1
|
Kavitha K, Yuvaraj U, Rajalakshmi A, Suresh G, Harini M, Prabakaran V, Bharathi S, Puvanakrishnan R, Ramesh B. Antibacterial Activity, GC MS Analysis and In Silico Validation of Bioactive Compound from Endophytic Fungus Lasiodiplodia pseudotheobromae EF-9. Chem Biodivers 2025; 22:e202401448. [PMID: 39541156 DOI: 10.1002/cbdv.202401448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Secondary metabolites synthesized by endophytic fungi have garnered significant interest for their broad applications in treating various ailments. In this study involving 20 plant samples, 11 endophytic fungi were isolated and cultured, and Lasiodiplodia pseudotheobromae EF-9, derived from Hibiscus rosa-sinensis, demonstrated greater antibacterial efficacy than the other isolated endophytes. Phylogenetic analyses using 18S rRNA gene confirmed the EF-9 identity as L. pseudotheobromae. Following mass production, the active compound was partially purified using column chromatography. The fraction collected at the 60th min exhibited good antibacterial activity against Bacillus coagulans (MTCC 6735) and Shigella flexneri (ATCC 12022), with an inhibition zone of approximately 20 mm in diameter. UV spectral studies revealed a wide absorption band at 430 nm. High Performance Liquid Chromatography (HPLC) of the active fraction showed a distinct peak with a retention time of 4.216 min at 430 nm. Gas Chromatography-Mass Spectrometry (GC-MS) identified the active compound in the L. pseudotheobromae EF-9 culture broth extract as Bis(2-ethylhexyl) phthalate, which displayed a peak at 16.856 min and covered 66.69 % of the area in the spectral analysis.
Collapse
Affiliation(s)
- Kuppuswamy Kavitha
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, 631 561, India
| | - Udhayakumar Yuvaraj
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, 631 561, India
| | - Arumugam Rajalakshmi
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, 631 561, India
| | - Gopal Suresh
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, 631 561, India
| | - Manoharan Harini
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, 631 561, India
| | - Vadivel Prabakaran
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, 631 561, India
| | - Selvaraj Bharathi
- Department of Research Analytics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Rengarajulu Puvanakrishnan
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, 631 561, India
| | - Balasubramanian Ramesh
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, 631 561, India
| |
Collapse
|
2
|
Tuck OT, Adler BA, Armbruster EG, Lahiri A, Hu JJ, Zhou J, Pogliano J, Doudna JA. Genome integrity sensing by the broad-spectrum Hachiman antiphage defense complex. Cell 2024; 187:6914-6928.e20. [PMID: 39395413 DOI: 10.1016/j.cell.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman is a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact double-stranded DNA (dsDNA). When the HamAB complex detects DNA damage, HamB helicase activity activates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating "phantom" cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and enzymes from eukaryotes and archaea suggest deep functional symmetries with other important helicases across domains of life.
Collapse
Affiliation(s)
- Owen T Tuck
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason J Hu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Angelini P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:746. [PMID: 39200046 PMCID: PMC11350763 DOI: 10.3390/antibiotics13080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
4
|
Tuck OT, Adler BA, Armbruster EG, Lahiri A, Hu JJ, Zhou J, Pogliano J, Doudna JA. Hachiman is a genome integrity sensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582594. [PMID: 38464307 PMCID: PMC10925250 DOI: 10.1101/2024.02.29.582594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman comprises a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact dsDNA. When the HamAB complex detects DNA damage, HamB helicase activity liberates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating 'phantom' cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and eukaryotic enzymes suggest this bacterial immune system has been repurposed for diverse functions across all domains of life.
Collapse
Affiliation(s)
- Owen T. Tuck
- Department of Chemistry, University of California, Berkeley, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
| | - Benjamin A. Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA USA
| | - Emily G. Armbruster
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Jason J. Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Julia Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Jennifer A. Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA USA
| |
Collapse
|
5
|
Bandak AF, Blower TR, Nitiss KC, Shah V, Nitiss J, Berger J. Using energy to go downhill-a genoprotective role for ATPase activity in DNA topoisomerase II. Nucleic Acids Res 2024; 52:1313-1324. [PMID: 38038260 PMCID: PMC10853770 DOI: 10.1093/nar/gkad1157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction cycle. Curiously, most type II topoisomerases (topos II, IV and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase IIβ (hTOP2β) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss elevates the enzyme's propensity for DNA damage. The unstructured C-terminal domains (CTDs) of hTOP2β strongly potentiate strand passage activity in ATPase-less enzymes, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleavage in vitro, as well as in vivo. By contrast, aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are present. Our findings are consistent with the proposal that type II topoisomerases acquired ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.
Collapse
Affiliation(s)
- Afif F Bandak
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Tim R Blower
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - Viraj Shah
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - James M Berger
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Harini M, Kavitha K, Prabakaran V, Krithika A, Dinesh S, Rajalakshmi A, Suresh G, Puvanakrishnan R, Ramesh B. Identification of apigenin-4'-glucoside as bacterial DNA gyrase inhibitor by QSAR modeling, molecular docking, DFT, molecular dynamics, and in vitro confirmation studies. J Mol Model 2024; 30:22. [PMID: 38170229 DOI: 10.1007/s00894-023-05813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
CONTEXT It is well known that antibiotic resistance is a major health hazard. To eradicate antibiotic-resistant bacterial infections, it is essential to find a novel antibacterial agent. Hence, in this study, a quantitative structure-activity relationship (QSAR) model was developed using 43 DNA gyrase inhibitors, and 700 natural compounds were screened for their antibacterial properties. Based on molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, the top three leads viz., apigenin-4'-glucoside, 8-deoxygartanin, and cryptodorine were selected and structurally optimized using density functional theory (DFT) studies. The optimized structures were redocked, and molecular dynamic (MD) simulations were performed. Binding energies were calculated by molecular mechanics/Poisson-Boltzmann surface area solvation (MM-PBSA). Based on the above studies, apigenin-4'-glucoside was identified as a potent antibacterial lead. Further in vitro confirmation studies were performed using the plant Lawsonia inermis containing apigenin-4'-glucoside to confirm the antibacterial activity. METHODS For QSAR modeling, 2D descriptors were calculated by PaDEL-Descriptors v2.21 software, and the model was developed using the DTClab QSAR tool. Docking was performed using PyRx v0.8 software. ORCA v5.0.1 computational package was used to optimize the structures. The job type used in optimization was equilibrium structure search using the DFT hybrid functional ORCA method B3LYP. The basis set was 6-311G (3df, 3pd) plus four polarization functions for all atoms. Accurate docking was performed for optimized leads using the iGEMDOCK v2.1 tool with a genetic algorithm by 10 solutions each of 80 generations. Molecular dynamic simulations were performed using GROMACS 2020.04 software with CHARMM36 all-atom force field.
Collapse
Affiliation(s)
- Manoharan Harini
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Kuppuswamy Kavitha
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Vadivel Prabakaran
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Anandan Krithika
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Shanmugam Dinesh
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Arumugam Rajalakshmi
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Gopal Suresh
- PG & Research Department of Microbiology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Rengarajulu Puvanakrishnan
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India
| | - Balasubramanian Ramesh
- PG & Research Department of Biotechnology, Sri Sankara Arts and Science College, University of Madras, Enathur, Kanchipuram, Tamil Nadu, -631561, India.
| |
Collapse
|
7
|
Bhowmick J, Nag M, Ghosh P, Rajmani RS, Chatterjee R, Karmakar K, Chandra K, Chatterjee J, Chakravortty D, Varadarajan R. A CcdB toxin-derived peptide acts as a broad-spectrum antibacterial therapeutic in infected mice. EMBO Rep 2023; 24:e55338. [PMID: 37166011 PMCID: PMC10328072 DOI: 10.15252/embr.202255338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
The bacterial toxin CcdB (Controller of Cell death or division B) targets DNA Gyrase, an essential bacterial topoisomerase, which is also the molecular target for fluoroquinolones. Here, we present a short cell-penetrating 24-mer peptide, CP1-WT, derived from the Gyrase-binding region of CcdB and examine its effect on growth of Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and a carbapenem- and tigecycline-resistant strain of Acinetobacter baumannii in both axenic cultures and mouse models of infection. The CP1-WT peptide shows significant improvement over ciprofloxacin in terms of its in vivo therapeutic efficacy in treating established infections of S. Typhimurium, S. aureus and A. baumannii. The molecular mechanism likely involves inhibition of Gyrase or Topoisomerase IV, depending on the strain used. The study validates the CcdB binding site on bacterial DNA Gyrase as a viable and alternative target to the fluoroquinolone binding site.
Collapse
Grants
- Department of Biotechnology, Ministry of Science and Technology, India - Indian Institute of Science (DBT-IISc) partnership program
- BT/COE/34/SP15219/2015 Department of Biotechnology, Ministry of Science and Technology, India
- DT.20/11/2015 Department of Biotechnology, Ministry of Science and Technology, India
- Department of Science and Technology, Ministry of Science and Technology, India (DST FIST)
- Ministry of Education, India (MHRD)
- University Grants Commission, Ministry of Education, India (UGC Centre for Advanced Studies)
- Department of Biotechnology, Ministry of Science and Technology, India
- Ministry of Education, India (MHRD)
Collapse
Affiliation(s)
- Jayantika Bhowmick
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Manish Nag
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Pritha Ghosh
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Raju S Rajmani
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Ritika Chatterjee
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Kapudeep Karmakar
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Kasturi Chandra
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
| | - Jayanta Chatterjee
- Molecular Biophysics Unit (MBU)Indian Institute of ScienceBangaloreIndia
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
- School of BiologyIndian Institute of Science Education and Research Thiruvananthapuram (IISER TVM)ThiruvananthapuramIndia
| | | |
Collapse
|
8
|
Bandak AF, Blower TR, Nitiss KC, Shah V, Nitiss JL, Berger JM. Using energy to go downhill - a genoprotective role for ATPase activity in DNA topoisomerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546777. [PMID: 37425896 PMCID: PMC10327052 DOI: 10.1101/2023.06.27.546777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction. Curiously, most type II topoisomerases (topos II, IV, and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase II β (hTOP2β) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss leads to increased DNA nicking and double strand break formation by the enzyme. The unstructured C-terminal domains (CTDs) of hTOP2β strongly potentiate strand passage activity in the absence of the ATPase regions, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleava in ge vitro , as well as in vivo . By contrast, the aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are restored. Our findings are consistent with the proposal that type II topoisomerases acquired an ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.
Collapse
|
9
|
Thapa J, Chizimu JY, Kitamura S, Akapelwa ML, Suwanthada P, Miura N, Toyting J, Nishimura T, Hasegawa N, Nishiuchi Y, Gordon SV, Nakajima C, Suzuki Y. Characterization of DNA Gyrase Activity and Elucidation of the Impact of Amino Acid Substitution in GyrA on Fluoroquinolone Resistance in Mycobacterium avium. Microbiol Spectr 2023; 11:e0508822. [PMID: 37067420 PMCID: PMC10269562 DOI: 10.1128/spectrum.05088-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
Mycobacterium avium, a member of the M. avium complex (MAC), is the major pathogen contributing to nontuberculous mycobacteria (NTM) infections worldwide. Fluoroquinolones (FQs) are recommended for the treatment of macrolide-resistant MACs. The association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA of M. avium is not yet clearly understood, as many FQ-resistant clinical M. avium isolates do not have such mutations. This study aimed to elucidate the role of amino acid substitution in the QRDR of M. avium GyrA in the development of FQ resistance. We found four clinical M. avium subsp. hominissuis isolates with Asp-to-Gly change at position 95 (Asp95Gly) and Asp95Tyr mutations in gyrA that were highly resistant to FQs and had 2- to 32-fold-higher MICs than the wild-type (WT) isolates. To clarify the contribution of amino acid substitutions to FQ resistance, we produced recombinant WT GyrA, GyrB, and four GyrA mutant proteins (Ala91Val, Asp95Ala, Asp95Gly, and Asp95Tyr) to elucidate their potential role in FQ resistance, using them to perform FQ-inhibited DNA supercoiling assays. While all the mutant GyrAs contributed to the higher (1.3- to 35.6-fold) FQ 50% inhibitory concentration (IC50) than the WT, Asp95Tyr was the most resistant mutant, with an IC50 15- to 35.6-higher than that of the WT, followed by the Asp95Gly mutant, with an IC50 12.5- to 17.6-fold higher than that of the WT, indicating that these amino acid substitutions significantly reduced the inhibitory activity of FQs. Our results showed that amino acid substitutions in the gyrA of M. avium contribute to FQ resistance. IMPORTANCE The emergence of fluoroquinolone (FQ) resistance has further compounded the control of emerging Mycobacterium avium-associated nontuberculous mycobacteria infections worldwide. For M. avium, the association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA is not yet clearly understood. Here, we report that four clinical M. avium isolates with a mutation in the QRDR of gyrA were highly resistant to FQs. We further clarified the impact of mutations in the QRDR of GyrA proteins by performing in vitro FQ-inhibited DNA supercoiling assays. These results confirmed that, like in Mycobacterium tuberculosis, mutations in the QRDR of gyrA also strongly contribute to FQ resistance in M. avium. Since many FQ-resistant M. avium isolates do have these mutations, the detailed molecular mechanism of FQ resistance in M. avium needs further exploration.
Collapse
Affiliation(s)
- Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Joseph Yamweka Chizimu
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Zambian National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Soyoka Kitamura
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Pondpan Suwanthada
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nami Miura
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Jirachaya Toyting
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
- Office of Academic Research and Industry-Government Collaboration, Section of Microbial Genomics and Ecology, Hiroshima University, Higashi-Hiroshima, Japan
| | - Stephen V. Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Faheem I, Gupta R, Nagaraja V. Distinct subunit architecture and assembly pattern of DNA gyrase from mycobacteria. Mol Microbiol 2023. [PMID: 37190861 DOI: 10.1111/mmi.15068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
DNA gyrase, the sole negative supercoiling type II topoisomerase, is composed of two subunits, GyrA and GyrB, encoded by the gyrA and gyrB genes, respectively, that form a quaternary complex of A2 B2 . In this study, we have investigated the assembly of mycobacterial DNA gyrase from its individual subunits, a step prerequisite for its activity. Using analytical size-exclusion chromatography, we show that GyrA from Mycobacterium tuberculosis and Mycobacterium smegmatis forms tetramers (A4 ) in solution unlike in Escherichia coli and other bacteria where GyrA exists as a dimer. GyrB, however, persists as a monomer, resembling the pattern found in E. coli. GyrB in both mycobacterial species interacts with GyrA and triggers the dissociation of the GyrA tetramer to facilitate the formation of catalytically active A2 B2 . Despite oligomerisation, the GyrA tetramer retained its DNA binding ability, and DNA binding had no effect on GyrA's oligomeric state in both species. Moreover, the presence of DNA facilitated the assembly of holoenzyme in the case of M. smegmatis by stabilising the GyrA2 B2 tetramer but with little effect in M. tuberculosis. Thus, in addition to the distinct organisation and regulation of the gyr locus in mycobacteria, the enzyme assembly also follows a different pattern.
Collapse
Affiliation(s)
- Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Richa Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
11
|
Vidmar V, Vayssières M, Lamour V. What's on the Other Side of the Gate: A Structural Perspective on DNA Gate Opening of Type IA and IIA DNA Topoisomerases. Int J Mol Sci 2023; 24:ijms24043986. [PMID: 36835394 PMCID: PMC9960139 DOI: 10.3390/ijms24043986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
DNA topoisomerases have an essential role in resolving topological problems that arise due to the double-helical structure of DNA. They can recognise DNA topology and catalyse diverse topological reactions by cutting and re-joining DNA ends. Type IA and IIA topoisomerases, which work by strand passage mechanisms, share catalytic domains for DNA binding and cleavage. Structural information has accumulated over the past decades, shedding light on the mechanisms of DNA cleavage and re-ligation. However, the structural rearrangements required for DNA-gate opening and strand transfer remain elusive, in particular for the type IA topoisomerases. In this review, we compare the structural similarities between the type IIA and type IA topoisomerases. The conformational changes that lead to the opening of the DNA-gate and strand passage, as well as allosteric regulation, are discussed, with a focus on the remaining questions about the mechanism of type IA topoisomerases.
Collapse
Affiliation(s)
- Vita Vidmar
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Marlène Vayssières
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Valérie Lamour
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
- Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France
- Correspondence:
| |
Collapse
|
12
|
Onikanni SA, Lawal B, Fadaka AO, Bakare O, Adewole E, Taher M, Khotib J, Susanti D, Oyinloye BE, Ajiboye BO, Ojo OA, Sibuyi NRS. Computational and Preclinical Prediction of the Antimicrobial Properties of an Agent Isolated from Monodora myristica: A Novel DNA Gyrase Inhibitor. Molecules 2023; 28:molecules28041593. [PMID: 36838579 PMCID: PMC9966190 DOI: 10.3390/molecules28041593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The African nutmeg (Monodora myristica) is a medically useful plant. We, herein, aimed to critically examine whether bioactive compounds identified in the extracted oil of Monodora myristica could act as antimicrobial agents. To this end, we employed the Schrödinger platform as the computational tool to screen bioactive compounds identified in the oil of Monodora myristica. Our lead compound displayed the highest potency when compared with levofloxacin based on its binding affinity. The hit molecule was further subjected to an Absorption, Distribution, Metabolism, Excretion (ADME) prediction, and a Molecular Dynamics (MD) simulation was carried out on molecules with PubChem IDs 529885 and 175002 and on three standards (levofloxacin, cephalexin, and novobiocin). The MD analysis results demonstrated that two molecules are highly compact when compared to the native protein; thereby, this suggests that they could affect the protein on a structural and a functional level. The employed computational approach demonstrates that conformational changes occur in DNA gyrase after the binding of inhibitors; thereby, this resulted in structural and functional changes. These findings expand our knowledge on the inhibition of bacterial DNA gyrase and could pave the way for the discovery of new drugs for the treatment of multi-resistant bacterial infections.
