• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4592769)   Today's Articles (8886)   Subscriber (49318)
For: Happe RP, Roseboom W, Pierik AJ, Albracht SP, Bagley KA. Biological activation of hydrogen. Nature 1997;385:126. [PMID: 8990114 DOI: 10.1038/385126a0] [Citation(s) in RCA: 316] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Number Cited by Other Article(s)
1
Procacci B, Wrathall SLD, Farmer AL, Shaw DJ, Greetham GM, Parker AW, Rippers Y, Horch M, Lynam JM, Hunt NT. Understanding the [NiFe] Hydrogenase Active Site Environment through Ultrafast Infrared and 2D-IR Spectroscopy of the Subsite Analogue K[CpFe(CO)(CN)2] in Polar and Protic Solvents. J Phys Chem B 2024;128:1461-1472. [PMID: 38301127 PMCID: PMC10875664 DOI: 10.1021/acs.jpcb.3c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
2
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023;29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]  Open
3
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023;28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
4
McCool JD, Zhang S, Cheng I, Zhao X. Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
5
Kulka-Peschke CJ, Schulz AC, Lorent C, Rippers Y, Wahlefeld S, Preissler J, Schulz C, Wiemann C, Bernitzky CCM, Karafoulidi-Retsou C, Wrathall SLD, Procacci B, Matsuura H, Greetham GM, Teutloff C, Lauterbach L, Higuchi Y, Ishii M, Hunt NT, Lenz O, Zebger I, Horch M. Reversible Glutamate Coordination to High-Valent Nickel Protects the Active Site of a [NiFe] Hydrogenase from Oxygen. J Am Chem Soc 2022;144:17022-17032. [PMID: 36084022 DOI: 10.1021/jacs.2c06400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study. Catalysts 2022. [DOI: 10.3390/catal12090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
7
Wang C, Lai Z, Huang G, Pan H. Current State of [Fe]‐Hydrogenase and Its Biomimetic Models. Chemistry 2022;28:e202201499. [DOI: 10.1002/chem.202201499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/11/2022]
8
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022;122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
9
Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W. The catalytic cycle of [FeFe] hydrogenase: A tale of two sites. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214191] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
10
Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Biochem J 2021;478:3281-3295. [PMID: 34409988 PMCID: PMC8454700 DOI: 10.1042/bcj20210224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
11
Börner M, Fuhrmann D, Klose J, Krautscheid H, Kersting B. Ethereal Hydroperoxides: Powerful Reagents for S-Oxygenation of Bridging Thiophenolate Functions. Inorg Chem 2021;60:13517-13527. [PMID: 34415154 DOI: 10.1021/acs.inorgchem.1c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
12
Madavi TB, Chauhan S, Jha M, Choi KY, Pamidimarri SDVN. Biohydrogen Machinery: Recent Insights, Genetic Fabrication, and Future Prospects. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
13
Lorent C, Pelmenschikov V, Frielingsdorf S, Schoknecht J, Caserta G, Yoda Y, Wang H, Tamasaku K, Lenz O, Cramer SP, Horch M, Lauterbach L, Zebger I. Exploring Structure and Function of Redox Intermediates in [NiFe]-Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes. Angew Chem Int Ed Engl 2021;60:15854-15862. [PMID: 33783938 PMCID: PMC8360142 DOI: 10.1002/anie.202100451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Indexed: 01/28/2023]
14
Lorent C, Pelmenschikov V, Frielingsdorf S, Schoknecht J, Caserta G, Yoda Y, Wang H, Tamasaku K, Lenz O, Cramer SP, Horch M, Lauterbach L, Zebger I. Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]‐Hydrogenasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
15
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021;50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
16
Caserta G, Pelmenschikov V, Lorent C, Tadjoung Waffo AF, Katz S, Lauterbach L, Schoknecht J, Wang H, Yoda Y, Tamasaku K, Kaupp M, Hildebrandt P, Lenz O, Cramer SP, Zebger I. Hydroxy-bridged resting states of a [NiFe]-hydrogenase unraveled by cryogenic vibrational spectroscopy and DFT computations. Chem Sci 2020;12:2189-2197. [PMID: 34163984 PMCID: PMC8179317 DOI: 10.1039/d0sc05022a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
17
Fan Q, Neubauer P, Lenz O, Gimpel M. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview. Int J Mol Sci 2020;21:E5890. [PMID: 32824336 PMCID: PMC7460606 DOI: 10.3390/ijms21165890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023]  Open
