1
|
Yang Y, Wong MH, Huang X, Chiu DN, Liu YZ, Prabakaran V, Imran A, Panzeri E, Chen Y, Huguet P, Kunisky A, Ho J, Dong Y, Carter BC, Xu W, Schlüter OM. Distinct transmission sites within a synapse for strengthening and homeostasis. SCIENCE ADVANCES 2025; 11:eads5750. [PMID: 40215296 PMCID: PMC11988405 DOI: 10.1126/sciadv.ads5750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
At synapses, miniature synaptic transmission forms the basic unit of evoked transmission, thought to use one canonical transmission site. Two general types of synaptic plasticity, associative plasticity to change synaptic weights and homeostatic plasticity to maintain an excitatory balance, are so far thought to be expressed at individual canonical sites in principal neurons of the cortex. Here, we report two separate types of transmission sites, termed silenceable and idle-able, each participating distinctly in evoked or miniature transmission in the mouse visual cortex. Both sites operated with a postsynaptic binary mode with different unitary sizes and mechanisms. During postnatal development, silenceable sites were unsilenced by associative plasticity with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-receptor incorporation, increasing evoked transmission. Concurrently, miniature transmission remained constant, where AMPA-receptor state changes balanced unsilencing with increased idling at idle-able sites. Thus, individual cortical spine synapses mediated two parallel, interacting types of transmission, which predominantly contributed to either associative or homeostatic plasticity.
Collapse
Affiliation(s)
- Yue Yang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Man Ho Wong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- European Neuroscience Institute Göttingen (ENI-G), ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Xiaojie Huang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Delia N. Chiu
- European Neuroscience Institute Göttingen (ENI-G), ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu-Zhang Liu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu Prabakaran
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amna Imran
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elisa Panzeri
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Yixuan Chen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Paloma Huguet
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Kunisky
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Ho
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett C. Carter
- European Neuroscience Institute Göttingen (ENI-G), ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Weifeng Xu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oliver M. Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- European Neuroscience Institute Göttingen (ENI-G), ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Bonansco C, Cerpa W, Inestrosa NC. How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway. Int J Mol Sci 2022; 24:ijms24010708. [PMID: 36614149 PMCID: PMC9821221 DOI: 10.3390/ijms24010708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023] Open
Abstract
Synaptic transmission is a dynamic process that requires precise regulation. Early in life, we must be able to forge appropriate connections (add and remove) to control our behavior. Neurons must recognize appropriate targets, and external soluble factors that activate specific signaling cascades provide the regulation needed to achieve this goal. Wnt signaling has been implicated in several forms of synaptic plasticity, including functional and structural changes associated with brain development. The analysis of synapses from an electrophysiological perspective allows us to characterize the functional role of cellular signaling pathways involved in brain development. The application of quantal theory to principles of developmental plasticity offers the possibility of dissecting the function of structural changes associated with the birth of new synapses as well as the maturation of immature silent synapses. Here, we focus on electrophysiological and molecular evidence that the Wnt signaling pathway regulates glutamatergic synaptic transmission, specifically N-methyl-d-aspartate receptors (NMDARs), to control the birth of new synapses. We also focus on the role of Wnts in the conversion of silent synapses into functional synapses.
Collapse
Affiliation(s)
- Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (N.C.I.)
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Nibaldo C. Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (C.B.); (N.C.I.)
| |
Collapse
|
3
|
Konopka A, Atkin JD. The Role of DNA Damage in Neural Plasticity in Physiology and Neurodegeneration. Front Cell Neurosci 2022; 16:836885. [PMID: 35813507 PMCID: PMC9259845 DOI: 10.3389/fncel.2022.836885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Damage to DNA is generally considered to be a harmful process associated with aging and aging-related disorders such as neurodegenerative diseases that involve the selective death of specific groups of neurons. However, recent studies have provided evidence that DNA damage and its subsequent repair are important processes in the physiology and normal function of neurons. Neurons are unique cells that form new neural connections throughout life by growth and re-organisation in response to various stimuli. This “plasticity” is essential for cognitive processes such as learning and memory as well as brain development, sensorial training, and recovery from brain lesions. Interestingly, recent evidence has suggested that the formation of double strand breaks (DSBs) in DNA, the most toxic form of damage, is a physiological process that modifies gene expression during normal brain activity. Together with subsequent DNA repair, this is thought to underlie neural plasticity and thus control neuronal function. Interestingly, neurodegenerative diseases such as Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington’s disease, manifest by a decline in cognitive functions, which are governed by plasticity. This suggests that DNA damage and DNA repair processes that normally function in neural plasticity may contribute to neurodegeneration. In this review, we summarize current understanding about the relationship between DNA damage and neural plasticity in physiological conditions, as well as in the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
The glutamatergic synapse: a complex machinery for information processing. Cogn Neurodyn 2021; 15:757-781. [PMID: 34603541 DOI: 10.1007/s11571-021-09679-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Being the most abundant synaptic type, the glutamatergic synapse is responsible for the larger part of the brain's information processing. Despite the conceptual simplicity of the basic mechanism of synaptic transmission, the glutamatergic synapse shows a large variation in the response to the presynaptic release of the neurotransmitter. This variability is observed not only among different synapses but also in the same single synapse. The synaptic response variability is due to several mechanisms of control of the information transferred among the neurons and suggests that the glutamatergic synapse is not a simple bridge for the transfer of information but plays an important role in its elaboration and management. The control of the synaptic information is operated at pre, post, and extrasynaptic sites in a sort of cooperation between the pre and postsynaptic neurons which also involves the activity of other neurons. The interaction between the different mechanisms of control is extremely complicated and its complete functionality is far from being fully understood. The present review, although not exhaustively, is intended to outline the most important of these mechanisms and their complexity, the understanding of which will be among the most intriguing challenges of future neuroscience.
Collapse
|
5
|
Hippocampal Lnx1-NMDAR multiprotein complex mediates initial social memory. Mol Psychiatry 2021; 26:3956-3969. [PMID: 31772302 PMCID: PMC8550978 DOI: 10.1038/s41380-019-0606-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022]
Abstract
Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.
Collapse
|
6
|
Song S, Kim J, Park K, Lee J, Park S, Lee S, Kim J, Hong I, Song B, Choi S. GSK-3β activation is required for ZIP-induced disruption of learned fear. Sci Rep 2020; 10:18227. [PMID: 33106552 PMCID: PMC7588416 DOI: 10.1038/s41598-020-75130-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/05/2020] [Indexed: 11/12/2022] Open
Abstract
The myristoylated zeta inhibitory peptide (ZIP), which was originally developed as a protein kinase C/Mζ (PKCζ/PKMζ) inhibitor, is known to produce the loss of different forms of memories. However, ZIP induces memory loss even in the absence of PKMζ, and its mechanism of action, therefore, remains elusive. Here, through a kinome-wide screen, we found that glycogen synthase kinase 3 beta (GSK-3β) was robustly activated by ZIP in vitro. ZIP induced depotentiation (a cellular substrate of memory erasure) of conditioning-induced potentiation at LA synapses, and the ZIP-induced depotentiation was prevented by a GSK-3β inhibitor, 6-bromoindirubin-3-acetoxime (BIO-acetoxime). Consistently, GSK-3β inhibition by BIO-acetoxime infusion or GSK-3β knockdown by GSK-3β shRNA in the LA attenuated ZIP-induced disruption of learned fear. Furthermore, conditioned fear was decreased by expression of a non-inhibitable form of GSK-3β in the LA. Our findings suggest that GSK-3β activation is a critical step for ZIP-induced disruption of memory.
Collapse
Affiliation(s)
- Sukwoon Song
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jihye Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyungjoon Park
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Junghwa Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sewon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sukwon Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ingie Hong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Beomjong Song
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Aref M, Ranjbari E, Romiani A, Ewing AG. Intracellular injection of phospholipids directly alters exocytosis and the fraction of chemical release in chromaffin cells as measured by nano-electrochemistry. Chem Sci 2020; 11:11869-11876. [PMID: 34123212 PMCID: PMC8162797 DOI: 10.1039/d0sc03683h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/06/2020] [Indexed: 12/02/2022] Open
Abstract
Using a nano-injection method, we introduced phospholipids having different intrinsic geometries into single secretory cells and used single cell amperometry (SCA) and intracellular vesicle impact electrochemical cytometry (IVIEC) with nanotip electrodes to monitor the effects of intracellular incubation on the exocytosis process and vesicular storage. Combining tools, this work provides new information to understand the impact of intracellular membrane lipid engineering on exocytotic release, vesicular content and fraction of chemical release. We also assessed the effect of membrane lipid alteration on catecholamine storage of isolated vesicles by implementing another amperometric technique, vesicle impact electrochemical cytometry (VIEC), outside the cell. Exocytosis analysis reveals that the intracellular nano-injection of phosphatidylcholine and lysophosphatidylcholine decreases the number of released catecholamines, whereas phosphatidylethanolamine shows the opposite effect. These observations support the emerging hypothesis that lipid curvature results in membrane remodeling through secretory pathways, and also provide new evidence for a critical role of the lipid localization in modulating the release process. Interestingly, the IVIEC data imply that total vesicular content is also affected by in situ supplementation of the cells with some lipids, while, the corresponding VIEC results show that the neurotransmitter content in isolated vesicles is not affected by altering the vesicle membrane lipids. This suggests that the intervention of phospholipids inside the cell has its effect on the cellular machinery for vesicle release rather than vesicle structure, and leads to the somewhat surprising conclusion that modulating release has a direct effect on vesicle structure, which is likely due to the vesicles opening and closing again during exocytosis. These findings could lead to a novel regulatory mechanism for the exocytotic or synaptic strength based on lipid heterogeneity across the cell membrane.
Collapse
Affiliation(s)
- Mohaddeseh Aref
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Elias Ranjbari
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Armaghan Romiani
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| |
Collapse
|
8
|
McDevitt DS, Graziane NM. Neuronal mechanisms mediating pathological reward-related behaviors: A focus on silent synapses in the nucleus accumbens. Pharmacol Res 2018; 136:90-96. [PMID: 30171902 DOI: 10.1016/j.phrs.2018.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
The compulsive drive to seek drugs despite negative consequences relies heavily on drug-induced alterations that occur within the reward neurocircuit. These alterations include changes in neuromodulator and neurotransmitter systems that ultimately lock behaviors into an inflexible and permanent state. To provide clinicians with improved treatment options, researchers are trying to identify, as potential targets of therapeutic intervention, the neural mechanisms mediating an "addictive-like state". Here, we discuss how drug-induced generation of silent synapses in the nucleus accumbens may be a potential therapeutic target capable of reversing drug-related behaviors.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA; Neuroscience graduate program, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA.
| |
Collapse
|
9
|
Alford S, Hamm H, Rodriguez S, Zurawski Z. Gβγ SNARE Interactions and Their Behavioral Effects. Neurochem Res 2018; 44:636-649. [PMID: 29752624 DOI: 10.1007/s11064-018-2531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses-GPCRs are present at every studied presynaptic terminal-underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca2+-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca2+-dependent K+ channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.
Collapse
Affiliation(s)
- Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA.
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| | - Shelagh Rodriguez
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| |
Collapse
|
10
|
Ye D, Ewing A. On the Action of General Anesthetics on Cellular Function: Barbiturate Alters the Exocytosis of Catecholamines in a Model Cell System. Chemphyschem 2018; 19:1173-1179. [PMID: 29356266 DOI: 10.1002/cphc.201701255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Indexed: 11/08/2022]
Abstract
General anesthetics are essential in many areas, however, the cellular mechanisms of anesthetic-induced amnesia and unconsciousness are incompletely understood. Exocytosis is the main mechanism of signal transduction and neuronal communication through the release of chemical transmitters from vesicles to the extracellular environment. Here, we use disk electrodes placed on top of PC12 cells to show that treatment with barbiturate induces fewer molecules released during exocytosis and changes the event dynamics perhaps by inducing a less stable fusion pore that is prone to close faster during partial exocytosis. Larger events are essentially abolished. However, use of intracellular vesicle impact electrochemical cytometry using a nano-tip electrode inserted into a cell shows that the distribution of vesicle transmitter content does not change after barbiturate treatment. This indicates that barbiturate selectively alters the pore size of larger events or perhaps differentially between types of vesicles. Alteration of exocytosis in this manner could be linked to the effects of general anesthetics on memory loss.
Collapse
Affiliation(s)
- Daixin Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden.,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
11
|
Lisman J. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0260. [PMID: 28093558 DOI: 10.1098/rstb.2016.0260] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 01/03/2023] Open
Abstract
Synapses are complex because they perform multiple functions, including at least six mechanistically different forms of plasticity. Here, I comment on recent developments regarding these processes. (i) Short-term potentiation (STP), a Hebbian process that requires small amounts of synaptic input, appears to make strong contributions to some forms of working memory. (ii) The rules for long-term potentiation (LTP) induction in CA3 have been clarified: induction does not depend obligatorily on backpropagating sodium spikes but, rather, on dendritic branch-specific N-methyl-d-aspartate (NMDA) spikes. (iii) Late LTP, a process that requires a dopamine signal (and is therefore neoHebbian), is mediated by trans-synaptic growth of the synapse, a growth that occurs about an hour after LTP induction. (iv) LTD processes are complex and include both homosynaptic and heterosynaptic forms. (v) Synaptic scaling produced by changes in activity levels are not primarily cell-autonomous, but rather depend on network activity. (vi) The evidence for distance-dependent scaling along the primary dendrite is firm, and a plausible structural-based mechanism is suggested.Ideas about the mechanisms of synaptic function need to take into consideration newly emerging data about synaptic structure. Recent super-resolution studies indicate that glutamatergic synapses are modular (module size 70-80 nm), as predicted by theoretical work. Modules are trans-synaptic structures and have high concentrations of postsynaptic density-95 (PSD-95) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. These modules function as quasi-independent loci of AMPA-mediated transmission and may be independently modifiable, suggesting a new understanding of quantal transmission.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity.'
Collapse
Affiliation(s)
- John Lisman
- Biology Department, Brandeis University, Waltham, MA, USA
| |
Collapse
|
12
|
Disruption of Coordinated Presynaptic and Postsynaptic Maturation Underlies the Defects in Hippocampal Synapse Stability and Plasticity in Abl2/Arg-Deficient Mice. J Neurosci 2017; 36:6778-91. [PMID: 27335408 DOI: 10.1523/jneurosci.4092-15.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/13/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Immature glutamatergic synapses in cultured neurons contain high-release probability (Pr) presynaptic sites coupled to postsynaptic sites bearing GluN2B-containing NMDA receptors (NMDARs), which mature into low-Pr, GluN2B-deficient synapses. Whether this coordinated maturation of high-Pr, GluN2B(+) synapses to low-Pr, GluN2B-deficient synapses actually occurs in vivo, and if so, what factors regulate it and what role it might play in long-term synapse function and plasticity are unknown. We report that loss of the integrin-regulated Abl2/Arg kinase in vivo yields a subpopulation of "immature" high-Pr, GluN2B(+) hippocampal synapses that are maintained throughout late postnatal development and early adulthood. These high-Pr, GluN2B(+) synapses are evident in arg(-/-) animals as early as postnatal day 21 (P21), a time that precedes any observable defects in synapse or dendritic spine number or structure in arg(-/-) mice. Using focal glutamate uncaging at individual synapses, we find only a subpopulation of arg(-/-) spines exhibits increased GluN2B-mediated responses at P21. As arg(-/-) mice age, these synapses increase in proportion, and their associated spines enlarge. These changes coincide with an overall loss of spines and synapses in the Arg-deficient mice. We also demonstrate that, although LTP and LTD are normal in P21 arg(-/-) slices, both forms of plasticity are significantly altered by P42. These data demonstrate that the integrin-regulated Arg kinase coordinates the maturation of presynaptic and postsynaptic compartments in a subset of hippocampal synapses in vivo, and this coordination is critical for NMDAR-dependent long-term synaptic stability and plasticity. SIGNIFICANCE STATEMENT Synapses mature in vitro from high-release probability (Pr) GluN2B(+) to low-Pr, GluN2B(-), but it is unknown why this happens or whether it occurs in vivo High-Pr, GluN2B(+) synapses persist into early adulthood in Arg-deficient mice in vivo and have elevated NMDA receptor currents and increased structural plasticity. The persistence of these high-Pr, GluN2B(+) synapses is associated with a net synapse loss and significant disruption of normal synaptic plasticity by early adulthood. Together, these observations suggest that the maturation of high-Pr, GluN2B(+) synapses to predominantly low-Pr, GluN2B(-) synapses may be essential to preserving a larger dynamic range for plasticity while ensuring that connectivity is distributed among a greater number of synapses for optimal circuit function.
Collapse
|
13
|
Queenan BN, Ryan TJ, Gazzaniga M, Gallistel CR. On the research of time past: the hunt for the substrate of memory. Ann N Y Acad Sci 2017; 1396:108-125. [PMID: 28548457 PMCID: PMC5448307 DOI: 10.1111/nyas.13348] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
The search for memory is one of the oldest quests in written human history. For at least two millennia, we have tried to understand how we learn and remember. We have gradually converged on the brain and looked inside it to find the basis of knowledge, the trace of memory. The search for memory has been conducted on multiple levels, from the organ to the cell to the synapse, and has been distributed across disciplines with less chronological or intellectual overlap than one might hope. Frequently, the study of the mind and its memories has been severely restricted by technological or philosophical limitations. However, in the last few years, certain technologies have emerged, offering new routes of inquiry into the basis of memory. The 2016 Kavli Futures Symposium was devoted to the past and future of memory studies. At the workshop, participants evaluated the logic and data underlying the existing and emerging theories of memory. In this paper, written in the spirit of the workshop, we briefly review the history of the hunt for memory, summarizing some of the key debates at each level of spatial resolution. We then discuss the exciting new opportunities to unravel the mystery of memory.
Collapse
Affiliation(s)
- Bridget N. Queenan
- Neuroscience Research Institute, Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Tomás J. Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael Gazzaniga
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Charles R. Gallistel
- Rutgers Center for Cognitive Science, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
14
|
Yoon JY, Choi S. Evidence for presynaptically silent synapses in the immature hippocampus. Biochem Biophys Res Commun 2017; 482:1375-1380. [DOI: 10.1016/j.bbrc.2016.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 11/29/2022]
|
15
|
Nicoll RA. A Brief History of Long-Term Potentiation. Neuron 2017; 93:281-290. [DOI: 10.1016/j.neuron.2016.12.015] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
16
|
Compans B, Choquet D, Hosy E. Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission. NEUROPHOTONICS 2016; 3:041811. [PMID: 27981061 PMCID: PMC5109202 DOI: 10.1117/1.nph.3.4.041811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Receptor trafficking and its regulation have appeared in the last two decades to be a major controller of basal synaptic transmission and its activity-dependent plasticity. More recently, considerable advances in super-resolution microscopy have begun deciphering the subdiffraction organization of synaptic elements and their functional roles. In particular, the dynamic nanoscale organization of neurotransmitter receptors in the postsynaptic membrane has recently been suggested to play a major role in various aspects of synapstic function. We here review the recent advances in our understanding of alpha-amino-3-hydroxy-5-méthyl-4-isoxazolepropionic acid subtype glutamate receptors subsynaptic organization and their role in short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin Compans
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
- University of Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| |
Collapse
|
17
|
Park S, Lee J, Park K, Kim J, Song B, Hong I, Kim J, Lee S, Choi S. Sound tuning of amygdala plasticity in auditory fear conditioning. Sci Rep 2016; 6:31069. [PMID: 27488731 PMCID: PMC4973267 DOI: 10.1038/srep31069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/14/2016] [Indexed: 12/28/2022] Open
Abstract
Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others.
Collapse
Affiliation(s)
- Sungmo Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul 08826, Korea
| | - Junuk Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul 08826, Korea
| | - Kyungjoon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul 08826, Korea
| | - Jeongyeon Kim
- Center for Neuroscience and Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 136791, Korea
| | - Beomjong Song
- Institute of Neuroscience, Technical University of Munich, 80333, Germany
| | - Ingie Hong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jieun Kim
- Ewha Brain Institute, Ewha W. University, Seoul, Korea.,Department of Brain and Cognitive Sciences, Scranton College, Ewha W. University, Seoul, Korea
| | - Sukwon Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Korea
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul 08826, Korea
| |
Collapse
|
18
|
Valenzuela RA, Micheva KD, Kiraly M, Li D, Madison DV. Array tomography of physiologically-characterized CNS synapses. J Neurosci Methods 2016; 268:43-52. [PMID: 27141856 DOI: 10.1016/j.jneumeth.2016.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The ability to correlate plastic changes in synaptic physiology with changes in synaptic anatomy has been very limited in the central nervous system because of shortcomings in existing methods for recording the activity of specific CNS synapses and then identifying and studying the same individual synapses on an anatomical level. NEW METHOD We introduce here a novel approach that combines two existing methods: paired neuron electrophysiological recording and array tomography, allowing for the detailed molecular and anatomical study of synapses with known physiological properties. RESULTS The complete mapping of a neuronal pair allows determining the exact number of synapses in the pair and their location. We have found that the majority of close appositions between the presynaptic axon and the postsynaptic dendrite in the pair contain synaptic specializations. The average release probability of the synapses between the two neurons in the pair is low, below 0.2, consistent with previous studies of these connections. Other questions, such as receptor distribution within synapses, can be addressed more efficiently by identifying only a subset of synapses using targeted partial reconstructions. In addition, time sensitive events can be captured with fast chemical fixation. COMPARISON WITH EXISTING METHODS Compared to existing methods, the present approach is the only one that can provide detailed molecular and anatomical information of electrophysiologically-characterized individual synapses. CONCLUSIONS This method will allow for addressing specific questions about the properties of identified CNS synapses, even when they are buried within a cloud of millions of other brain circuit elements.
Collapse
Affiliation(s)
- Ricardo A Valenzuela
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Dong Li
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
19
|
Pereira DB, Schmitz Y, Mészáros J, Merchant P, Hu G, Li S, Henke A, Lizardi-Ortiz JE, Karpowicz RJ, Morgenstern TJ, Sonders MS, Kanter E, Rodriguez PC, Mosharov EV, Sames D, Sulzer D. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nat Neurosci 2016; 19:578-86. [PMID: 26900925 PMCID: PMC4853199 DOI: 10.1038/nn.4252] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/15/2016] [Indexed: 12/16/2022]
Abstract
Neurotransmission at dopaminergic synapses has been studied with techniques that provide high temporal resolution, but cannot resolve individual synapses. To elucidate the spatial dynamics and heterogeneity of individual dopamine boutons, we developed fluorescent false neurotransmitter 200 (FFN200), a vesicular monoamine transporter 2 (VMAT2) substrate that selectively traces monoamine exocytosis in both neuronal cell culture and brain tissue. By monitoring electrically evoked Ca(2+) transients with GCaMP3 and FFN200 release simultaneously, we found that only a small fraction of dopamine boutons that exhibited Ca(2+) influx engaged in exocytosis, a result confirmed with activity-dependent loading of the endocytic probe FM1-43. Thus, only a low fraction of striatal dopamine axonal sites with uptake-competent VMAT2 vesicles are capable of transmitter release. This is consistent with the presence of functionally 'silent' dopamine vesicle clusters and represents, to the best of our knowledge, the first report suggestive of presynaptically silent neuromodulatory synapses.