Collapse
Affiliation(s)
- Sunday Amos Onikanni
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Biochemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
- Correspondence: or (S.A.O.); (J.K.); (B.O.A.)
| | - Bashir Lawal
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Oluwafemi Bakare
- Department of Biochemistry, Faculty of Science, Adekunle Ajasin University, Akungba Akoko 342111, Nigeria
| | - Ezekiel Adewole
- Industrial Chemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
- Correspondence: or (S.A.O.); (J.K.); (B.O.A.)
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Babatunji Emmanuel Oyinloye
- Biochemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
- Correspondence: or (S.A.O.); (J.K.); (B.O.A.)
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Nigeria
| | - Nicole Remaliah Samantha Sibuyi
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| |
Collapse
|
13
|
Lungu CN, Mangalagiu V, Mangalagiu II, Mehedinti MC. Benzoquinoline Chemical Space: A Helpful Approach in Antibacterial and Anticancer Drug Design. Molecules 2023; 28:molecules28031069. [PMID: 36770739 PMCID: PMC9921191 DOI: 10.3390/molecules28031069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Benzoquinolines are used in many drug design projects as starting molecules subject to derivatization. This computational study aims to characterize e benzoquinone drug space to ease future drug design processes based on these molecules. The drug space is composed of all benzoquinones, which are active on topoisomerase II and ATP synthase. Topological, chemical, and bioactivity spaces are explored using computational methodologies based on virtual screening and scaffold hopping and molecular docking, respectively. Topological space is a geometrical space in which the elements composing it can be defined as a set of neighbors (which satisfy a particular axiom). In such space, a chemical space can be defined as the property space spanned by all possible molecules and chemical compounds adhering to a given set of construction principles and boundary conditions. In this chemical space, the potentially pharmacologically active molecules form the bioactivity space. Results show a poly-morphological chemical space that suggests distinct characteristics. The chemical space is correlated with properties such as steric energy, the number of hydrogen bonds, the presence of halogen atoms, and membrane permeability-related properties. Lastly, novel chemical compounds (such as oxadiazole methybenzamide and floro methylcyclohexane diene) with drug-like potential, active on TOPO II and ATP synthase have been identified.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Department of Surgery, Emergency Country Clinical Hospital, 800010 Galati, Romania
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Department of Morphological and Functional Science, University of Medicine and Pharmacy, Dunarea de Jos, 800017 Galati, Romania
- Correspondence: (C.N.L.); (I.I.M.)
| | - Violeta Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13 Universitatii Str., 720229 Suceava, Romania
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
- Correspondence: (C.N.L.); (I.I.M.)
| | - Mihaela C. Mehedinti
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Department of Morphological and Functional Science, University of Medicine and Pharmacy, Dunarea de Jos, 800017 Galati, Romania
| |
Collapse
|
14
|
Salman M, Sharma P, Kumar M, Ethayathulla AS, Kaur P. Targeting novel sites in DNA gyrase for development of anti-microbials. Brief Funct Genomics 2022; 22:180-194. [PMID: 36064602 DOI: 10.1093/bfgp/elac029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance in bacteria poses major challenges in selection of the therapeutic regime for managing the infectious disease. There is currently an upsurge in the appearance of multiple drug resistance in bacterial pathogens and a decline in the discovery of novel antibiotics. DNA gyrase is an attractive target used for antibiotic discovery due to its vital role in bacterial DNA replication and segregation in addition to its absence in mammalian organisms. Despite the presence of successful antibiotics targeting this enzyme, there is a need to bypass the resistance against this validated drug target. Hence, drug development in DNA gyrase is a highly active research area. In addition to the conventional binding sites for the novobiocin and fluoroquinolone antibiotics, several novel sites are being exploited for drug discovery. The binding sites for novel bacterial type II topoisomerase inhibitor (NBTI), simocyclinone, YacG, Thiophene and CcdB are structurally and biochemically validated active sites, which inhibit the supercoiling activity of topoisomerases. The novel chemical moieties with varied scaffolds have been identified to target DNA gyrase. Amongst them, the NBTI constitutes the most advanced DNA gyrase inhibitor which are in phase III trial of drug development. The present review aims to classify the novel binding sites other than the conventional novobiocin and quinolone binding pocket to bypass the resistance due to mutations in the DNA gyrase enzyme. These sites can be exploited for the identification of new scaffolds for the development of novel antibacterial compounds.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Priyanka Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
15
|
Sleiman JL, Burton RH, Caraglio M, Gutierrez Fosado YA, Michieletto D. Geometric Predictors of Knotted and Linked Arcs. ACS POLYMERS AU 2022; 2:341-350. [PMID: 36254317 PMCID: PMC9562465 DOI: 10.1021/acspolymersau.2c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Inspired by how certain proteins “sense”
knots and
entanglements in DNA molecules, here, we ask if local geometric features
that may be used as a readout of the underlying topology of generic
polymers exist. We perform molecular simulations of knotted and linked
semiflexible polymers and study four geometric measures to predict
topological entanglements: local curvature, local density, local 1D
writhe, and nonlocal 3D writhe. We discover that local curvature is
a poor predictor of entanglements. In contrast, segments with maximum
local density or writhe correlate as much as 90% of the time with
the shortest knotted and linked arcs. We find that this accuracy is
preserved across different knot types and also under significant spherical
confinement, which is known to delocalize essential crossings in knotted
polymers. We further discover that nonlocal 3D writhe is the best
geometric readout of the knot location. Finally, we discuss how these
geometric features may be used to computationally analyze entanglements
in generic polymer melts and gels.
Collapse
Affiliation(s)
- Joseph L. Sleiman
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Robin H. Burton
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Yair Augusto Gutierrez Fosado
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
16
|
Kostelidou A, Perdih F, Kljun J, Dimou F, Kalogiannis S, Turel I, Psomas G. Metal(II) Complexes of the Fluoroquinolone Fleroxacin: Synthesis, Characterization and Biological Profile. Pharmaceutics 2022; 14:pharmaceutics14050898. [PMID: 35631484 PMCID: PMC9144902 DOI: 10.3390/pharmaceutics14050898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
A series of complexes of divalent transition metals (Cu(II), Mn(II), Zn(II), Co(II) and Ni(II)) with the quinolone antibacterial agent fleroxacin, in the absence or presence of an α-diimine such as 2,2′-bipyridine, 1,10-phenanthroline or 2,2′-bipyridylamine, were prepared and characterized. The complexes were characterized by various physicochemical and spectroscopic techniques and by single-crystal X-ray crystallography. The in vitro antibacterial activity of the complexes was studied against the bacterial strains Staphylococcus aureus, Bacillus subtilis and Xanthomonas campestris and was higher than that of free quinolone. The affinity of the complexes for bovine and human serum albumin was studied by fluorescence emission spectroscopy and the determined binding constants showed tight and reversible binding to the albumins. The interaction of the complexes with calf-thymus DNA was studied by various techniques, which showed that intercalation was the most plausible mode of interaction.
Collapse
Affiliation(s)
- Alexandra Kostelidou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; (F.P.); (J.K.)
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; (F.P.); (J.K.)
| | - Foteini Dimou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400 Thessaloniki, Greece; (F.D.); (S.K.)
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400 Thessaloniki, Greece; (F.D.); (S.K.)
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; (F.P.); (J.K.)
- Correspondence: (I.T.); (G.P.)
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Correspondence: (I.T.); (G.P.)
| |
Collapse
|
17
|
Moreira F, Arenas M, Videira A, Pereira F. Evolutionary History of TOPIIA Topoisomerases in Animals. J Mol Evol 2022; 90:149-165. [PMID: 35165762 DOI: 10.1007/s00239-022-10048-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 01/15/2023]
Abstract
TOPIIA topoisomerases are required for the regulation of DNA topology by DNA cleavage and re-ligation and are important targets of antibiotic and anticancer agents. Humans possess two TOPIIA paralogue genes (TOP2A and TOP2B) with high sequence and structural similarity but distinct cellular functions. Despite their functional and clinical relevance, the evolutionary history of TOPIIA is still poorly understood. Here we show that TOPIIA is highly conserved in Metazoa. We also found that TOPIIA paralogues from jawed and jawless vertebrates had different origins related with tetraploidization events. After duplication, TOP2B evolved under a stronger purifying selection than TOP2A, perhaps promoted by the more specialized role of TOP2B in postmitotic cells. We also detected genetic signatures of positive selection in the highly variable C-terminal domain (CTD), possibly associated with adaptation to cellular interactions. By comparing TOPIIA from modern and archaic humans, we found two amino acid substitutions in the TOP2A CTD, suggesting that TOP2A may have contributed to the evolution of present-day humans, as proposed for other cell cycle-related genes. Finally, we identified six residues conferring resistance to chemotherapy differing between TOP2A and TOP2B. These six residues could be targets for the development of TOP2A-specific inhibitors that would avoid the side effects caused by inhibiting TOP2B. Altogether, our findings clarify the origin, diversification and selection pressures governing the evolution of animal TOPIIA.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
18
|
Purushothaman M, Dhar SK, Natesh R. Role of unique loops in oligomerization and ATPase function of Plasmodium falciparum gyrase B. Protein Sci 2022; 31:323-332. [PMID: 34716632 PMCID: PMC8820116 DOI: 10.1002/pro.4217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
DNA gyrase is an ATP dependent Type IIA topoisomerase that is unique to prokaryotes. Interestingly DNA gyrase has also been found in the apicoplasts of apicomplexan parasites like Plasmodium falciparum (Pf) the causative agent of Malaria. Gyrase B (GyrB), a subunit of gyrase A2 B2 complex has an N-terminal domain (GyrBN) which is endowed with ATPase activity. We reported earlier that PfGyrB exhibits ATP-independent dimerization unlike its bacterial counterparts. Here we report the role of two unique regions (L1 and L2) identified in PfGyrBN. Deletions of L1 alone (PfGyrBNΔL1), or L1 and L2 together (PfGyrBNΔL1ΔL2) have indicated that these regions may play an important role in ATPase activity and the oligomeric state of PfGyrBN. Our experiments show that the deletion of L1 region disrupts the dimer interface of PfGyrBN and reduces its ATPase activity. Further through ITC experiments we show that the binding affinity of ATP to PfGyrBN is reduced upon the deletion of L1 region. We have observed a reduction in ATPase activity for of all three proteins PfGyrBN, PfGyrBNΔL1, and PfGyrBNΔL1ΔL2 in presence of coumermycin. Our results suggests that L1 region of PfGyrBN is likely to be functionally important and may provide a unique dimer interface that affects its enzymatic activity. Since deletion of L1 region decreases the affinity of ATP to the protein, this region can be targeted toward designing novel inhibitors of ATP hydrolysis.
Collapse
Affiliation(s)
- Monica Purushothaman
- School of BiologyIndian Institute of Science Education and Research ThiruvananthapuramThiruvananthapuramKeralaIndia
| | - Suman Kumar Dhar
- Special Centre of Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia
| | - Ramanathan Natesh
- School of BiologyIndian Institute of Science Education and Research ThiruvananthapuramThiruvananthapuramKeralaIndia
| |
Collapse
|
19
|
Subsomwong P, Doohan D, Fauzia KA, Akada J, Matsumoto T, Yee TT, Htet K, Waskito LA, Tuan VP, Uchida T, Matsuhisa T, Yamaoka Y. Next-Generation Sequencing-Based Study of Helicobacter pylori Isolates from Myanmar and Their Susceptibility to Antibiotics. Microorganisms 2022; 10:microorganisms10010196. [PMID: 35056645 PMCID: PMC8781859 DOI: 10.3390/microorganisms10010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Evaluation of Helicobacter pylori resistance to antibiotics is crucial for treatment strategy in Myanmar. Moreover, the genetic mechanisms involved remain unknown. We aimed to investigate the prevalence of H. pylori infection, antibiotic resistance, and genetic mechanisms in Myanmar. One hundred fifty patients from two cities, Mawlamyine (n = 99) and Yangon (n = 51), were recruited. The prevalence of H. pylori infection was 43.3% (65/150). The successfully cultured H. pylori isolates (n = 65) were tested for antibiotic susceptibility to metronidazole, levofloxacin, clarithromycin, amoxicillin, and tetracycline by Etest, and the resistance rates were 80%, 33.8%, 7.7%, 4.6%, and 0%, respectively. In the multidrug resistance pattern, the metronidazole–levofloxacin resistance was highest for double-drug resistance (16/19; 84.2%), and all triple-drug resistance (3/3) was clarithromycin–metronidazole–levofloxacin resistance. Twenty-three strains were subjected to next-generation sequencing to study their genetic mechanisms. Interestingly, none of the strains resistant to clarithromycin had well-known mutations in 23S rRNA (e.g., A2142G, A2142C, and A2143G). New type mutation genotypes such as pbp1-A (e.g., V45I, S/R414R), 23S rRNA (e.g., T248C), gyrA (e.g., D210N, K230Q), gyrB (e.g., A584V, N679H), rdxA (e.g., V175I, S91P), and frxA (e.g., L33M) were also detected. In conclusion, the prevalence of H. pylori infection and its antibiotic resistance to metronidazole was high in Myanmar. The H. pylori eradication regimen with classical triple therapy, including amoxicillin and clarithromycin, can be used as the first-line therapy in Myanmar. In addition, next-generation sequencing is a powerful high-throughput method for identifying mutations within antibiotic resistance genes and monitoring the spread of H. pylori antibiotic-resistant strains.
Collapse
Affiliation(s)
- Phawinee Subsomwong
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Dalla Doohan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Public Health and Preventive Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Public Health and Preventive Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
| | - Than Than Yee
- Department of GI and HBP Surgery, No. (2) Defense Service General Hospital (1000 Bedded), Nay Pyi Taw 15013, Myanmar;
| | - Kyaw Htet
- Department of GI and HBP Surgery, No. (1) Defense Service General Hospital (1000 Bedded), Mingaladon, Yangon 11021, Myanmar;
| | - Langgeng Agung Waskito
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Public Health and Preventive Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh 749000, Vietnam
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Takeshi Matsuhisa
- Department of Gastroenterology, Nippon Medical School Tama Nagayama Hospital, Tama 206-8512, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (P.S.); (D.D.); (K.A.F.); (J.A.); (T.M.); (L.A.W.); (V.P.T.)
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Global Oita Medical Advanced Research Center for Health (GO-MARCH), Yufu 879-5593, Japan
- Correspondence: ; Tel.: +81-(97)-586-5740; Fax: +81-(97)-586-5749
| |
Collapse
|
20
|
Forde BM, De Oliveira DMP, Falconer C, Graves B, Harris PNA. Strengths and caveats of identifying resistance genes from whole genome sequencing data. Expert Rev Anti Infect Ther 2021; 20:533-547. [PMID: 34852720 DOI: 10.1080/14787210.2022.2013806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) continues to present major challenges to modern healthcare. Recent advances in whole-genome sequencing (WGS) have made the rapid molecular characterization of AMR a realistic possibility for diagnostic laboratories; yet major barriers to clinical implementation exist. AREAS COVERED We describe and compare short- and long-read sequencing platforms, typical components of bioinformatics pipelines, tools for AMR gene detection and the relative merits of read- or assembly-based approaches. The challenges of characterizing mobile genetic elements from genomic data are outlined, as well as the complexities inherent to the prediction of phenotypic resistance from WGS. Practical obstacles to implementation in diagnostic laboratories, the critical role of quality control and external quality assurance, as well as standardized reporting standards are also discussed. Future directions, such as the application of machine-learning and artificial intelligence algorithms, linked to clinically meaningful outcomes, may offer a new paradigm for the clinical application of AMR prediction. EXPERT OPINION AMR prediction from WGS data presents an exciting opportunity to advance our capacity to comprehensively characterize infectious pathogens in a rapid manner, ultimately aiming to improve patient outcomes. Collaborative efforts between clinicians, scientists, regulatory bodies and healthcare administrators will be critical to achieve the full promise of this approach.
Collapse
Affiliation(s)
- Brian M Forde
- University of Queensland, Faculty of Medicine, Uq Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Australia
| | - David M P De Oliveira
- University of Queensland, Faculty of Science, School of Chemistry and Molecular Biosciences, St Lucia, Australia
| | - Caitlin Falconer
- University of Queensland, Faculty of Medicine, Uq Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Australia
| | - Bianca Graves
- Herston Infectious Disease Institute, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Patrick N A Harris
- University of Queensland, Faculty of Medicine, Uq Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Australia.,Herston Infectious Disease Institute, Royal Brisbane & Women's Hospital, Herston, Australia.,Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, Herston, Australia
| |
Collapse
|
21
|
De Smet J, Wagemans J, Boon M, Ceyssens PJ, Voet M, Noben JP, Andreeva J, Ghilarov D, Severinov K, Lavigne R. The bacteriophage LUZ24 "Igy" peptide inhibits the Pseudomonas DNA gyrase. Cell Rep 2021; 36:109567. [PMID: 34433028 DOI: 10.1016/j.celrep.2021.109567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
The bacterial DNA gyrase complex (GyrA/GyrB) plays a crucial role during DNA replication and serves as a target for multiple antibiotics, including the fluoroquinolones. Despite it being a valuable antibiotics target, resistance emergence by pathogens including Pseudomonas aeruginosa are proving problematic. Here, we describe Igy, a peptide inhibitor of gyrase, encoded by Pseudomonas bacteriophage LUZ24 and other members of the Bruynoghevirus genus. Igy (5.6 kDa) inhibits in vitro gyrase activity and interacts with the P. aeruginosa GyrB subunit, possibly by DNA mimicry, as indicated by a de novo model of the peptide and mutagenesis. In vivo, overproduction of Igy blocks DNA replication and leads to cell death also in fluoroquinolone-resistant bacterial isolates. These data highlight the potential of discovering phage-inspired leads for antibiotics development, supported by co-evolution, as Igy may serve as a scaffold for small molecule mimicry to target the DNA gyrase complex, without cross-resistance to existing molecules.
Collapse
Affiliation(s)
- Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Julia Andreeva
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Ghilarov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
22
|
Basic residues at the C-gate of DNA gyrase are involved in DNA supercoiling. J Biol Chem 2021; 297:101000. [PMID: 34303706 PMCID: PMC8368997 DOI: 10.1016/j.jbc.2021.101000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
DNA gyrase is a type II topoisomerase that is responsible for maintaining the topological state of bacterial and some archaeal genomes. It uses an ATP-dependent two-gate strand-passage mechanism that is shared among all type II topoisomerases. During this process, DNA gyrase creates a transient break in the DNA, the G-segment, to form a cleavage complex. This allows a second DNA duplex, known as the T-segment, to pass through the broken G-segment. After the broken strand is religated, the T-segment is able to exit out of the enzyme through a gate called the C-gate. Although many steps of the type II topoisomerase mechanism have been studied extensively, many questions remain about how the T-segment ultimately exits out of the C-gate. A recent cryo-EM structure of Streptococcus pneumoniae GyrA shows a putative T-segment in close proximity to the C-gate, suggesting that residues in this region may be important for coordinating DNA exit from the enzyme. Here, we show through site-directed mutagenesis and biochemical characterization that three conserved basic residues in the C-gate of DNA gyrase are important for DNA supercoiling activity, but not for ATPase or cleavage activity. Together with the structural information previously published, our data suggest a model in which these residues cluster to form a positively charged region that facilitates T-segment passage into the cavity formed between the DNA gate and C-gate.
Collapse
|
23
|
Hirsch J, Klostermeier D. What makes a type IIA topoisomerase a gyrase or a Topo IV? Nucleic Acids Res 2021; 49:6027-6042. [PMID: 33905522 PMCID: PMC8216471 DOI: 10.1093/nar/gkab270] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Type IIA topoisomerases catalyze a variety of different reactions: eukaryotic topoisomerase II relaxes DNA in an ATP-dependent reaction, whereas the bacterial representatives gyrase and topoisomerase IV (Topo IV) preferentially introduce negative supercoils into DNA (gyrase) or decatenate DNA (Topo IV). Gyrase and Topo IV perform separate, dedicated tasks during replication: gyrase removes positive supercoils in front, Topo IV removes pre-catenanes behind the replication fork. Despite their well-separated cellular functions, gyrase and Topo IV have an overlapping activity spectrum: gyrase is also able to catalyze DNA decatenation, although less efficiently than Topo IV. The balance between supercoiling and decatenation activities is different for gyrases from different organisms. Both enzymes consist of a conserved topoisomerase core and structurally divergent C-terminal domains (CTDs). Deletion of the entire CTD, mutation of a conserved motif and even by just a single point mutation within the CTD converts gyrase into a Topo IV-like enzyme, implicating the CTDs as the major determinant for function. Here, we summarize the structural and mechanistic features that make a type IIA topoisomerase a gyrase or a Topo IV, and discuss the implications for type IIA topoisomerase evolution.
Collapse
Affiliation(s)
- Jana Hirsch
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| |
Collapse
|
24
|
Escherichia coli GyrA Tower Domain Interacts with QnrB1 Loop B and Plays an Important Role in QnrB1 Protection from Quinolone Inhibition. Antimicrob Agents Chemother 2021; 65:e0040221. [PMID: 33846132 DOI: 10.1128/aac.00402-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Qnr pentapeptide repeat proteins interact with DNA gyrase and protect it from quinolone inhibition. The two external loops, particularly the larger loop B, of Qnr proteins are essential for quinolone protection of DNA gyrase. The specific QnrB1 interaction sites on DNA gyrase are not known. In this study, we investigated the interaction between GyrA and QnrB1 using site-specific photo-cross-linking of QnrB1 loop B combined with mass spectrometry. We found that amino acid residues 286 to 298 on the tower domain of GyrA interact with QnrB1 and play a key role in QnrB1 protection of gyrase from quinolone inhibition. Alanine replacement of arginine at residue 293 and a small deletion of amino acids 286 to 289 of GyrA resulted in a decrease in the QnrB1-mediated increase in quinolone MICs and also abolished the QnrB1 protection of purified DNA gyrase from ciprofloxacin inhibition.
Collapse
|
25
|
Begum S, Shadrack DM, Joseph FM, Ndensendo VMK. Molecular dynamics simulation of bioactive compounds of Withania somnifera leaf extract as DNA gyrase inhibitor. J Biomol Struct Dyn 2021; 40:9279-9286. [PMID: 34018468 DOI: 10.1080/07391102.2021.1927191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Medicinal plants have served humans as medicine for centuries. Withania somnifera (L.) (Ashwagandha) leaf extract is traditionally used in managing and treating bacterial infections. A combination of experimental and computational methods was used to investigate the related antibacterial mechanism. Leaf extract showed strong antibacterial activity against S. aureus. Moreover, molecular docking established that withanolide C, a compound obtained from methanolic leaf extract binded strongly to DNA gyrase enzyme. Molecular dynamics simulation and molecular mechanics Poisson-Boltzmann surface area binding free energy suggested withanolide C to be stable at the active site of DNA gyrase B. The compound binded in a different fashion as compared to chlorobiocin a known DNA gyrase inhibitor. Present finding suggests that the antibacterial activity of W. somnifera is due to inhibition of DNA gyrase by withanolide C. This finding serves as the basis for development of novel antimicrobial agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sartaz Begum
- School of Pharmacy, St. John's University of Tanzania, Dodoma, Tanzania
| | - Daniel M Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St. John's University of Tanzania, Dodoma, Tanzania
| | - Ferister M Joseph
- School of Pharmacy, St. John's University of Tanzania, Dodoma, Tanzania
| | | |
Collapse
|
26
|
Towards Conformation-Sensitive Inhibition of Gyrase: Implications of Mechanistic Insight for the Identification and Improvement of Inhibitors. Molecules 2021; 26:molecules26051234. [PMID: 33669078 PMCID: PMC7956263 DOI: 10.3390/molecules26051234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Gyrase is a bacterial type IIA topoisomerase that catalyzes negative supercoiling of DNA. The enzyme is essential in bacteria and is a validated drug target in the treatment of bacterial infections. Inhibition of gyrase activity is achieved by competitive inhibitors that interfere with ATP- or DNA-binding, or by gyrase poisons that stabilize cleavage complexes of gyrase covalently bound to the DNA, leading to double-strand breaks and cell death. Many of the current inhibitors suffer from severe side effects, while others rapidly lose their antibiotic activity due to resistance mutations, generating an unmet medical need for novel, improved gyrase inhibitors. DNA supercoiling by gyrase is associated with a series of nucleotide- and DNA-induced conformational changes, yet the full potential of interfering with these conformational changes as a strategy to identify novel, improved gyrase inhibitors has not been explored so far. This review highlights recent insights into the mechanism of DNA supercoiling by gyrase and illustrates the implications for the identification and development of conformation-sensitive and allosteric inhibitors.
Collapse
|
27
|
Sutormin DA, Galivondzhyan AK, Polkhovskiy AV, Kamalyan SO, Severinov KV, Dubiley SA. Diversity and Functions of Type II Topoisomerases. Acta Naturae 2021; 13:59-75. [PMID: 33959387 PMCID: PMC8084294 DOI: 10.32607/actanaturae.11058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The DNA double helix provides a simple and elegant way to store and copy genetic information. However, the processes requiring the DNA helix strands separation, such as transcription and replication, induce a topological side-effect - supercoiling of the molecule. Topoisomerases comprise a specific group of enzymes that disentangle the topological challenges associated with DNA supercoiling. They relax DNA supercoils and resolve catenanes and knots. Here, we review the catalytic cycles, evolution, diversity, and functional roles of type II topoisomerases in organisms from all domains of life, as well as viruses and other mobile genetic elements.
Collapse
Affiliation(s)
- D. A. Sutormin
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - A. K. Galivondzhyan
- Lomonosov Moscow State University, Moscow, 119991 Russia
- Institute of Molecular Genetics RAS, Moscow, 123182 Russia
| | - A. V. Polkhovskiy
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - S. O. Kamalyan
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - K. V. Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
- Waksman Institute for Microbiology, Piscataway, New Jersey, 08854 USA
| | - S. A. Dubiley
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
28
|
Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020; 25:E5662. [PMID: 33271787 PMCID: PMC7730664 DOI: 10.3390/molecules25235662] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/05/2022] Open
Abstract
Fluoroquinolones (FQs) are arguably among the most successful antibiotics of recent times. They have enjoyed over 30 years of clinical usage and become essential tools in the armoury of clinical treatments. FQs target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, where they stabilise a covalent enzyme-DNA complex in which the DNA is cleaved in both strands. This leads to cell death and turns out to be a very effective way of killing bacteria. However, resistance to FQs is increasingly problematic, and alternative compounds are urgently needed. Here, we review the mechanisms of action of FQs and discuss the potential pathways leading to cell death. We also discuss quinolone resistance and how quinolone treatment can lead to resistance to non-quinolone antibiotics.
Collapse
Affiliation(s)
| | | | | | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (N.G.B.); (I.D.-S.); (L.R.A.)
| |
Collapse
|
29
|
|
30
|
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 2020; 46:578-599. [PMID: 32954887 DOI: 10.1080/1040841x.2020.1813687] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).
Collapse
Affiliation(s)
- Syeda Fatima Nadeem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Syed Fahad Tahir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | | | - Pikunthong Nukthamna
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,College of Research Methodology and Cognitive Science, Burapha University, Chonburi, Thailand
| | - Ali Muhammed Moula Ali
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Salvatore Massa
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
31
|
Singh M, Ilic S, Tam B, Ben‐Ishay Y, Sherf D, Pappo D, Akabayov B. Dual‐Acting Small‐Molecule Inhibitors Targeting Mycobacterial DNA Replication. Chemistry 2020; 26:10849-10860. [DOI: 10.1002/chem.202001725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Meenakshi Singh
- Department of Chemistry Ben-Gurion University of the Negev 1 Ben-Gurion Blvd. Be'er-Sheva 8410501 Israel
| | - Stefan Ilic
- Department of Chemistry Ben-Gurion University of the Negev 1 Ben-Gurion Blvd. Be'er-Sheva 8410501 Israel
| | - Benjamin Tam
- Department of Chemistry Ben-Gurion University of the Negev 1 Ben-Gurion Blvd. Be'er-Sheva 8410501 Israel
| | - Yesmin Ben‐Ishay
- Department of Chemistry Ben-Gurion University of the Negev 1 Ben-Gurion Blvd. Be'er-Sheva 8410501 Israel
| | - Dror Sherf
- Department of Chemistry Ben-Gurion University of the Negev 1 Ben-Gurion Blvd. Be'er-Sheva 8410501 Israel
| | - Doron Pappo
- Department of Chemistry Ben-Gurion University of the Negev 1 Ben-Gurion Blvd. Be'er-Sheva 8410501 Israel
| | - Barak Akabayov
- Department of Chemistry Ben-Gurion University of the Negev 1 Ben-Gurion Blvd. Be'er-Sheva 8410501 Israel
| |
Collapse
|
32
|
Inhibition of indole production increases the activity of quinolone antibiotics against E. coli persisters. Sci Rep 2020; 10:11742. [PMID: 32678197 PMCID: PMC7366635 DOI: 10.1038/s41598-020-68693-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persisters are a sub-population of genetically sensitive bacteria that survive antibiotic treatment by entering a dormant state. The emergence of persisters from dormancy after antibiotic withdrawal leads to recurrent infection. Indole is an aromatic molecule with diverse signalling roles, including a role in persister formation. Here we demonstrate that indole stimulates the formation of Escherichia coli persisters against quinolone antibiotics which target the GyrA subunit of DNA gyrase. However, indole has no effect on the formation of E. coli persisters against an aminocoumarin, novobiocin, which targets the GyrB subunit of DNA gyrase. Two modes of indole signalling have been described: persistent and pulse. The latter refers to the brief but intense elevation of intracellular indole during stationary phase entry. We show that the stimulation of quinolone persisters is due to indole pulse, rather than persistent, signalling. In silico docking of indole on DNA gyrase predicts that indole docks perfectly to the ATP binding site of the GyrB subunit. We propose that the inhibition of indole production offers a potential route to enhance the activity of quinolones against E. coli persisters.
Collapse
|
33
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
34
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 33:e00181-19. [PMID: 32404435 PMCID: PMC7227449 DOI: 10.1128/cmr.00181-19] [Citation(s) in RCA: 1063] [Impact Index Per Article: 212.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
35
|
Zou YL, Li HY, Zhou W, Cui XG, Zou GH, Shen GZ. Introduction of the antibacterial drugs norfloxacin and Ciprofloxacin into a polyoxometalate structure: Synthesis, characterization, and antibacterial activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Zhao P, Xu L, Zhang A, Zhu B, Shao Z. Evolutionary analysis of gyrA gene from Neisseria meningitidis bacterial strains of clonal complex 4821 collected in China between 1978 and 2016. BMC Microbiol 2020; 20:71. [PMID: 32228482 PMCID: PMC7106703 DOI: 10.1186/s12866-020-01751-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Neisseria meningitidis (N.meningitidis) bacteria belonging to clonal complex 4821 (CC4821) have been mainly reported in China and have been characterized by a high resistance rate to ciprofloxacin (CIP). The aim of this study was to assess the evolution of the DNA gyrase A (gyrA) gene from N.meningitidis CC4821 strains collected in China between 1978 and 2016. The complete sequence of gyrA gene from 77 strains are reported in this study and analyzed in the context of publicly available sequences from N. meningitidis of other CCs as well as other Neisseria species. RESULTS The phylogenetic analysis of CC4821 gyrA gene reveals at least 5 distinct genetic clusters. These clusters are not CC4821-specific showing that gyrA evolution is independent of CC4821 evolution. Some clusters contain sequences from other Neisseria species. Recombination within N.meningitidis strains and between Neisseria species was identified in SimPlot analysis. Finally, amino acid substitutions within GyrA protein were analyzed. Only one position, 91 (83 in E.coli gyrA gene), was linked to CIP resistance. Thirty-one additional putative resistance markers were identified, as amino acid substitutions were only found in resistant strains. CONCLUSIONS The evolution of gyrA gene of CC4821 N.meningitidis strains is not dependent on CC4821 evolution or on CIP resistance phenotype. Only amino acid 91 is linked to CIP resistance phenotype. Finally, recombination inter- and intra-species is likely to result in the acquisition of various resistance markers, 31 of them being putatively mapped in the present study. Analyzing the evolution of gyrA gene within CC4821 strains is critical to monitor the CIP resistance phenotype and the acquisition of new resistance markers. Such studies are necessary for the control of the meningococcal disease and the development of new drugs targeting DNA gyrase.
Collapse
Affiliation(s)
- Pan Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, China
| | - Li Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, China
| | - Aiyu Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, China
| | - Bingqing Zhu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, China
| | - Zhujun Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, China.
| |
Collapse
|
37
|
Weidlich D, Klostermeier D. Functional interactions between gyrase subunits are optimized in a species-specific manner. J Biol Chem 2020; 295:2299-2312. [PMID: 31953321 DOI: 10.1074/jbc.ra119.010245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/03/2020] [Indexed: 11/06/2022] Open
Abstract
DNA gyrase is a bacterial DNA topoisomerase that catalyzes ATP-dependent negative DNA supercoiling and DNA decatenation. The enzyme is a heterotetramer comprising two GyrA and two GyrB subunits. Its overall architecture is conserved, but species-specific elements in the two subunits are thought to optimize subunit interaction and enzyme function. Toward understanding the roles of these different elements, we compared the activities of Bacillus subtilis, Escherichia coli, and Mycobacterium tuberculosis gyrases and of heterologous enzymes reconstituted from subunits of two different species. We show that B. subtilis and E. coli gyrases are proficient DNA-stimulated ATPases and efficiently supercoil and decatenate DNA. In contrast, M. tuberculosis gyrase hydrolyzes ATP only slowly and is a poor supercoiling enzyme and decatenase. The heterologous enzymes are generally less active than their homologous counterparts. The only exception is a gyrase reconstituted from mycobacterial GyrA and B. subtilis GyrB, which exceeds the activity of M. tuberculosis gyrase and reaches the activity of the B. subtilis gyrase, indicating that the activities of enzymes containing mycobacterial GyrB are limited by ATP hydrolysis. The activity pattern of heterologous gyrases is in agreement with structural features present: B. subtilis gyrase is a minimal enzyme, and its subunits can functionally interact with subunits from other bacteria. In contrast, the specific insertions in E. coli and mycobacterial gyrase subunits appear to prevent efficient functional interactions with heterologous subunits. Understanding the molecular details of gyrase adaptations to the specific physiological requirements of the respective organism might aid in the development of species-specific gyrase inhibitors.
Collapse
Affiliation(s)
- Daniela Weidlich
- Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Dagmar Klostermeier
- Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, D-48149 Muenster, Germany.
| |
Collapse
|
38
|
Jarupinthusophon S, Luangsuphabool T, Aree T, Duong TH, Lugsanangarm K, Onsrisawat P, Siripong P, Sangvichien E, Chavasiri W. Naphthoquinones From Cultured Mycobiont of Marcelaria cumingii (Mont.) and Their Cytotoxicity. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19884383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five naphthoquinones including 4 compounds with new absolute configurations, (–)-2' S-trypethelone methyl ether (1), (–)-2' S-8-methoxytrypethelone methyl ether (2), (–)-(2' S,3' S)-4'-hydroxytrypethelone (3), and (–)-(2' S,3' R)-4'-hydroxy-8-methoxy trypethelone methyl ether (5), together with a known compound, (–)-2' S-trypethelone (4), were isolated from cultured mycobiont of Marcelaria cumingii. These compounds were structurally elucidated by high-resolution mass spectra, nuclear magnetic resonance, circular dichroism, optical rotation, and single-crystal X-ray analysis. The cytotoxicity against several cancer cell lines of the isolated compounds were tested. (–)-2' S-Trypethelone methyl ether (1) showed selective inhibition of HCT116 and A549 cell lines with half-maximal inhibitory concentration values of 0.32 ± 0.03 and 1.05 ± 0.12 µM, respectively. The binding conformation and molecular interactions including the effect of substituent modification were also revealed.
Collapse
Affiliation(s)
- Suekanya Jarupinthusophon
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerapat Luangsuphabool
- Biotechnology Research and Development Office, Department of Agriculture, Rangsit, Thanyaburi, Patumthani, Thailand
| | - Thammarat Aree
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thuc-Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Kiattisak Lugsanangarm
- Program of Chemistry, Faculty of Science and Technology, Bansomdej Chaopraya Rajabhat University, Bangkok, Thailand
| | - Prayumat Onsrisawat
- Natural Products Research Section, Research Division, National Cancer Institute, Bangkok, Thailand
| | - Pongpun Siripong
- Natural Products Research Section, Research Division, National Cancer Institute, Bangkok, Thailand
| | - Ek Sangvichien
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
WQ-3810: A new fluoroquinolone with a high potential against fluoroquinolone-resistant Mycobacterium tuberculosis. Tuberculosis (Edinb) 2019; 120:101891. [PMID: 31778929 DOI: 10.1016/j.tube.2019.101891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 11/23/2022]
Abstract
Fluoroquinolone (FQ) resistance in Mycobacterium tuberculosis (Mtb), caused by amino acid substitutions in DNA gyrase, has been increasingly reported worldwide. WQ-3810 is a newly developed FQ that is highly active against FQ-resistant pathogens; however, its activity against Mtb has not been evaluated. Herein we examined the efficacy of WQ-3810 against Mtb through the use of recombinant Mtb DNA gyrases. In addition, in vitro antimycobacterial activity of WQ-3810 was evaluated against recombinant Mtb var. bovis Bacille Calmette-Guérin strains in which gyrase-coding genes were replaced with Mtb variants containing resistance-conferring mutations. WQ-3810 showed a higher inhibitory activity than levofloxacin against most recombinant DNA gyrases with FQ-resistance mutations. Furthermore, WQ-3810 showed inhibition even against a DNA gyrase variant harboring a G88C mutation which is thought to confer the highest resistance against FQs in clinical Mtb isolates. In contrast, the FQ susceptibility test showed that WQ-3810 had relatively weak mycobactericidal activity compared with moxifloxacin. However, the combination of WQ-3810 and ethambutol showed the greatest degree of synergistic activity against recombinant strains. Since FQs and ethambutol have been used in multi-drug therapy for tuberculosis, WQ-3810 might represent a new, potent anti-tuberculosis drug that can be effective even against FQ-resistant Mtb strains.
Collapse
|
40
|
Kamsri P, Punkvang A, Hannongbua S, Suttisintong K, Kittakoop P, Spencer J, Mulholland AJ, Pungpo P. In silico study directed towards identification of the key structural features of GyrB inhibitors targeting MTB DNA gyrase: HQSAR, CoMSIA and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:775-800. [PMID: 31607177 DOI: 10.1080/1062936x.2019.1658218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Mycobacterium tuberculosis DNA gyrase subunit B (GyrB) has been identified as a promising target for rational drug design against fluoroquinolone drug-resistant tuberculosis. In this study, we attempted to identify the key structural feature for highly potent GyrB inhibitors through 2D-QSAR using HQSAR, 3D-QSAR using CoMSIA and molecular dynamics (MD) simulations approaches on a series of thiazole urea core derivatives. The best HQSAR and CoMSIA models based on IC50 and MIC displayed the structural basis required for good activity against both GyrB enzyme and mycobacterial cell. MD simulations and binding free energy analysis using MM-GBSA and waterswap calculations revealed that the urea core of inhibitors has the strongest interaction with Asp79 via hydrogen bond interactions. In addition, cation-pi interaction and hydrophobic interactions of the R2 substituent with Arg82 and Arg141 help to enhance the binding affinity in the GyrB ATPase binding site. Thus, the present study provides crucial structural features and a structural concept for rational design of novel DNA gyrase inhibitors with improved biological activities against both enzyme and mycobacterial cell, and with good pharmacokinetic properties and drug safety profiles.
Collapse
Affiliation(s)
- P Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University , Nakhon Phanon , Thailand
| | - A Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University , Nakhon Phanon , Thailand
| | - S Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University , Bangkok , Thailand
| | - K Suttisintong
- National Nanotechnology Center, NSTDA , Pathum Thani , Thailand
| | - P Kittakoop
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy , Bangkok , Thailand
- Chulabhorn Research Institute , Bangkok , Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education , Bangkok , Thailand
| | - J Spencer
- School of Cellular and Molecular Medicine, University of Bristol , Bristol , UK
| | - A J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Bristol , UK
| | - P Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University , Ubon Ratchathani , Thailand
| |
Collapse
|
41
|
Vanden Broeck A, Lotz C, Ortiz J, Lamour V. Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nat Commun 2019; 10:4935. [PMID: 31666516 PMCID: PMC6821735 DOI: 10.1038/s41467-019-12914-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
DNA gyrase is an essential enzyme involved in the homeostatic control of DNA supercoiling and the target of successful antibacterial compounds. Despite extensive studies, a detailed architecture of the full-length DNA gyrase from the model organism E. coli is still missing. Herein, we report the complete structure of the E. coli DNA gyrase nucleoprotein complex trapped by the antibiotic gepotidacin, using phase-plate single-particle cryo-electron microscopy. Our data unveil the structural and spatial organization of the functional domains, their connections and the position of the conserved GyrA-box motif. The deconvolution of two states of the DNA-binding/cleavage domain provides a better understanding of the allosteric movements of the enzyme complex. The local atomic resolution in the DNA-bound area reaching up to 3.0 Å enables the identification of the antibiotic density. Altogether, this study paves the way for the cryo-EM determination of gyrase complexes with antibiotics and opens perspectives for targeting conformational intermediates. Bacterial DNA gyrase is the only type II DNA topoisomerase capable of introducing negative supercoils into DNA and is of interest as a drug target. Here the authors present the cryo-EM structure of the complete E. coli DNA gyrase bound to a 180 bp double-stranded DNA and the antibiotic gepotidacin, which reveals the connections between the functional domains and their spatial organization.
Collapse
Affiliation(s)
- Arnaud Vanden Broeck
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Christophe Lotz
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julio Ortiz
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Valérie Lamour
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch Cedex, France. .,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France. .,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg Cedex, France.
| |
Collapse
|
42
|
Discovery of novel oxoindolin derivatives as atypical dual inhibitors for DNA Gyrase and FabH. Bioorg Chem 2019; 93:103309. [PMID: 31585266 DOI: 10.1016/j.bioorg.2019.103309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022]
Abstract
The antibacterial agents and therapies today are facing serious problems such as drug resistance. Introducing dual inhibiting effect is a valid approach to solve this trouble and bring advantages including wide adaptability, favorable safety and superiority of combination. We started from potential DNA Gyrase inhibitory backbone isatin to develop oxoindolin derivatives as atypical dual Gyrase (major) and FabH (assistant) inhibitors via a two-round screening. Aiming at blocking both duplication (Gyrase) and survival (FabH), most of synthesized compounds indicated potency against Gyrase and some of them inferred favorable inhibitory effect on FabH. The top hit I18 suggested comparable Gyrase inhibitory activity (IC50 = 0.025 μM) and antibacterial effect with the positive control Novobiocin (IC50 = 0.040 μM). FabH inhibitory activity (IC50 = 5.20 μM) was also successfully introduced. Docking simulation hinted possible important interacted residues and binding patterns for both target proteins. Adequate Structure-Activity Relation discussions provide the future orientations of modification. With high potency, low initial toxicity and dual inhibiting strategy, advanced compounds with therapeutic methods will be developed for clinical application.
Collapse
|
43
|
Blower TR, Bandak A, Lee ASY, Austin CA, Nitiss JL, Berger JM. A complex suite of loci and elements in eukaryotic type II topoisomerases determine selective sensitivity to distinct poisoning agents. Nucleic Acids Res 2019; 47:8163-8179. [PMID: 31287876 PMCID: PMC6735899 DOI: 10.1093/nar/gkz579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Abstract
Type II topoisomerases catalyze essential DNA transactions and are proven drug targets. Drug discrimination by prokaryotic and eukaryotic topoisomerases is vital to therapeutic utility, but is poorly understood. We developed a next-generation sequencing (NGS) approach to identify drug-resistance mutations in eukaryotic topoisomerases. We show that alterations conferring resistance to poisons of human and yeast topoisomerase II derive from a rich mutational 'landscape' of amino acid substitutions broadly distributed throughout the entire enzyme. Both general and discriminatory drug-resistant behaviors are found to arise from different point mutations found at the same amino acid position and to occur far outside known drug-binding sites. Studies of selected resistant enzymes confirm the NGS data and further show that the anti-cancer quinolone vosaroxin acts solely as an intercalating poison, and that the antibacterial ciprofloxacin can poison yeast topoisomerase II. The innate drug-sensitivity of the DNA binding and cleavage region of human and yeast topoisomerases (particularly hTOP2β) is additionally revealed to be significantly regulated by the enzymes' adenosine triphosphatase regions. Collectively, these studies highlight the utility of using NGS-based methods to rapidly map drug resistance landscapes and reveal that the nucleotide turnover elements of type II topoisomerases impact drug specificity.
Collapse
Affiliation(s)
- Tim R Blower
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Afif Bandak
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Amy S Y Lee
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John L Nitiss
- Biopharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, N310, Rockford, IL 61107, USA
| | - James M Berger
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Hashimi SM. Albicidin, a potent DNA gyrase inhibitor with clinical potential. J Antibiot (Tokyo) 2019; 72:785-792. [PMID: 31451755 DOI: 10.1038/s41429-019-0228-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 11/09/2022]
Abstract
The emergence of multiple antibiotic-resistant bacteria is a serious global problem which requires the development of new effective antimicrobial therapeutics. Albicidin produced by the sugarcane pathogen Xanthomonas albilineans is a potent DNA gyrase inhibitor with inhibitory effects significantly better than most DNA gyrase inhibitors. Albicidin acts primarily by inhibiting the religation of the cleaved DNA intermediate during the gyrase catalytic sequence similar to quinolones. The clinical realization of albicidin has been hampered by limited production and its unsolved structure. In this review, the relationship between albicidin and sugarcane leaf-scald disease is described. Furthermore, the biosynthesis and resistance mechanisms of albicidin are discussed. Finally, recent efforts to solve the structure and produce albicidin in a heterologous host and chemically are summarized.
Collapse
Affiliation(s)
- Saeed Mujahid Hashimi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting Studies, and Department of Stem Cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia.
| |
Collapse
|
45
|
DNA Topoisomerase Inhibitors: Trapping a DNA-Cleaving Machine in Motion. J Mol Biol 2019; 431:3427-3449. [PMID: 31301408 PMCID: PMC6723622 DOI: 10.1016/j.jmb.2019.07.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
Abstract
Type II topoisomerases regulate DNA topology by making a double-stranded break in one DNA duplex, transporting another DNA segment through this break and then resealing it. Bacterial type IIA topoisomerase inhibitors, such as fluoroquinolones and novel bacterial topoisomerase inhibitors, can trap DNA cleavage complexes with double- or single-stranded cleaved DNA. To study the mode of action of such compounds, 21 crystal structures of a “gyraseCORE” fusion truncate of Staphyloccocus aureus DNA gyrase complexed with DNA and diverse inhibitors have been published, as well as 4 structures lacking inhibitors. These structures have the DNA in various cleavage states and appear to track trajectories along the catalytic paths of the DNA cleavage/religation steps. The various conformations sampled by these multiple “gyraseCORE” structures show rigid body movements of the catalytic GyrA WHD and GyrB TOPRIM domains across the dimer interface. Conformational changes common to all compound-bound structures suggest common mechanisms for DNA cleavage-stabilizing compounds. The structures suggest that S. aureus gyrase uses a single moving-metal ion for cleavage and that the central four base pairs need to be stretched between the two catalytic sites, in order for a scissile phosphate to attract a metal ion to the A-site to catalyze cleavage, after which it is “stored” in another coordination configuration (B-site) in the vicinity. We present a simplified model for the catalytic cycle in which capture of the transported DNA segment causes conformational changes in the ATPase domain that push the DNA gate open, resulting in stretching and cleaving the gate-DNA in two steps. Type II DNA topoisomerases, such as DNA gyrase, control the topological state of DNA in all cells. As these enzymes bind, cleave and re-ligate DNA, multiple binding pockets for small compounds appear. We discuss how crystal structures of gyrase, DNA and different compounds may be trapping different stages in the catalytic cycle of the enzyme. We propose a model for DNA strand cleavage involving a moving metal ion.
Collapse
|
46
|
Synthesis, characterization and biological activity of Zn coordination compounds with the quinolone gatifloxacin. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev 2019; 40:263-292. [PMID: 31254295 DOI: 10.1002/med.21602] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis and more recently totally drug-resistant strains of M. tuberculosis, display unique mechanisms to survive in the host. A four-drug treatment regimen was introduced 40 years ago but the emergence of multidrug-resistance and more recently TDR necessitates the identification of new targets and drugs for the cure of M. tuberculosis infection. The current efforts in the drug development process are insufficient to completely eradicate the TB epidemic. For almost five decades the TB drug development process remained stagnant. The last 10 years have made sudden progress giving some new and highly promising drugs including bedaquiline, delamanid, and pretomanid. Many of the candidates are repurposed compounds, which were developed to treat other infections but later, exhibited anti-TB properties also. Each class of drug has a specific target and a definite mode of action. These targets are either involved in cell wall biosynthesis, protein synthesis, DNA/RNA synthesis, or metabolism. This review discusses recent progress in the discovery of newly developed and Food and Drug Administration approved drugs as well as repurposed drugs, their targets, mode of action, drug-target interactions, and their structure-activity relationship.
Collapse
Affiliation(s)
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
48
|
Eichenberger EM, Thaden JT. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2019; 8:antibiotics8020037. [PMID: 30959901 PMCID: PMC6628318 DOI: 10.3390/antibiotics8020037] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance has increased markedly in gram-negative bacteria over the last two decades, and in many cases has been associated with increased mortality and healthcare costs. The adoption of genotyping and next generation whole genome sequencing of large sets of clinical bacterial isolates has greatly expanded our understanding of how antibiotic resistance develops and transmits among bacteria and between patients. Diverse mechanisms of resistance, including antibiotic degradation, antibiotic target modification, and modulation of permeability through the bacterial membrane have been demonstrated. These fundamental insights into the mechanisms of gram-negative antibiotic resistance have influenced the development of novel antibiotics and treatment practices in highly resistant infections. Here, we review the mechanisms and global epidemiology of antibiotic resistance in some of the most clinically important resistance phenotypes, including carbapenem resistant Enterobacteriaceae, extensively drug resistant (XDR) Pseudomonas aeruginosa, and XDR Acinetobacter baumannii. Understanding the resistance mechanisms and epidemiology of these pathogens is critical for the development of novel antibacterials and for individual treatment decisions, which often involve alternatives to β-lactam antibiotics.
Collapse
Affiliation(s)
- Emily M Eichenberger
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joshua T Thaden
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
49
|
Lopeman RC, Harrison J, Desai M, Cox JAG. Mycobacterium abscessus: Environmental Bacterium Turned Clinical Nightmare. Microorganisms 2019; 7:microorganisms7030090. [PMID: 30909391 PMCID: PMC6463083 DOI: 10.3390/microorganisms7030090] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Mycobacteria are a large family of over 100 species, most of which do not cause diseases in humans. The majority of the mycobacterial species are referred to as nontuberculous mycobacteria (NTM), meaning they are not the causative agent of tuberculous (TB) or leprosy, i.e., Mycobacterium tuberculous complex and Mycobacterium leprae, respectively. The latter group is undoubtedly the most infamous, with TB infecting an estimated 10 million people and causing over 1.2 million deaths in 2017 alone TB and leprosy also differ from NTM in that they are only transmitted from person to person and have no environmental reservoir, whereas NTM infections are commonly acquired from the environment. It took until the 1950′s for NTM to be recognised as a potential lung pathogen in people with underlying pulmonary disease and another three decades for NTM to be widely regarded by the medical community when Mycobacterium avium complex was identified as the most common group of opportunistic pathogens in AIDS patients. This review focuses on an emerging NTM called Mycobacterium abscessus (M. abs). M. abs is a rapidly growing NTM that is responsible for opportunistic pulmonary infections in patients with structural lung disorders such as cystic fibrosis and bronchiectasis, as well as a wide range of skin and soft tissue infections in humans. In this review, we discuss how we came to understand the pathogen, how it is currently treated and examine drug resistance mechanisms and novel treatments currently in development. We highlight the urgent need for new and effective treatments for M. abs infection as well as improved in vivo methods of efficacy testing.
Collapse
Affiliation(s)
- Rose C Lopeman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Maya Desai
- Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Jonathan A G Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
50
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|