18
Tai H, Hirota S. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. Chembiochem 2020;21:1573-1581. [DOI: 10.1002/cbic.202000058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Indexed: 01/28/2023]
19
Probing the Structure of [NiFeSe] Hydrogenase with QM/MM Computations. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
20
Bose M, Li Z, Matsumoto T, Tatsumi K. A Dithiolato and Hydrido Bridged (CO/CN)Fe-Ni Complex with Unprotected CN: A Model for the [Ni-R] State of the [Ni-Fe] Hydrogenase Active Site. Inorg Chem 2020;59:968-971. [PMID: 31891256 DOI: 10.1021/acs.inorgchem.9b03082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
21
Ilina Y, Lorent C, Katz S, Jeoung J, Shima S, Horch M, Zebger I, Dobbek H. X‐ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
22
Ilina Y, Lorent C, Katz S, Jeoung JH, Shima S, Horch M, Zebger I, Dobbek H. X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Angew Chem Int Ed Engl 2019;58:18710-18714. [PMID: 31591784 PMCID: PMC6916344 DOI: 10.1002/anie.201908258] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Indexed: 11/23/2022]
23
Horch M, Schoknecht J, Wrathall SLD, Greetham GM, Lenz O, Hunt NT. Understanding the structure and dynamics of hydrogenases by ultrafast and two-dimensional infrared spectroscopy. Chem Sci 2019;10:8981-8989. [PMID: 31762978 PMCID: PMC6857670 DOI: 10.1039/c9sc02851j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]  Open
24
Qiu S, Li Q, Xu Y, Shen S, Sun C. Learning from nature: Understanding hydrogenase enzyme using computational approach. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
25
Computational DFT study on nickel symmetric bis(thiosemicarbazone) complexes: Electronic absorption and redox potentials. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
26
Mebs S, Duan J, Wittkamp F, Stripp ST, Happe T, Apfel UP, Winkler M, Haumann M. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by 57Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses. Inorg Chem 2019;58:4000-4013. [PMID: 30802044 DOI: 10.1021/acs.inorgchem.9b00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
27
Albareda M, Pacios LF, Palacios JM. Computational analyses, molecular dynamics, and mutagenesis studies of unprocessed form of [NiFe] hydrogenase reveal the role of disorder for efficient enzyme maturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019;1860:325-340. [PMID: 30703364 DOI: 10.1016/j.bbabio.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
28
Hydrogenases. Methods Mol Biol 2019;1876:65-88. [PMID: 30317475 DOI: 10.1007/978-1-4939-8864-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
29
Schuchmann K, Chowdhury NP, Müller V. Complex Multimeric [FeFe] Hydrogenases: Biochemistry, Physiology and New Opportunities for the Hydrogen Economy. Front Microbiol 2018;9:2911. [PMID: 30564206 PMCID: PMC6288185 DOI: 10.3389/fmicb.2018.02911] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022]  Open
30
Tai H, Higuchi Y, Hirota S. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Dalton Trans 2018. [PMID: 29532823 DOI: 10.1039/c7dt04910b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
31
Tai H, Xu L, Nishikawa K, Higuchi Y, Hirota S. Equilibrium between inactive ready Ni-SIr and active Ni-SIa states of [NiFe] hydrogenase studied by utilizing Ni-SIr-to-Ni-SIa photoactivation. Chem Commun (Camb) 2018;53:10444-10447. [PMID: 28884761 DOI: 10.1039/c7cc06061k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
32
Tai H, Xu L, Inoue S, Nishikawa K, Higuchi Y, Hirota S. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited. Phys Chem Chem Phys 2018;18:22025-30. [PMID: 27456760 DOI: 10.1039/c6cp04628b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
33
Lampret O, Adamska-Venkatesh A, Konegger H, Wittkamp F, Apfel UP, Reijerse EJ, Lubitz W, Rüdiger O, Happe T, Winkler M. Interplay between CN- Ligands and the Secondary Coordination Sphere of the H-Cluster in [FeFe]-Hydrogenases. J Am Chem Soc 2017;139:18222-18230. [PMID: 29179539 DOI: 10.1021/jacs.7b08735] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
34
Maiti BK, Almeida RM, Moura I, Moura JJ. Rubredoxins derivatives: Simple sulphur-rich coordination metal sites and its relevance for biology and chemistry. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
35
