. Here we describe detailed measurements of weakly partitioned, highly diluted, one-dimension-like edge modes of the one-third filling fractional quantum Hall state. The measured autocorrelation agrees with our theory of braiding anyons in the time domain (instead of braiding in space); with a braiding phase of 2θ = 2π/3, without any fitting parameters. Our work offers a relatively straightforward and simple method to observe the braiding statistics of exotic anyonic states, such as non-abelian states8, without resorting to complex interference experiments9.
Collapse
Affiliation(s)
- June-Young M Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Changki Hong
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Alkalay
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Schiller
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Vladimir Umansky
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Moty Heiblum
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Yuval Oreg
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - H-S Sim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
6
|
Chen X, Reichardt S, Lin ML, Leng YC, Lu Y, Wu H, Mei R, Wirtz L, Zhang X, Ferrari AC, Tan PH. Control of Raman Scattering Quantum Interference Pathways in Graphene. ACS NANO 2023; 17:5956-5962. [PMID: 36897053 PMCID: PMC10062028 DOI: 10.1021/acsnano.3c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Graphene is an ideal platform to study the coherence of quantum interference pathways by tuning doping or laser excitation energy. The latter produces a Raman excitation profile that provides direct insight into the lifetimes of intermediate electronic excitations and, therefore, on quantum interference, which has so far remained elusive. Here, we control the Raman scattering pathways by tuning the laser excitation energy in graphene doped up to 1.05 eV. The Raman excitation profile of the G mode indicates its position and full width at half-maximum are linearly dependent on doping. Doping-enhanced electron-electron interactions dominate the lifetimes of Raman scattering pathways and reduce Raman interference. This will provide guidance for engineering quantum pathways for doped graphene, nanotubes, and topological insulators.
Collapse
Affiliation(s)
- Xue Chen
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sven Reichardt
- Department
of Physics and Materials Science, University
of Luxembourg, Luxembourg 1511, Luxembourg
| | - Miao-Ling Lin
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yu-Chen Leng
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yan Lu
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Heng Wu
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Mei
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ludger Wirtz
- Department
of Physics and Materials Science, University
of Luxembourg, Luxembourg 1511, Luxembourg
| | - Xin Zhang
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Ping-Heng Tan
- State
Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center
of Materials Science and Optoelectronics Engineering and CAS Center
of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Bartolomei H, Bisognin R, Kamata H, Berroir JM, Bocquillon E, Ménard G, Plaçais B, Cavanna A, Gennser U, Jin Y, Degiovanni P, Mora C, Fève G. Observation of Edge Magnetoplasmon Squeezing in a Quantum Hall Conductor. PHYSICAL REVIEW LETTERS 2023; 130:106201. [PMID: 36962050 DOI: 10.1103/physrevlett.130.106201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Squeezing of the quadratures of the electromagnetic field has been extensively studied in optics and microwaves. However, previous works focused on the generation of squeezed states in a low impedance (Z_{0}≈50 Ω) environment. We report here on the demonstration of the squeezing of bosonic edge magnetoplasmon modes in a quantum Hall conductor whose characteristic impedance is set by the quantum of resistance (R_{K}≈25 kΩ), offering the possibility of an enhanced coupling to low-dimensional quantum conductors. By applying a combination of dc and ac drives to a quantum point contact, we demonstrate squeezing and observe a noise reduction 18% below the vacuum fluctuations. This level of squeezing can be improved by using more complex conductors, such as ac driven quantum dots or mesoscopic capacitors.
Collapse
Affiliation(s)
- H Bartolomei
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - R Bisognin
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - H Kamata
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - J-M Berroir
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - E Bocquillon
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln
| | - G Ménard
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - B Plaçais
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - A Cavanna
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - U Gennser
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - P Degiovanni
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - C Mora
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - G Fève
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
8
|
Observation of electronic modes in open cavity resonator. Nat Commun 2023; 14:415. [PMID: 36697407 PMCID: PMC9876930 DOI: 10.1038/s41467-023-36012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The resemblance between electrons and optical waves has strongly driven the advancement of mesoscopic physics, evidenced by the widespread use of terms such as fermion or electron optics. However, electron waves have yet to be understood in open cavity structures which have provided contemporary optics with rich insight towards non-Hermitian systems and complex interactions between resonance modes. Here, we report the realization of an open cavity resonator in a two-dimensional electronic system. We studied the resonant electron modes within the cavity and resolved the signatures of longitudinal and transverse quantization, showing that the modes are robust despite the cavity being highly coupled to the open background continuum. The transverse modes were investigated by applying a controlled deformation to the cavity, and their spatial distributions were further analyzed using magnetoconductance measurements and numerical simulation. These results lay the groundwork to exploring matter waves in the context of modern optical frameworks.
Collapse
|
9
|
Liu ZF, Chen C, Xu JM, Cheng ZM, Ren ZC, Dong BW, Lou YC, Yang YX, Xue ST, Liu ZH, Zhu WZ, Wang XL, Wang HT. Hong-Ou-Mandel Interference between Two Hyperentangled Photons Enables Observation of Symmetric and Antisymmetric Particle Exchange Phases. PHYSICAL REVIEW LETTERS 2022; 129:263602. [PMID: 36608177 DOI: 10.1103/physrevlett.129.263602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Two-photon Hong-Ou-Mandel (HOM) interference is a fundamental quantum effect with no classical counterpart. The existing research on two-photon interference was mainly limited in one degree of freedom (DOF); hence, it is still a challenge to realize quantum interference in multiple DOFs. Here, we demonstrate HOM interference between two hyperentangled photons in two DOFs of polarization and orbital angular momentum (OAM) for all 16 hyperentangled Bell states. We observe hyperentangled two-photon interference with a bunching effect for ten symmetric states (nine boson-boson states and one fermion-fermion state) and an antibunching effect for six antisymmetric states (three boson-fermion states and three fermion-boson states). More interestingly, expanding the Hilbert space by introducing an extra DOF for two photons enables one to transfer the unmeasurable external phase in the initial DOF to a measurable internal phase in the expanded two DOFs. We directly measured the symmetric exchange phases being 0.012±0.002, 0.025±0.002, and 0.027±0.002 in radian for the three boson states in OAM and the antisymmetric exchange phase being 0.991π±0.002 in radian for the other fermion state, as theoretical predictions. Our Letter may not only pave the way for more wide applications of quantum interference, but also develop new technologies by expanding Hilbert space in more DOFs.
Collapse
Affiliation(s)
- Zhi-Feng Liu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Chao Chen
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Jia-Min Xu
- Hefei National Laboratory, Hefei 230088, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Mo Cheng
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Zhi-Cheng Ren
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Bo-Wen Dong
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yan-Chao Lou
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yu-Xiang Yang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Shu-Tian Xue
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Zhi-Hong Liu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Wen-Zheng Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Xi-Lin Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Hefei National Laboratory, Hefei 230088, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Tian Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Lee JYM, Sim HS. Non-Abelian anyon collider. Nat Commun 2022; 13:6660. [PMCID: PMC9636162 DOI: 10.1038/s41467-022-34329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractA collider where particles are injected onto a beam splitter from opposite sides has been used for identifying quantum statistics of identical particles. The collision leads to bunching of the particles for bosons and antibunching for fermions. In recent experiments, a collider was applied to a fractional quantum Hall regime hosting Abelian anyons. The observed negative cross-correlation of electrical currents cannot be understood with fermionic antibunching. Here we predict, based on a conformal field theory and a non-perturbative treatment of non-equilibrium anyon injection, that the collider provides a tool for observation of the braiding statistics of various Abelian and non-Abelian anyons. Its dominant process is not direct collision between injected anyons, contrary to common expectation, but braiding between injected anyons and an anyon excited at the collider. The dependence of the resulting negative cross-correlation on the injection currents distinguishes non-Abelian SU(2)k anyons, Ising anyons, and Abelian Laughlin anyons.
Collapse
|
11
|
Ryu S, Sim HS. Partition of Two Interacting Electrons by a Potential Barrier. PHYSICAL REVIEW LETTERS 2022; 129:166801. [PMID: 36306761 DOI: 10.1103/physrevlett.129.166801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Scattering or tunneling of an electron at a potential barrier is a fundamental quantum effect. Electron-electron interactions often affect the scattering, and understanding of the interaction effect is crucial in detection of various phenomena of electron transport and their application to electron quantum optics. We theoretically study the partition and collision of two interacting hot electrons at a potential barrier. We predict their kinetic energy change by their Coulomb interaction during the scattering delay time inside the barrier. The energy change results in characteristic deviation of the partition probabilities from the noninteracting case. The derivation includes nonmonotonic dependence of the probabilities on the barrier height, which qualitatively agrees with recent experiments, and reduction of the fermionic antibunching.
Collapse
Affiliation(s)
- Sungguen Ryu
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain
| | - H-S Sim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
12
|
Bouchard F, Sit A, Zhang Y, Fickler R, Miatto FM, Yao Y, Sciarrino F, Karimi E. Two-photon interference: the Hong-Ou-Mandel effect. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:012402. [PMID: 33232945 DOI: 10.1088/1361-6633/abcd7a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.
Collapse
Affiliation(s)
- Frédéric Bouchard
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Alicia Sit
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Yingwen Zhang
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Robert Fickler
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Filippo M Miatto
- Télécom Paris, LTCI, Institut Polytechnique de Paris, 19 Place Marguerite Peray, 91120 Palaiseau, France
| | - Yuan Yao
- Télécom Paris, LTCI, Institut Polytechnique de Paris, 19 Place Marguerite Peray, 91120 Palaiseau, France
| | - Fabio Sciarrino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Ebrahim Karimi
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
13
|
Bartolomei H, Kumar M, Bisognin R, Marguerite A, Berroir JM, Bocquillon E, Plaçais B, Cavanna A, Dong Q, Gennser U, Jin Y, Fève G. Fractional statistics in anyon collisions. Science 2020; 368:173-177. [PMID: 32273465 DOI: 10.1126/science.aaz5601] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/12/2020] [Indexed: 11/03/2022]
Abstract
Two-dimensional systems can host exotic particles called anyons whose quantum statistics are neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall effect at filling factor ν = 1/m (where m is an odd integer) have been predicted to obey Abelian fractional statistics, with a phase ϕ associated with the exchange of two particles equal to π/m However, despite numerous experimental attempts, clear signatures of fractional statistics have remained elusive. We experimentally demonstrate Abelian fractional statistics at filling factor ν = ⅓ by measuring the current correlations resulting from the collision between anyons at a beamsplitter. By analyzing their dependence on the anyon current impinging on the splitter and comparing with recent theoretical models, we extract ϕ = π/3, in agreement with predictions.
Collapse
Affiliation(s)
- H Bartolomei
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - M Kumar
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - R Bisognin
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - A Marguerite
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - J-M Berroir
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - E Bocquillon
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - B Plaçais
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - A Cavanna
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - Q Dong
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - U Gennser
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, Palaiseau, France
| | - G Fève
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| |
Collapse
|
14
|
Freise L, Gerster T, Reifert D, Weimann T, Pierz K, Hohls F, Ubbelohde N. Trapping and Counting Ballistic Nonequilibrium Electrons. PHYSICAL REVIEW LETTERS 2020; 124:127701. [PMID: 32281866 DOI: 10.1103/physrevlett.124.127701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate the trapping of electrons propagating ballistically at far-above-equilibrium energies in GaAs/AlGaAs heterostructures in high magnetic field. We find low-loss transport along a gate-modified mesa edge in contrast to an effective decay of excess energy for the loop around a neighboring, mesa-confined node, enabling high-fidelity trapping. Measuring the full counting statistics via single-charge detection yields the trapping (and escape) probabilities of electrons scattered (and excited) within the node. Energetic and arrival-time distributions of captured electron wave packets are characterized by modulating tunnel barrier transmission.
Collapse
Affiliation(s)
- Lars Freise
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Thomas Gerster
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - David Reifert
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Thomas Weimann
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Klaus Pierz
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Frank Hohls
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Niels Ubbelohde
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| |
Collapse
|
15
|
Takada S, Edlbauer H, Lepage HV, Wang J, Mortemousque PA, Georgiou G, Barnes CHW, Ford CJB, Yuan M, Santos PV, Waintal X, Ludwig A, Wieck AD, Urdampilleta M, Meunier T, Bäuerle C. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat Commun 2019; 10:4557. [PMID: 31594936 PMCID: PMC6783466 DOI: 10.1038/s41467-019-12514-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/10/2019] [Indexed: 11/28/2022] Open
Abstract
Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.
Collapse
Affiliation(s)
- Shintaro Takada
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Hermann Edlbauer
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
| | - Hugo V Lepage
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Junliang Wang
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
| | | | - Giorgos Georgiou
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
- Université Savoie Mont-Blanc, CNRS, IMEP-LAHC, 73370, Le Bourget du Lac, France
| | - Crispin H W Barnes
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Christopher J B Ford
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Mingyun Yuan
- Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | - Paulo V Santos
- Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | - Xavier Waintal
- Université Grenoble Alpes, CEA, IRIG-Pheliqs, 38000, Grenoble, France
| | - Arne Ludwig
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Andreas D Wieck
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | | | - Tristan Meunier
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
| | | |
Collapse
|
16
|
Bisognin R, Marguerite A, Roussel B, Kumar M, Cabart C, Chapdelaine C, Mohammad-Djafari A, Berroir JM, Bocquillon E, Plaçais B, Cavanna A, Gennser U, Jin Y, Degiovanni P, Fève G. Quantum tomography of electrical currents. Nat Commun 2019; 10:3379. [PMID: 31358764 PMCID: PMC6662746 DOI: 10.1038/s41467-019-11369-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/04/2019] [Indexed: 11/08/2022] Open
Abstract
In quantum nanoelectronics, time-dependent electrical currents are built from few elementary excitations emitted with well-defined wavefunctions. However, despite the realization of sources generating quantized numbers of excitations, and despite the development of the theoretical framework of time-dependent quantum electronics, extracting electron and hole wavefunctions from electrical currents has so far remained out of reach, both at the theoretical and experimental levels. In this work, we demonstrate a quantum tomography protocol which extracts the generated electron and hole wavefunctions and their emission probabilities from any electrical current. It combines two-particle interferometry with signal processing. Using our technique, we extract the wavefunctions generated by trains of Lorentzian pulses carrying one or two electrons. By demonstrating the synthesis and complete characterization of electronic wavefunctions in conductors, this work offers perspectives for quantum information processing with electrical currents and for investigating basic quantum physics in many-body systems.
Collapse
Affiliation(s)
- R Bisognin
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - A Marguerite
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - B Roussel
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France
- European Space Agency-Advanced Concepts Team, ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands
| | - M Kumar
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - C Cabart
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France
| | - C Chapdelaine
- Laboratoire des signaux et systèmes, CNRS, Centrale-Supélec-Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - A Mohammad-Djafari
- Laboratoire des signaux et systèmes, CNRS, Centrale-Supélec-Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - J-M Berroir
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - E Bocquillon
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - B Plaçais
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - A Cavanna
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91120, Palaiseau, France
| | - U Gennser
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91120, Palaiseau, France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91120, Palaiseau, France
| | - P Degiovanni
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France
| | - G Fève
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France.
| |
Collapse
|
17
|
Yin Y. Quasiparticle states of on-demand coherent electron sources. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:245301. [PMID: 30870815 DOI: 10.1088/1361-648x/ab0fc4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We introduce a general approach to extract the wave function of quasiparticles from the scattering matrix of a quantum conductor, which offers a unified way to study the features of quasiparticles from on-demand coherent electron sources with different configurations. We first show that the quasiparticles are particle-hole pairs in the Fermi sea, which can be indexed with the flow density [Formula: see text]. Both the excitation probability and the particle/hole components of the quasiparticles can be solely decided from the polar decomposition of the scattering matrix. By using such approach, we then investigate the quasiparticles from the electron sources based on a quantum point contact and a quantum dot (QD). We find that the quasiparticles from different electron sources have different features, which can be seen from the corresponding [Formula: see text]-dependence of the excitation probability and the particle/hole components. We further show that these features can also be characterized by the full counting statistics of the quasiparticles, which can be approximated by a binomial distribution with cumulant generating function [Formula: see text]. For the quantum-point-contact-based electron sources, both [Formula: see text] and [Formula: see text] are monotonically increasing functions of the driving strength. In contrast, for the quantum-dot-based electron sources, both [Formula: see text] and [Formula: see text] can exhibit oscillations, which can be attributed to the interplay between the charge excitation and charge relaxation processes in the QD.
Collapse
Affiliation(s)
- Y Yin
- College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| |
Collapse
|
18
|
Kodama T, Osakabe N. Mechanism for correlation in a coherent electron beam. Microscopy (Oxf) 2019; 68:133-143. [PMID: 30668808 DOI: 10.1093/jmicro/dfy129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
The correlation of electron counts from two detectors illuminated by a coherent electron beam is analyzed by associating the path of the electron beam through the lenses with the direct Coulomb interaction between two individual electrons. This is shown to lead to a full statistical description of the electron counts. The dominant contribution to the correlation is found to be due to the trajectory displacement caused by the repulsive Coulomb interaction between the first anode and the cathode tip, and the correlation of electron counts is found to depend on the amount of defocusing on the shift of the virtual source for two electrons within the correlation time. The Coulomb scatterings, which altered the direction of two neighbor electrons, occur during the acceleration, leading to a significant decrease in the electron density. The Coulomb potential with no screening will then cause large-angle scattering of nearest-neighbor electrons within the correlation time. These results are consistent with those obtained by a previous experiment.
Collapse
Affiliation(s)
- Tetsuji Kodama
- Faculty of Science and Technology, Meijo University, Nagoya, Japan
| | | |
Collapse
|
19
|
Dittel C, Dufour G, Walschaers M, Weihs G, Buchleitner A, Keil R. Totally Destructive Many-Particle Interference. PHYSICAL REVIEW LETTERS 2018; 120:240404. [PMID: 29956991 DOI: 10.1103/physrevlett.120.240404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 06/08/2023]
Abstract
In a general, multimode scattering setup, we show how the permutation symmetry of a many-particle input state determines those scattering unitaries that exhibit strictly suppressed many-particle transition events. We formulate purely algebraic suppression laws that identify these events and show that the many-particle interference at their origin is robust under weak disorder and imperfect indistinguishability of the interfering particles. Finally, we demonstrate that all suppression laws so far described in the literature are embedded in the general framework that we here introduce.
Collapse
Affiliation(s)
- Christoph Dittel
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Gabriel Dufour
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität-Freiburg, Albertstr. 19, 79104 Freiburg, Germany
| | - Mattia Walschaers
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France; 4 place Jussieu, F-75252 Paris, France
| | - Gregor Weihs
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Robert Keil
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Bäuerle C, Christian Glattli D, Meunier T, Portier F, Roche P, Roulleau P, Takada S, Waintal X. Coherent control of single electrons: a review of current progress. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056503. [PMID: 29355831 DOI: 10.1088/1361-6633/aaa98a] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.
Collapse
Affiliation(s)
- Christopher Bäuerle
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shchesnovich VS. Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks. Sci Rep 2017; 7:31. [PMID: 28194000 PMCID: PMC5428393 DOI: 10.1038/s41598-017-00044-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/20/2016] [Indexed: 11/09/2022] Open
Abstract
For N indistinguishable bosons or fermions impinged on a M-port Haar-random unitary network the average probability to count n 1, … n r particles in a small number r ≪ N of binned-together output ports takes a Gaussian form as N ≫ 1. The discovered Gaussian asymptotic law is the well-known asymptotic law for distinguishable particles, governed by a multinomial distribution, modified by the quantum statistics with stronger effect for greater particle density N/M. Furthermore, it is shown that the same Gaussian law is the asymptotic form of the probability to count particles at the output bins of a fixed multiport with the averaging performed over all possible configurations of the particles in the input ports. In the limit N → ∞, the average counting probability for indistinguishable bosons, fermions, and distinguishable particles differs only at a non-vanishing particle density N/M and only for a singular binning K/M → 1, where K output ports belong to a single bin.
Collapse
Affiliation(s)
- Valery S Shchesnovich
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210-170, Brazil.
| |
Collapse
|
22
|
Bürkle M, Xiang L, Li G, Rostamian A, Hines T, Guo S, Zhou G, Tao N, Asai Y. The Orbital Selection Rule for Molecular Conductance as Manifested in Tetraphenyl-Based Molecular Junctions. J Am Chem Soc 2017; 139:2989-2993. [DOI: 10.1021/jacs.6b10837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Marius Bürkle
- National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Computational
Design of Advanced Functional Materials (CD-FMat), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
| | - Limin Xiang
- Center for Bioelectronics and Biosensors,
Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Guangfeng Li
- Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P.R. China
| | - Ali Rostamian
- Center for Bioelectronics and Biosensors,
Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas Hines
- Center for Bioelectronics and Biosensors,
Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaoyin Guo
- Center for Bioelectronics and Biosensors,
Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Gang Zhou
- Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P.R. China
| | - Nongjian Tao
- Center for Bioelectronics and Biosensors,
Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Yoshihiro Asai
- National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Computational
Design of Advanced Functional Materials (CD-FMat), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
23
|
Lima LRF, Hernández AR, Pinheiro FA, Lewenkopf C. A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:505303. [PMID: 27768605 DOI: 10.1088/0953-8984/28/50/505303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Based on the investigation of the multi-terminal conductance of a system composed of two graphene nanoribbons, in which one is on top of the other and rotated by [Formula: see text], we propose a setup for a 50/50 electronic beam splitter that neither requires large magnetic fields nor ultra low temperatures. Our findings are based on an atomistic tight-binding description of the system and on the Green function method to compute the Landauer conductance. We demonstrate that this system acts as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the doping (Fermi energy). We show that this device is robust against thermal fluctuations and long range disorder, as zigzag valley chiral states of the nanoribbons are protected against backscattering. We suggest that the proposed device can be applied as the fundamental element of the Hong-Ou-Mandel interferometer, as well as a building block of many devices in electron optics.
Collapse
Affiliation(s)
- Leandro R F Lima
- Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil
| | | | | | | |
Collapse
|
24
|
Toyoda K, Hiji R, Noguchi A, Urabe S. Hong–Ou–Mandel interference of two phonons in trapped ions. Nature 2015; 527:74-7. [DOI: 10.1038/nature15735] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/08/2015] [Indexed: 11/09/2022]
|
25
|
Marian D, Colomés E, Oriols X. Time-dependent exchange and tunneling: detection at the same place of two electrons emitted simultaneously from different sources. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:245302. [PMID: 26030519 DOI: 10.1088/0953-8984/27/24/245302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two-particle scattering probabilities in tunneling scenarios with exchange interaction are analyzed with quasi-particle wave packets. Two initial one-particle wave packets (with opposite central momentums) are spatially localized at each side of a barrier. After impinging upon a tunneling barrier, each wave packet splits into transmitted and reflected components. When the initial two-particle anti-symmetrical state is defined as a Slater determinant of any type of (normalizable) one-particle wave packet, it is shown that the probability of detecting two (identically injected) electrons at the same side of the barrier is different from zero in very common (single or double barrier) scenarios. In some particular scenarios, the transmitted and reflected components become orthogonal and the mentioned probabilities reproduce those values associated to distinguishable particles. These unexpected non-zero probabilities are still present when non-separable Coulomb interaction or non-symmetrical potentials are considered. On the other hand, for initial wave packets close to Hamiltonian eigenstates, the usual zero two-particle probability for electrons at the same side of the barrier found in the literature is recovered. The generalization to many-particle scattering probabilities with quasi-particle wave packets for low and high phase-space density are also analyzed. The far-reaching consequences of these non-zero probabilities in the accurate evaluation of quantum noise in mesoscopic systems are briefly indicated.
Collapse
Affiliation(s)
- D Marian
- Dipartimento di Fisica dell'Università di Genova and INFN sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | | | | |
Collapse
|
26
|
Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization. Nat Commun 2015; 6:6854. [PMID: 25896625 PMCID: PMC4410626 DOI: 10.1038/ncomms7854] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/04/2015] [Indexed: 11/08/2022] Open
Abstract
Coulomb interaction has a striking effect on electronic propagation in one-dimensional conductors. The interaction of an elementary excitation with neighbouring conductors favours the emergence of collective modes, which eventually leads to the destruction of the Landau quasiparticle. In this process, an injected electron tends to fractionalize into separated pulses carrying a fraction of the electron charge. Here we use two-particle interferences in the electronic analogue of the Hong-Ou-Mandel experiment in a quantum Hall conductor at filling factor 2 to probe the fate of a single electron emitted in the outer edge channel and interacting with the inner one. By studying both channels, we analyse the propagation of the single electron and the generation of interaction-induced collective excitations in the inner channel. These complementary pieces of information reveal the fractionalization process in the time domain and establish its relevance for the destruction of the quasiparticle, which degrades into the collective modes. A charge injected into the edge of a correlated one-dimensional system can split into separate charge packages. Freulon et al. now study this electron fractionalization on the picosecond timescale using Hong-Ou-Mandel interferometry.
Collapse
|
27
|
Ubbelohde N, Hohls F, Kashcheyevs V, Wagner T, Fricke L, Kästner B, Pierz K, Schumacher HW, Haug RJ. Partitioning of on-demand electron pairs. NATURE NANOTECHNOLOGY 2015; 10:46-49. [PMID: 25437747 DOI: 10.1038/nnano.2014.275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
The on-demand generation and separation of entangled photon pairs are key components of quantum information processing in quantum optics. In an electronic analogue, the decomposition of electron pairs represents an essential building block for using the quantum state of ballistic electrons in electron quantum optics. The scattering of electrons has been used to probe the particle statistics of stochastic sources in Hanbury Brown and Twiss experiments and the recent advent of on-demand sources further offers the possibility to achieve indistinguishability between multiple sources in Hong-Ou-Mandel experiments. Cooper pairs impinging stochastically at a mesoscopic beamsplitter have been successfully partitioned, as verified by measuring the coincidence of arrival. Here, we demonstrate the splitting of electron pairs generated on demand. Coincidence correlation measurements allow the reconstruction of the full counting statistics, revealing regimes of statistically independent, distinguishable or correlated partitioning, and have been envisioned as a source of information on the quantum state of the electron pair. The high pair-splitting fidelity opens a path to future on-demand generation of spin-entangled electron pairs from a suitably prepared two-electron quantum-dot ground state.
Collapse
Affiliation(s)
- Niels Ubbelohde
- Institut für Festkörperphysik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Frank Hohls
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | | | - Timo Wagner
- Institut für Festkörperphysik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Lukas Fricke
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Bernd Kästner
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Klaus Pierz
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | | | - Rolf J Haug
- Institut für Festkörperphysik, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
28
|
Minimal-excitation states for electron quantum optics using levitons. Nature 2013; 502:659-63. [PMID: 24153178 DOI: 10.1038/nature12713] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/18/2013] [Indexed: 11/08/2022]
Abstract
The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the time domain. Finally, the generation technique could be applied to cold atomic gases, leading to the possibility of atomic levitons.
Collapse
|
29
|
Observing fermionic statistics with photons in arbitrary processes. Sci Rep 2013; 3:1539. [PMID: 23531788 PMCID: PMC3609020 DOI: 10.1038/srep01539] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 11/08/2022] Open
Abstract
Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here.
Collapse
|
30
|
Bose S, Home D. Duality in entanglement enabling a test of quantum indistinguishability unaffected by interactions. PHYSICAL REVIEW LETTERS 2013; 110:140404. [PMID: 25166965 DOI: 10.1103/physrevlett.110.140404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Indexed: 06/03/2023]
Abstract
We point out an earlier unnoticed implication of quantum indistinguishability, namely, a property which we call "dualism" that characterizes the entanglement of two identical particles (say, two ions of the same species)--a feature which is absent in the entanglement of two nonidentical particles (say, two ions of different species). A crucial application of this property is that it can be used to test quantum indistinguishability without bringing the relevant particles together, thereby avoiding the effects of mutual interaction. This is in contrast to the existing tests of quantum indistinguishability. Such a scheme, being independent of the nature and strength of mutual interactions of the identical particles involved, has potential applications, including the probing of the transition from quantum indistinguishability to classical distinguishability.
Collapse
Affiliation(s)
- S Bose
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - D Home
- CAPSS, Physics Department, Bose Institute, Salt Lake, Sector V, Kolkata 700097, India
| |
Collapse
|
31
|
Abstract
The interference between quantum amplitude for two electrons, emitted from two source points, to be detected at two detection points, is a direct result of quantum exchange statistics. Such interference is observed in the coincidence probability, compared with that of statistically independent electrons, by computing the time correlation function from the arrival times of the electrons. When the two detectors are separated by a distance less than the coherence length, the coincidence probability is suppressed for electrons (antibunching) due to the Pauli principle, even though they do not interact with each other. However, electrons are charged particles. The Coulomb potential, which governs the scattering of one charged particle by another, is so long ranged. It is obvious that we must consider the Pauli principle and the Coulomb interactions simultaneously. This paper deals with basic experimental and theoretical investigations of the antibunching behavior of electrons in a free beam by considering the Pauli principle and the direct Coulomb interaction between two individual electrons. The experimentally found dependences are described in a model which considers the Coulomb scattering and theoretical values of correlation signals evaluated by analytical calculations agree with those determined by experiment. A study of the time correlation function from the arrival times of the electrons will lead to an understanding of the physical processes that take place in electron guns.
Collapse
Affiliation(s)
- Tetsuji Kodama
- Faculty of Science and Technology, Meijo University, Nagoya 468-8502, Japan.
| | | |
Collapse
|
32
|
Schönenberger C. Two Indistinguishable Electrons Interfere in an Electronic Device. Science 2013; 339:1041-2. [DOI: 10.1126/science.1234199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Christian Schönenberger
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4052 Basel, Switzerland
| |
Collapse
|
33
|
Bocquillon E, Freulon V, Berroir JM, Degiovanni P, Plaçais B, Cavanna A, Jin Y, Fève G. Coherence and indistinguishability of single electrons emitted by independent sources. Science 2013; 339:1054-7. [PMID: 23348504 DOI: 10.1126/science.1232572] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The on-demand emission of coherent and indistinguishable electrons by independent synchronized sources is a challenging task of quantum electronics, in particular regarding its application for quantum information processing. Using two independent on-demand electron sources, we triggered the emission of two single-electron wave packets at different inputs of an electronic beam splitter. Whereas classical particles would be randomly partitioned by the splitter, we observed two-particle interference resulting from quantum exchange. Both electrons, emitted in indistinguishable wave packets with synchronized arrival time on the splitter, exited in different outputs as recorded by the low-frequency current noise. The demonstration of two-electron interference provides the possibility of manipulating coherent and indistinguishable single-electron wave packets in quantum conductors.
Collapse
Affiliation(s)
- E Bocquillon
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR8551), Université Pierre et Marie Curie, Université Paris Diderot, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 2011; 477:435-8. [DOI: 10.1038/nature10416] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/04/2011] [Indexed: 11/09/2022]
|
35
|
Kim NY, Recher P, Oliver WD, Yamamoto Y, Kong J, Dai H. Tomonaga-Luttinger liquid features in ballistic single-walled carbon nanotubes: conductance and shot noise. PHYSICAL REVIEW LETTERS 2007; 99:036802. [PMID: 17678308 DOI: 10.1103/physrevlett.99.036802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Indexed: 05/16/2023]
Abstract
We study the electrical transport properties of well-contacted ballistic single-walled carbon nanotubes in a three-terminal configuration at low temperatures. We observe signatures of strong electron-electron interactions: the conductance exhibits bias-voltage-dependent amplitudes of quantum interference oscillation, and both the current noise and Fano factor manifest bias-voltage-dependent power-law scalings. We analyze our data within the Tomonaga-Luttinger liquid model using the nonequilibrium Keldysh formalism and find qualitative and quantitative agreement between experiment and theory.
Collapse
Affiliation(s)
- Na Young Kim
- Quantum Entanglement Project, SORST, JST, E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Yeo P, Xin L, Goh E, New LS, Zeng P, Wu X, Venkatesh P, Kantharaj E. Development and validation of high-performance liquid chromatography–tandem mass spectrometry assay for 6-(3-benzoyl-ureido)-hexanoic acid hydroxyamide, a novel HDAC inhibitor, in mouse plasma for pharmacokinetic studies. Biomed Chromatogr 2007; 21:184-9. [PMID: 17221921 DOI: 10.1002/bmc.734] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A liquid chromatography/tandem mass spectrometric method for the quantification of 6-(3-benzoyl-ureido)-hexanoic acid hydroxyamide (EX-2), a novel histone deacetylase (HDAC) inhibitor, in mouse plasma was developed to support in-house pharmacokinetic (PK) studies in the lead optimization stage. In order to determine the PK parameters for EX-2 in comparison to other HDAC inhibitors such as suberoylanilide hydroxamic acid (SAHA), PXD-101 and LBH-589, which are currently in different stages of clinical trials, research-grade bio-analytical method validations were carried out for EX-2 and these reference HDAC inhibitors, which were synthesized by in-house medicinal chemists. The components of validation consisted of specificity, extraction efficiency, signal-response of calibration standards, lower limit of quantification, autosampler stability and accuracy and precision of quality control samples. The validated LC/MS/MS methods were accurate and precise. The calibration curve ranged from 1 to 1600 ng/mL for all the analytes. The methods developed were used to quantify EX-2 and other HDAC inhibitors in mouse plasma obtained from pharmacokinetic studies. The results suggest that EX-2 has better PK parameters compared with the reference drugs and is a promising drug development candidate.
Collapse
Affiliation(s)
- Pauline Yeo
- Department of Pharmacokinetics and Drug Metabolism, S*BIO Pte Ltd, 1 Science Park Road, 05-09 The Capricorn, Singapore Science Park II, Singapore 117528
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen Y, Webb RA. Positive current correlations associated with super-Poissonian shot noise. PHYSICAL REVIEW LETTERS 2006; 97:066604. [PMID: 17026187 DOI: 10.1103/physrevlett.97.066604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Indexed: 05/12/2023]
Abstract
We report on shot noise cross spectrum measurements in a beam splitter configuration. Electrons tunneling through potential barriers are incident on a beam splitter and scattered into two separate channels. Such a partition process introduces correlations between the fluctuations of the two currents. Our work has confirmed that the generally expected negative correlations resulted from sub-Poissonian electron sources. More interestingly, positive cross correlations associated with barriers exhibiting super-Poissonian shot noise have also been observed. We have found that both positive and negative correlations can be related to the noise properties of the electron source.
Collapse
Affiliation(s)
- Yuanzhen Chen
- Department of Physics and USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
38
|
DiCarlo L, Zhang Y, McClure DT, Reilly DJ, Marcus CM, Pfeiffer LN, West KW. Shot-noise signatures of 0.7 structure and spin in a quantum point contact. PHYSICAL REVIEW LETTERS 2006; 97:036810. [PMID: 16907535 DOI: 10.1103/physrevlett.97.036810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Indexed: 05/11/2023]
Abstract
We report simultaneous measurement of shot noise and dc transport in a quantum point contact as a function of source-drain bias, gate voltage, and in-plane magnetic field. Shot noise at zero field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields good quantitative agreement.
Collapse
Affiliation(s)
- L DiCarlo
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Finn P, Bandara M, Butcher C, Finn A, Hollinshead R, Khan N, Law N, Murthy S, Romero R, Watkins C, Andrianov V, Bokaldere R, Dikovska K, Gailite V, Loza E, Piskunova I, Starchenkov I, Vorona M, Kalvinsh I. Novel Sulfonamide Derivatives as Inhibitors of Histone Deacetylase. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200590129] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
González Martínez AJ, López-Urrutia JRC, Braun J, Brenner G, Bruhns H, Lapierre A, Mironov V, Soria Orts R, Tawara H, Trinczek M, Ullrich J, Scofield JH. State-selective quantum interference observed in the recombination of highly charged Hg 75+...78+ mercury ions in an electron beam ion trap. PHYSICAL REVIEW LETTERS 2005; 94:203201. [PMID: 16090244 DOI: 10.1103/physrevlett.94.203201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 05/03/2023]
Abstract
We present experimental data on the state-selective quantum interference between different pathways of photorecombination, namely, radiative and dielectronic recombination, in the KLL resonances of highly charged mercury ions. The interference, observed for well resolved electronic states in the Heidelberg electron beam ion trap, manifests itself in the asymmetry of line shapes, characterized by "Fano factors," which have been determined with unprecedented precision, as well as their excitation energies, for several strong dielectronic resonances.
Collapse
|
41
|
Roche P, Ségala J, Glattli DC, Nicholls JT, Pepper M, Graham AC, Thomas KJ, Simmons MY, Ritchie DA. Fano factor reduction on the 0.7 conductance structure of a ballistic one-dimensional wire. PHYSICAL REVIEW LETTERS 2004; 93:116602. [PMID: 15447363 DOI: 10.1103/physrevlett.93.116602] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Indexed: 05/24/2023]
Abstract
We have measured the nonequilibrium current noise in a ballistic one-dimensional wire which exhibits an additional conductance plateau at 0.7x2e(2)/h. The Fano factor shows a clear reduction on the 0.7 structure, and eventually vanishes upon applying a strong parallel magnetic field. These results provide experimental evidence that the 0.7 structure is associated with two conduction channels that have different transmission probabilities.
Collapse
Affiliation(s)
- P Roche
- Nanoelectronic group, Service de Physique de l'Etat Condensé, CEA Saclay, F-91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vishveshwara S. Revisiting the Hanbury Brown-Twiss setup for fractional statistics. PHYSICAL REVIEW LETTERS 2003; 91:196803. [PMID: 14611600 DOI: 10.1103/physrevlett.91.196803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Indexed: 05/24/2023]
Abstract
The Hanbury Brown-Twiss experiment has proved to be an effective means of probing statistics of particles. Here, in a setup involving edge-state quasiparticles in a fractional quantum Hall system, we show that a variant of the experiment composed of two sources and two sinks can be used to unearth fractional statistics. We find a clearcut signature of the statistics in the equal-time current-current correlation function for quasiparticle currents emerging from the two sources and collected at the sinks.
Collapse
Affiliation(s)
- Smitha Vishveshwara
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3080, USA
| |
Collapse
|
43
|
Samuelsson P, Sukhorukov EV, Büttiker M. Orbital entanglement and violation of Bell inequalities in mesoscopic conductors. PHYSICAL REVIEW LETTERS 2003; 91:157002. [PMID: 14611487 DOI: 10.1103/physrevlett.91.157002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Indexed: 05/24/2023]
Abstract
We propose a spin-independent scheme to generate and detect two-particle entanglement in a mesoscopic normal-superconductor system. A superconductor, weakly coupled to the normal conductor, generates an orbitally entangled state by injecting pairs of electrons into different leads of the normal conductor. The entanglement is detected via violation of a Bell inequality, formulated in terms of zero-frequency current cross correlators. It is shown that the Bell inequality can be violated for arbitrary strong dephasing in the normal conductor.
Collapse
Affiliation(s)
- P Samuelsson
- Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland
| | | | | |
Collapse
|
44
|
Burkard G, Loss D. Lower bound for electron spin entanglement from beam splitter current correlations. PHYSICAL REVIEW LETTERS 2003; 91:087903. [PMID: 14525280 DOI: 10.1103/physrevlett.91.087903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Indexed: 05/24/2023]
Abstract
We determine a lower bound for the entanglement of formation of pairs of electron spins injected into a mesoscopic conductor. The bound can be expressed in terms of experimentally accessible quantities, the zero-frequency current correlators (shot noise power or cross correlators) after transmission through an electronic beam splitter and can be used to gain information about the entanglement from experiment. Spin relaxation (T1 processes) and decoherence (T2) during the ballistic coherent transmission of carriers are taken into account within Bloch theory. A variable inhomogeneous magnetic field gives rise to a useful lower bound for the entanglement of arbitrary states. The decrease in entanglement due to thermally mixed states is studied. Both the entanglement of the output of a source (entangler) and T(1,2) can be determined from current correlators.
Collapse
Affiliation(s)
- Guido Burkard
- IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
| | | |
Collapse
|
45
|
Egues JC, Burkard G, Loss D. Rashba spin-orbit interaction and shot noise for spin-polarized and entangled electrons. PHYSICAL REVIEW LETTERS 2002; 89:176401. [PMID: 12398691 DOI: 10.1103/physrevlett.89.176401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Indexed: 05/24/2023]
Abstract
We study shot noise for spin-polarized currents and entangled electron pairs in a four-probe (beam-splitter) geometry with a local Rashba spin-orbit (s-o) interaction in the incoming leads. Within the scattering formalism we find that shot noise exhibits Rashba-induced oscillations with continuous bunching and antibunching. We show that entangled states and triplet states can be identified via their Rashba phase in noise measurements. For two-channel leads, we find an additional spin rotation due to s-o induced interband coupling which enhances spin control. We show that the s-o interaction deter-mines the Fano factor, which provides a direct way to measure the Rashba coupling constant via noise.
Collapse
Affiliation(s)
- J Carlos Egues
- Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
46
|
Ono K, Austing DG, Tokura Y, Tarucha S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 2002; 297:1313-7. [PMID: 12142438 DOI: 10.1126/science.1070958] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We observe spin blockade due to Pauli exclusion in the tunneling characteristics of a coupled quantum dot system when two same-spin electrons occupy the lowest energy state in each dot. Spin blockade only occurs in one bias direction when there is asymmetry in the electron population of the two dots, leading to current rectification. We induce the collapse of the spin blockade by applying a magnetic field to open up a new spin-triplet current-carrying channel.
Collapse
Affiliation(s)
- K Ono
- Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
47
|
Nazarov YV, Bagrets DA. Circuit theory for full counting statistics in multiterminal circuits. PHYSICAL REVIEW LETTERS 2002; 88:196801. [PMID: 12005657 DOI: 10.1103/physrevlett.88.196801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2001] [Indexed: 05/23/2023]
Abstract
We propose a theory that treats the current, noise, and, generally, the full current statistics of electron transfer in a mesoscopic system in a unified, simple, and efficient way. The theory appears to be a circuit theory of 2 x 2 matrices associated with Keldysh Green functions. We illustrate the theory by considering the big fluctuations of currents in various three-terminal circuits.
Collapse
Affiliation(s)
- Yu V Nazarov
- Department of Applied Physics and Delft Institute of Microelectronics and Submicrontechnology, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | |
Collapse
|
48
|
Paunković N, Omar Y, Bose S, Vedral V. Entanglement concentration using quantum statistics. PHYSICAL REVIEW LETTERS 2002; 88:187903. [PMID: 12005724 DOI: 10.1103/physrevlett.88.187903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2001] [Indexed: 05/23/2023]
Abstract
We propose an entanglement concentration scheme which uses only the effects of quantum statistics of indistinguishable particles. This establishes the fact that useful quantum information processing can be accomplished by quantum statistics alone. Because of the basis independence of statistical effects, our protocol requires less knowledge of the initial state than most entanglement concentration schemes. Moreover, no explicit controlled operation is required at any stage.
Collapse
Affiliation(s)
- N Paunković
- Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | | | | | | |
Collapse
|
49
|
Bose S, Home D. Generic entanglement generation, quantum statistics, and complementarity. PHYSICAL REVIEW LETTERS 2002; 88:050401. [PMID: 11863706 DOI: 10.1103/physrevlett.88.050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Revised: 09/04/2001] [Indexed: 05/23/2023]
Abstract
A general and an arbitrarily efficient scheme for entangling the spins (or any spinlike degree of freedom) of two independent uncorrelated identical particles by a combination of two particle interferometry and which way detection is formulated. It is shown that the same setup could be used to identify the quantum statistics of the incident particles from either the sign or the magnitude of measured spin correlations. Our setup also exhibits a curious complementarity between particle distinguishability and the amount of generated entanglement.
Collapse
Affiliation(s)
- S Bose
- Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, England
| | | |
Collapse
|
50
|
Oliver WD, Yamaguchi F, Yamamoto Y. Electron entanglement via a quantum dot. PHYSICAL REVIEW LETTERS 2002; 88:037901. [PMID: 11801089 DOI: 10.1103/physrevlett.88.037901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2001] [Indexed: 05/23/2023]
Abstract
This Letter presents a method of electron entanglement generation. The system under consideration is a single-level quantum dot with one input and two output leads. The leads are arranged such that the dot is empty, single-electron tunneling is suppressed by energy conservation, and two-electron virtual cotunneling is allowed. Such a configuration effectively filters the singlet-state portion of a two-electron input, yielding a nonlocal spin-singlet state at the output leads. Coulomb interaction mediates the entanglement generation, and, in its absence, the singlet state vanishes. This approach is a four-wave mixing process analogous to the photon entanglement generated by a chi((3)) parametric amplifier.
Collapse
Affiliation(s)
- W D Oliver
- Quantum Entanglement Project, ICORP, JST, E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|