1
|
Malagon F, Jensen TH. T-body formation precedes virus-like particle maturation in S. cerevisiae. RNA Biol 2011; 8:184-9. [PMID: 21358276 DOI: 10.4161/rna.8.2.14822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
T-bodies are localized S. cerevisiae RNPs containing Ty1 retroviral components and speculated to play a role in the assembly of virus-like particles (VLPs). Mapping requirements for T-body formation, we demonstrate that ectopic expression of immature TyA1/Gag (Gag-p49), a structural component of the Ty1 capsid, is sufficient for T-body formation both under normal conditions as well as in a strain background devoid of endogenous Gag. Moreover, T-bodies are readily formed when Ty1 transposition is blocked. Thus, T-bodies represent an early stage in the Ty1 life cycle, preceding VLP maturation.
Collapse
Affiliation(s)
- Francisco Malagon
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, Aarhus C., Denmark. or
| | | |
Collapse
|
2
|
Machado ES, Afonso AO, Nissley DV, Lemey P, Cunha SM, Oliveira RH, Soares MA. Emergence of primary NNRTI resistance mutations without antiretroviral selective pressure in a HAART-treated child. PLoS One 2009; 4:e4806. [PMID: 19277127 PMCID: PMC2652103 DOI: 10.1371/journal.pone.0004806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 01/26/2009] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The use of antiretrovirals (ARV) during pregnancy has drastically reduced the rate of the human immunodeficiency virus perinatal transmission (MTCT). As a consequence of widespread ARV use, transmission of drug resistant strains from mothers to their babies is increasing. Ultra-sensitive PCR techniques have permitted the quantification of minority viral populations, but little is known about the transmission of drug-resistant HIV-1 minority population in the setting of MTCT. METHODOLOGY/PRINCIPAL FINDINGS We describe the case of a female child born to an HIV-infected mother, which had not taken any ARV during the pregnancy. The child's first genotype demonstrated a minor non-nucleoside reverse transcriptase inhibitor (K101E), and during her treatment with reverse transcriptase and protease inhibitors full resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI) emerged (G190A). Phenotypic/genotypic analysis of variant quasispecies through yeast TyHRT assay was conducted to characterize minority resistant viral strains circulating in both mother and child. Maximum likelihood and Bayesian MCMC phylogenetic analyses were performed with samples from the pair to assess genetic relatedness among minor viral strains. The analysis showed that the child received a minor NNRTI resistant variant, containing the mutation K101E that was present in less than 1% of the mother's quasispecies. Phylogenetic analyses have suggested common ancestry between the mother's virus strain carrying K101E with the viral sequences from the child. CONCLUSION This is the first documentation of MTCT of a minority resistant strain of HIV-1. The transmission of minor resistant variants carries the threat of emergence of multi-drug primary mutations without identified specific selective pressures.
Collapse
Affiliation(s)
- Elizabeth S. Machado
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana O. Afonso
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dwight V. Nissley
- Gene Regulation and Chromosome Biology Laboratory, NCI-Fredrick, Frederick, Maryland, United States of America
- Basic Science Program, SAIC-Frederick, Inc., NCI-Fredrick, Frederick, Maryland, United States of America
| | - Philippe Lemey
- Department of Zoology, Oxford University, Oxford, United Kingdom
| | - Silvia M. Cunha
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo H. Oliveira
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Divisão de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Vanti M, Gallastegui E, Respaldiza I, Rodríguez-Gil A, Gómez-Herreros F, Jimeno-González S, Jordan A, Chávez S. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription. PLoS Genet 2009; 5:e1000339. [PMID: 19148280 PMCID: PMC2613532 DOI: 10.1371/journal.pgen.1000339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 12/12/2008] [Indexed: 12/22/2022] Open
Abstract
Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR), which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.
Collapse
Affiliation(s)
- Manuela Vanti
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Edurne Gallastegui
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| | - Iñaki Respaldiza
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | | | | | | | - Albert Jordan
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|
4
|
Nissley D, Radzio J, Ambrose Z, Sheen CW, Hamamouch N, Moore K, Tachedjian G, Sluis-Cremer N. Characterization of novel non-nucleoside reverse transcriptase (RT) inhibitor resistance mutations at residues 132 and 135 in the 51 kDa subunit of HIV-1 RT. Biochem J 2007; 404:151-7. [PMID: 17286555 PMCID: PMC1868834 DOI: 10.1042/bj20061814] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/24/2007] [Accepted: 02/08/2007] [Indexed: 11/17/2022]
Abstract
Several rare and novel NNRTI [non-nucleoside reverse transcriptase (RT) inhibitor] resistance mutations were recently detected at codons 132 and 135 in RTs from clinical isolates using the yeast-based chimaeric TyHRT (Ty1/HIV-1 RT) phenotypic assay. Ile132 and Ile135 form part of the beta7-beta8 loop of HIV-1 RT (residues 132-140). To elucidate the contribution of these residues in RT structure-function and drug resistance, we constructed twelve recombinant enzymes harbouring mutations at codons 132 and 135-140. Several of the mutant enzymes exhibited reduced DNA polymerase activities. Using the yeast two-hybrid assay for HIV-1 RT dimerization we show that in some instances this decrease in enzyme activity could be attributed to the mutations, in the context of the 51 kDa subunit of HIV-1 RT, disrupting the subunit-subunit interactions of the enzyme. Drug resistance analyses using purified RT, the TyHRT assay and antiviral assays demonstrated that the I132M mutation conferred high-level resistance (>10-fold) to nevirapine and delavirdine and low-level resistance (approximately 2-3-fold) to efavirenz. The I135A and I135M mutations also conferred low level NNRTI resistance (approximately 2-fold). Subunit selective mutagenesis studies again demonstrated that resistance was conferred via the p51 subunit of HIV-1 RT. Taken together, our results highlight a specific role of residues 132 and 135 in NNRTI resistance and a general role for residues in the beta7-beta8 loop in the stability of HIV-1 RT.
Collapse
Key Words
- chimaeric ty1/hiv-1 reverse transcriptase phenotypic assay
- hiv-1
- non-nucleoside reverse transcriptase inhibitor
- resistance
- reverse transcriptase
- β-gal, β-galactosidase
- p66, 66 kda subunit of reverse transcriptase
- p51, 51 kda subunit of reverse transcriptase
- rlu, relative light unit
- rt, reverse transcriptase
- tyhrt, ty1/hiv-1 rt
- nnrti, non-nucleoside rt inhibitor
- nnrti-bp, nnrti-binding pocket
- nrti, nucleoside rt inhibitor
- wt, wild-type
Collapse
Affiliation(s)
- Dwight V. Nissley
- *Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, U.S.A
- †Gene Regulation and Chromosome Biology Laboratory, NCI-Frederick, Frederick, Maryland 21702, U.S.A
| | - Jessica Radzio
- ‡Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, U.S.A
| | - Zandrea Ambrose
- §HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702, U.S.A
| | - Chih-Wei Sheen
- ‡Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, U.S.A
| | - Noureddine Hamamouch
- ‡Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, U.S.A
| | - Katie L. Moore
- ∥Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Gilda Tachedjian
- ∥Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
- ¶Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | - Nicolas Sluis-Cremer
- ‡Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, U.S.A
| |
Collapse
|
5
|
Nissley DV, Halvas EK, Hoppman NL, Garfinkel DJ, Mellors JW, Strathern JN. Sensitive phenotypic detection of minor drug-resistant human immunodeficiency virus type 1 reverse transcriptase variants. J Clin Microbiol 2005; 43:5696-704. [PMID: 16272507 PMCID: PMC1287775 DOI: 10.1128/jcm.43.11.5696-5704.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 05/02/2005] [Accepted: 08/04/2005] [Indexed: 11/20/2022] Open
Abstract
Detection of drug-resistant variants is important for the clinical management of human immunodeficiency virus type 1 (HIV-1) infection and for studies on the evolution of drug resistance. Here we show that hybrid elements composed of the Saccharomyces cerevisiae retrotransposon Ty1 and the reverse transcriptase (RT) of HIV-1 are useful tools for detecting, monitoring, and isolating drug-resistant reverse transcriptases. This sensitive phenotypic assay is able to detect nonnucleoside reverse transcriptase inhibitor-resistant RT domains derived from mixtures of infectious molecular clones of HIV-1 in plasma and from clinical samples when the variants comprise as little as 0.3 to 1% of the virus population. Our assay can characterize the activities and drug susceptibilities of both known and novel reverse transcriptase variants and should prove useful in studies of the evolution and clinical significance of minor drug-resistant viral variants.
Collapse
Affiliation(s)
- Dwight V Nissley
- Basic Research Program, SAIC-Frederick, NCI Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Garfinkel DJ. Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet Genome Res 2005; 110:63-9. [PMID: 16093659 DOI: 10.1159/000084939] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 12/03/2003] [Indexed: 11/19/2022] Open
Abstract
How mobile genetic elements molded eukaryotic genomes is a key evolutionary question that gained wider popularity when mobile DNA sequences were shown to comprise about half of the human genome. Although Saccharomyces cerevisiae does not suffer such "genome obesity", five families of LTR-retrotransposons, Ty1, Ty2, Ty3, Ty4, and Ty5 elements, comprise about 3% of its genome. The availability of complete genome sequences from several Saccharomyces species, including members of the closely related sensu stricto group, present new opportunities for analyzing molecular mechanisms for chromosome evolution, speciation, and reproductive isolation. In this review I present key experiments from both the pre- and current genomic sequencing eras suggesting how Ty elements mediate genome evolution.
Collapse
Affiliation(s)
- D J Garfinkel
- National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
7
|
Schumacher AJ, Nissley DV, Harris RS. APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast. Proc Natl Acad Sci U S A 2005; 102:9854-9. [PMID: 16000409 PMCID: PMC1172225 DOI: 10.1073/pnas.0501694102] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cells harbor a variety of factors that function to block the proliferation of foreign nucleic acid. The APOBEC3G enzyme inhibits the replication of retroviruses by deaminating nascent retroviral cDNA cytosines to uracils, lesions that can result in lethal levels of hypermutation. Here, we demonstrate that APOBEC3G is capable of deaminating genomic cytosines in Saccharomyces cerevisiae. APOBEC3G expression caused a 20-fold increase in frequency of mutation to canavanine-resistance, which was further elevated in a uracil DNA glycosylase-deficient background. All APOBEC3G-induced base substitution mutations mapped to the nuclear CAN1 gene and were exclusively C/G --> T/A transition mutations within a 5'-CC consensus. The APOBEC3G preferred sites were found on both strands of the DNA duplex, but were otherwise located in hotspots nearly identical to those found previously in retroviral cDNA. This unique genetic system further enabled us to show that expression of APOBEC3G or its homolog APOBEC3F was able to inhibit the mobility of the retrotransposon Ty1 by a mechanism that involves the deamination of cDNA cytosines. Thus, these data expand the range of likely APOBEC3 targets to include nuclear DNA and endogenous retroelements, which have pathological and physiological implications, respectively. We postulate that the APOBEC3-dependent innate cellular defense constitutes a tightly regulated arm of a conserved mobile nucleic acid restriction mechanism that is poised to limit internal as well as external assaults.
Collapse
Affiliation(s)
- April J Schumacher
- Department of Biochemistry, Molecular Biology, and Biophysics and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
8
|
Qadri I, Siddiqui A. Expression of hepatitis B virus polymerase in Ty1-his3AI retroelement of Saccharomyces cerevisiae. J Biol Chem 1999; 274:31359-31365. [PMID: 10531336 DOI: 10.1074/jbc.274.44.31359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatitis B virus (HBV), although a DNA virus, replicates using reverse transcriptase encoded by the HBV polymerase (pol) gene. The biochemical dissection of HBV pol has been hampered by failure to liberate enzymatically active protein from nucleocapsids. Here, we have employed a yeast-based genetic approach to express the HBV reverse transcriptase. In this strategy, the reverse transcriptase of yeast retrotransposon Ty1 element is replaced with the HBV pol gene to produce the hybrid Ty1/HBV element. Additionally, the indicator gene his3AI is combined in an antisense orientation to the transcripts of the hybrid Ty1/HBVRT element. The splicing of his3AI, cDNA synthesis of the Ty1/HBVRT RNA and subsequent integration relies on the reverse transcriptase activity. The production of histidine prototrophs results from the successful reverse transcription of Ty1/HBVRThis3AI transcripts followed by either homologous recombination or integrase-mediated insertion and subsequent expression of HIS3 gene. Using this approach we successfully detected the reverse transcriptase activity of HBV in yeast strains defective in endogenous Ty1 expression. Consistent with the unique priming activity associated with HBV pol, the minus strand DNA synthesis was protein-primed. Deletion of HBV reverse transcriptase (RT) or RNase H domains resulted in a dramatic drop in histidine prototrophs. The addition of HBV encoded HBx protein in virus-like particles during in vitro RT reaction stimulated the RT reaction by severalfold. Furthermore, in the presence of 3TC, a known inhibitor of HBV reverse transcriptase, yeast His(+) growth of His protrophs was not observed. Thus, this approach, which is based on genetic selection in yeast, is safe, economic, and a reliable strategy with a potential for large scale screening of cofactors and inhibitors of HBV polymerase functions.
Collapse
Affiliation(s)
- I Qadri
- Department of Microbiology B172, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
9
|
Nissley DV, Boyer PL, Garfinkel DJ, Hughes SH, Strathern JN. Hybrid Ty1/HIV-1 elements used to detect inhibitors and monitor the activity of HIV-1 reverse transcriptase. Proc Natl Acad Sci U S A 1998; 95:13905-10. [PMID: 9811899 PMCID: PMC24958 DOI: 10.1073/pnas.95.23.13905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously demonstrated that hybrid retrotransposons composed of the yeast Ty1 element and the reverse transcriptase (RT) of HIV-1 are active in the yeast Saccharomyces cerevisiae. The RT activity of these hybrid Ty1/HIV-1 (his3AI/AIDS RT; HART) elements can be monitored by using a simple genetic assay. HART element reverse transcription depends on both the polymerase and RNase H domains of HIV-1 RT. Here we demonstrate that the HART assay is sensitive to inhibitors of HIV-1 RT. (-)-(S)-8-Chloro-4,5,6, 7-tetrahydro-5-methyl-6-(3-methyl-2-butenyl)imidazo[4,5,1-jk][1, 4]-benzodiazepin-2(1H)-thione monohydrochloride (8 Cl-TIBO), a well characterized non-nucleoside RT inhibitor (NNRTI) of HIV-1 RT, blocks propagation of HART elements. HART elements that express NNRTI-resistant RT variants of HIV-1 are insensitive to 8 Cl-TIBO, demonstrating the specificity of inhibition in this assay. HART elements carrying NNRTI-resistant variants of HIV-1 RT can be used to identify compounds that are active against drug-resistant viruses.
Collapse
Affiliation(s)
- D V Nissley
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Frederick, MD 21702-1201, USA.
| | | | | | | | | |
Collapse
|
10
|
Kim B. Genetic selection in Escherichia coli for active human immunodeficiency virus reverse transcriptase mutants. Methods 1997; 12:318-24. [PMID: 9245612 DOI: 10.1006/meth.1997.0485] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most catalytically active human immunodeficiency virus (HIV) reverse transcriptase (RT) mutants characterized to date have been isolated from the virus after treatment with HIV RT inhibitors such as nucleoside analogs. However, detailed understanding of structure-function relationships, and of the roles of the several catalytic activities of HIV RT in viral replication, requires characterization of a greater diversity of mutant enzymes than has been obtained from viral variants. Coupling of a bacterial genetic selection system for functional HIV RT with random mutagenesis has yielded a large number of active mutant enzymes, most of which have not been found in viral variants. The genetic selection system, combined with biochemical characterization of active mutant proteins, affords three major benefits. First, we can increase our understanding of the roles of individual amino acids in catalysis. Second, the mutational spectrum observed among active HIV RT variants can identify amino acids that are intolerant, or relatively intolerant, of substitution. Third, this system provides us with HIV RT variants with altered biochemical properties, such as replicational fidelity and processivity. Characterization of HIV harboring these mutant RTs with defined structural and functional alterations will contribute to elucidation of the roles of each catalytic activity of HIV RT in viral replication.
Collapse
Affiliation(s)
- B Kim
- Department of Pathology, School of Medicine, University of Washington, Seattle 98195, USA
| |
Collapse
|
11
|
Garfinkel DJ. Genetic loose change: how retroelements and reverse transcriptase heal broken chromosomes. Trends Microbiol 1997; 5:173-5. [PMID: 9160501 DOI: 10.1016/s0966-842x(97)01018-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D J Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, NCI-Frederick Cancer Research and Development Center, MD 21702-1201, USA. garfinke@ncifcrf-gov
| |
Collapse
|
12
|
Teng SC, Kim B, Gabriel A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 1996; 383:641-4. [PMID: 8857543 DOI: 10.1038/383641a0] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The abundance of short and long interspersed nuclear sequences (SINEs and LINEs) and pseudogenes in eukaryotic genomes indicates that reverse transcriptase (RT)-mediated phenomena are important in genome evolution. However, the mechanisms involved in their spread are largely unknown. We have developed a selection system in the yeast Saccharomyces cerevisiae to test whether RT-mediated events could be linked to the repair of double-strand breaks (DSBs). Here we show that DSBs can be fixed by the insertion of complementary DNAs at the break site. In the presence of functional RT (from human L1, yeast Tyl or Crithidia CRE1), and in the absence of homologous recombination, an HO endonuclease-induced DSB at the mating type (MAT) locus is the primary site at which a marked cDNA is observed among surviving cells. The structure and junctional sequences of these insertions suggest that repair occurs primarily by non-homologous recombination. Our data support a role for endogenous retroelements in the repair of chromosomal breaks.
Collapse
Affiliation(s)
- S C Teng
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | |
Collapse
|