Möller F, Piontek S, Miller RG, Apfel UP. From Enzymes to Functional Materials-Towards Activation of Small Molecules. Chemistry 2017;24:1471-1493. [PMID: 28816379 DOI: 10.1002/chem.201703451] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Indexed: 12/12/2022]
36
Anaerobic Formate and Hydrogen Metabolism. EcoSal Plus 2017;7. [PMID: 27735784 DOI: 10.1128/ecosalplus.esp-0011-2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
37
Zorin NA, Zabelin AA, Shkuropatov AY, Tsygankov AA. Interaction of HydSL hydrogenase from Thiocapsa roseopersicina with cyanide leads to destruction of iron-sulfur clusters. J Inorg Biochem 2017;177:190-197. [PMID: 28972933 DOI: 10.1016/j.jinorgbio.2017.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/18/2022]
38
Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H2-driven NAD+-reduction in the presence of O2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017;1859:8-18. [PMID: 28970007 DOI: 10.1016/j.bbabio.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/17/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022]
39
Senger M, Stripp ST, Soboh B. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. J Biol Chem 2017;292:11670-11681. [PMID: 28539366 DOI: 10.1074/jbc.m117.788125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/23/2017] [Indexed: 01/07/2023]  Open
40
Ash PA, Hidalgo R, Vincent KA. Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy. ACS Catal 2017;7:2471-2485. [PMID: 28413691 PMCID: PMC5387674 DOI: 10.1021/acscatal.6b03182] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/30/2017] [Indexed: 12/11/2022]
41
Roy S, Laureanti JA, Groy TL, Jones AK. Synthesis and Electrocatalytic Activity of [FeFe]‐Hydrogenase Model Complexes with Non‐Innocent Chelating Nitrogen‐Donor Ligands. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
42
Breglia R, Ruiz-Rodriguez MA, Vitriolo A, Gonzàlez-Laredo RF, De Gioia L, Greco C, Bruschi M. Theoretical insights into [NiFe]-hydrogenases oxidation resulting in a slowly reactivating inactive state. J Biol Inorg Chem 2016;22:137-151. [DOI: 10.1007/s00775-016-1416-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/09/2016] [Indexed: 11/28/2022]
43
A copper(II) complex with a thioether and ether containing azophenol ligand: Synthesis, spectra, X-ray structure and DFT computations. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.07.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
44
Jiang S, Zhang T, Zhang X, Zhang G, Li B. Nitrogen heterocyclic carbene containing pentacoordinate iron dicarbonyl as a [Fe]-hydrogenase active site model. Dalton Trans 2015;44:16708-12. [PMID: 26369379 DOI: 10.1039/c5dt02065d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
45
Schilter D. Nickel-Iron Hydrogenases: High-Resolution Crystallography Resolves the Hydride, but Not the Debate. Chembiochem 2015;16:1712-4. [PMID: 26083003 DOI: 10.1002/cbic.201500270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/10/2022]
46
Barilone JL, Ogata H, Lubitz W, van Gastel M. Structural differences between the active sites of the Ni-A and Ni-B states of the [NiFe] hydrogenase: an approach by quantum chemistry and single crystal ENDOR spectroscopy. Phys Chem Chem Phys 2015;17:16204-12. [PMID: 26035632 DOI: 10.1039/c5cp01322d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
47
Tai H, Nishikawa K, Inoue S, Higuchi Y, Hirota S. FT-IR Characterization of the Light-Induced Ni-L2 and Ni-L3 States of [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Phys Chem B 2015;119:13668-74. [PMID: 25898020 DOI: 10.1021/acs.jpcb.5b03075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
48
[NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1. Biochem J 2015;464:169-77. [PMID: 25184670 DOI: 10.1042/bj20140485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
49
Horch M, Lauterbach L, Mroginski MA, Hildebrandt P, Lenz O, Zebger I. Reversible active site sulfoxygenation can explain the oxygen tolerance of a NAD+-reducing [NiFe] hydrogenase and its unusual infrared spectroscopic properties. J Am Chem Soc 2015;137:2555-64. [PMID: 25647259 DOI: 10.1021/ja511154y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
50
Horch M, Hildebrandt P, Zebger I. Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes. Phys Chem Chem Phys 2015;17:18222-37. [DOI: 10.1039/c5cp02447a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
PrevPage 1 of 7 1234567Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA