1
|
Currie TE, Borgerhoff Mulder M, Fogarty L, Schlüter M, Folke C, Haider LJ, Caniglia G, Tavoni A, Jansen REV, Jørgensen PS, Waring TM. Integrating evolutionary theory and social-ecological systems research to address the sustainability challenges of the Anthropocene. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220262. [PMID: 37952618 PMCID: PMC10645068 DOI: 10.1098/rstb.2022.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/19/2023] [Indexed: 11/14/2023] Open
Abstract
The rapid, human-induced changes in the Earth system during the Anthropocene present humanity with critical sustainability challenges. Social-ecological systems (SES) research provides multiple approaches for understanding the complex interactions between humans, social systems, and environments and how we might direct them towards healthier and more resilient futures. However, general theories of SES change have yet to be fully developed. Formal evolutionary theory has been applied as a dynamic theory of change of complex phenomena in biology and the social sciences, but rarely in SES research. In this paper, we explore the connections between both fields, hoping to foster collaboration. After sketching out the distinct intellectual traditions of SES research and evolutionary theory, we map some of their terminological and theoretical connections. We then provide examples of how evolutionary theory might be incorporated into SES research through the use of systems mapping to identify evolutionary processes in SES, the application of concepts from evolutionary developmental biology to understand the connections between systems changes and evolutionary changes, and how evolutionary thinking may help design interventions for beneficial change. Integrating evolutionary theory and SES research can lead to a better understanding of SES changes and positive interventions for a more sustainable Anthropocene. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Thomas E. Currie
- Human Behaviour and Cultural Evolution Group, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Monique Borgerhoff Mulder
- Department of Anthropology, University of California Davis, Davis, CA 95616, USA
- Santa Fe Institute, Santa Fe, NM 87506, USA
- Max-Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Laurel Fogarty
- Max-Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Maja Schlüter
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carl Folke
- Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden
| | - L. Jamila Haider
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Guido Caniglia
- Konrad Lorenz Institute for Evolution and Cognition Research, A-3400 Klosterneuburg, Austria
| | - Alessandro Tavoni
- Department of Economics, University of Bologna, 40126 Bologna, Italy
- Grantham Research Institute on Climate Change and the Environment, London School of Economics, London WC2A 2AE, UK
| | - Raf E. V. Jansen
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden
| | - Peter Søgaard Jørgensen
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden
| | - Timothy M. Waring
- Mitchell Center for Sustainability Solutions and School of Economics, University of Maine, Orono, ME 04469-5710, USA
| |
Collapse
|
2
|
Chopra A, Lineweaver CH. The Case for a Gaian Bottleneck: The Biology of Habitability. ASTROBIOLOGY 2016; 16:7-22. [PMID: 26789354 DOI: 10.1089/ast.2015.1387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The prerequisites and ingredients for life seem to be abundantly available in the Universe. However, the Universe does not seem to be teeming with life. The most common explanation for this is a low probability for the emergence of life (an emergence bottleneck), notionally due to the intricacies of the molecular recipe. Here, we present an alternative Gaian bottleneck explanation: If life emerges on a planet, it only rarely evolves quickly enough to regulate greenhouse gases and albedo, thereby maintaining surface temperatures compatible with liquid water and habitability. Such a Gaian bottleneck suggests that (i) extinction is the cosmic default for most life that has ever emerged on the surfaces of wet rocky planets in the Universe and (ii) rocky planets need to be inhabited to remain habitable. In the Gaian bottleneck model, the maintenance of planetary habitability is a property more associated with an unusually rapid evolution of biological regulation of surface volatiles than with the luminosity and distance to the host star.
Collapse
Affiliation(s)
- Aditya Chopra
- Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| | - Charles H Lineweaver
- Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| |
Collapse
|
3
|
Yuan D, Zou Q, Yu T, Song C, Huang S, Chen S, Ren Z, Xu A. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1841:1272-1284. [PMID: 24801744 DOI: 10.1016/j.bbalip.2014.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Abstract
Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Qiuqiong Zou
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Ting Yu
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Cuikai Song
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shengfeng Huang
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shangwu Chen
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenghua Ren
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Anlong Xu
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China; Beijing University of Chinese Medicine, 11 Bei San Huang Dong Road, Chao-yang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
|
5
|
Kleidon A. Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys Life Rev 2010; 7:424-60. [DOI: 10.1016/j.plrev.2010.10.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/14/2010] [Indexed: 11/24/2022]
|
6
|
|
7
|
Kleidon A. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:181-196. [PMID: 19948550 DOI: 10.1098/rsta.2009.0188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning.
Collapse
Affiliation(s)
- Axel Kleidon
- Max-Planck-Institut für Biogeochemie, Hans-Knöll-Strasse 10, 07745 Jena, Germany.
| |
Collapse
|
8
|
Watson AJ. Implications of an anthropic model of evolution for emergence of complex life and intelligence. ASTROBIOLOGY 2008; 8:175-185. [PMID: 18237258 DOI: 10.1089/ast.2006.0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Structurally complex life and intelligence evolved late on Earth; models for the evolution of global temperature suggest that, due to the increasing solar luminosity, the future life span of the (eukaryote) biosphere will be "only" about another billion years, a short time compared to the approximately 4 Ga since life began. A simple stochastic model (Carter, 1983) suggests that this timing might be governed by the necessity to pass a small number, n, of very difficult evolutionary steps, with n < 10 and a best guess of n = 4, in order for intelligent observers like ourselves to evolve. Here I extend the model analysis to derive probability distributions for each step. Past steps should tend to be evenly spaced through Earth's history, and this is consistent with identification of the steps with some of the major transitions in the evolution of life on Earth. A complementary approach, identifying the critical steps with major reorganizations in Earth's biogeochemical cycles, suggests that the Archean-Proterozoic and Proterozoic-Phanerozoic transitions might be identified with critical steps. The success of the model lends support to a "Rare Earth" hypothesis (Ward and Brownlee, 2000): structurally complex life is separated from prokaryotes by several very unlikely steps and, hence, will be much less common than prokaryotes. Intelligence is one further unlikely step, so it is much less common still.
Collapse
Affiliation(s)
- Andrew J Watson
- School of Environmental Science, University of East Anglia, Norwich, UK.
| |
Collapse
|
9
|
Free A, Barton NH. Do evolution and ecology need the Gaia hypothesis? Trends Ecol Evol 2007; 22:611-9. [PMID: 17954000 DOI: 10.1016/j.tree.2007.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/27/2022]
Abstract
Gaia theory, which describes the life-environment system of the Earth as stable and self-regulating, has remained at the fringes of mainstream biological science owing to its historically inadequate definition and apparent incompatibility with individual-level natural selection. The key issue is whether and why the biosphere might tend towards stability and self-regulation. We review the various ways in which these issues have been addressed by evolutionary and ecological theory, and relate these to 'Gaia theory'. We then ask how this theory extends the perspectives offered by these disciplines, and how it might be tested by novel modelling approaches and laboratory experiments using emergent technologies.
Collapse
Affiliation(s)
- Andrew Free
- Centre for the Study of Environmental Change and Sustainability, University of Edinburgh, Edinburgh, EH9 3JN, UK.
| | | |
Collapse
|
10
|
Fluctuation in the physical environment as a mechanism for reinforcing evolutionary transitions. J Theor Biol 2006; 242:832-43. [PMID: 16797597 DOI: 10.1016/j.jtbi.2006.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 04/10/2006] [Accepted: 05/06/2006] [Indexed: 11/23/2022]
Abstract
We hypothesize a mechanism for reinforcing transitions between levels of selection, involving physiological homeostasis and amplification of variation in the physical environment. Groups experience a stronger selection pressure than individuals for homeostasis with respect to reproductively limiting variables, because their greater longevity exposes them more often to suboptimal physical conditions, and greater physical size means they encompass a larger fraction of any resource/nutrient gradient. Groups achieve homeostasis by differentiation into microcosms with specialist functions, e.g. cell types. Such differentiation is more limited in individuals due to their smaller size and shorter lifespan. Hence tolerance of fluctuation in certain physical variables is proposed to be weaker in individuals than in groups. We show that a trait providing increased tolerance (alpha) to fluctuation (V-V(opt)) in a limiting abiotic variable (V), at relative fitness cost (C), can increase from rarity if the condition alpha.mid R:V-V(opt)|>C is met. Groups also sequester larger absolute quantities of resource than individuals, and group death is less frequent, hence the population dynamics of groups cause resource/nutrient availability to fluctuate with greater amplitude than that of individuals. Increasing the amplitude of fluctuation in a reproductively limiting environmental variable is proposed as a mechanism by which a group can limit reproduction of parasitic "cheat" individuals. Enhancing physical fluctuation is frequency dependent, hence only an increase in tolerance to fluctuation can explain the group's increase from rarity. However, once groups reach intermediate frequencies, a positive feedback process can be initiated in which a differentiated group enhances physical fluctuation beyond the tolerance of any "cheat", and in so doing enhances the selection pressure it experiences for homeostasis. This may help explain the persistence of transitions in individuality, and the coincidence of some such transitions with periods of change and oscillation in global scale environmental variables.
Collapse
|
11
|
Affiliation(s)
- Sean Nee
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|