Collapse
Affiliation(s)
- Daniela B. Pereira
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Yvonne Schmitz
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - József Mészáros
- Department of Psychiatry, Columbia University Medical Center, New York, NY
| | | | - Gang Hu
- Department of Chemistry, Columbia University, New York, NY
| | - Shu Li
- Department of Chemistry, Columbia University, New York, NY
| | - Adam Henke
- Department of Chemistry, Columbia University, New York, NY
| | | | | | | | - Mark S. Sonders
- Department of Neurology, Columbia University Medical Center, New York, NY
- Department of Psychiatry, Columbia University Medical Center, New York, NY
| | - Ellen Kanter
- Department of Neurology, Columbia University Medical Center, New York, NY
| | | | - Eugene V. Mosharov
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY
| | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY
- Department of Psychiatry, Columbia University Medical Center, New York, NY
- Department of Pharmacology, Columbia University Medical Center, New York, NY
- Department of Neuroscience, New York Psychiatric Institute, New York, NY
| |
Collapse
|
20
|
Samikkannu T, Atluri VSR, Arias AY, Rao KVK, Mulet CT, Jayant RD, Nair MPN. HIV-1 subtypes B and C Tat differentially impact synaptic plasticity expression and implicates HIV-associated neurocognitive disorders. Curr HIV Res 2015; 12:397-405. [PMID: 25613138 DOI: 10.2174/1570162x13666150121104720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/12/2014] [Accepted: 12/17/2014] [Indexed: 11/22/2022]
Abstract
Earlier studies have established that infection with HIV-1 subtypes (clades) might differentially influence the neuropathogenesis of HIV-1-associated neurocognitive dysfunction (HAND). HIV-1 Trans activator of transcription protein (Tat) is of considerable significance and plays a major role in the central nervous system (CNS) dysfunction. However, these HIV-1 clades exert diverse cellular effects that leads to neuropathogenic dysfunction has not been well established. We hypothesized that the HIV-1 clade B and clade C Tat proteins effect synaptic plasticity expression in neuroblastoma cells (SK-N-MC) by diverse methods, and accordingly modulates the development of HAND. In the present study, we have analyzed important and highly expressed 84 key human synaptic plasticity genes expression which differentially impact in clade B and clade C Tat treated SK-N-MC cells using RT(2) Profile PCR Array human Synaptic Plasticity kit. Observed results demonstrate that out of 84 key synaptic plasticity genes, 36 and 25 synaptic genes were substantially (≥3 fold) up-regulated and 5 and 5 genes considerably (≥3 fold) down-regulated in clade B and clade C Tat treated cells, respectively, compared to the control SK-N-MC. We have also estimated the levels of glutamine and glutamate in HIV-1 clade B and C Tat exposed SK-N-MC cells compared to untreated cells. Our results indicate that levels of glutamate, glutamine and expression of synaptic plasticity genes were highly dysregulated by HIV-1 clade B Tat compared to clade C Tat in SK-N-MC cells. In summary, this study suggests that clade B Tat substantially potentiates neuronal toxicity and further dysregulated synaptic plasticity genes in SK-N-MC may contribute to the severe neuropathogenesis linked with HAND.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Madhavan P N Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, ACH-1# 417B, Florida International University, Modesto A. Maidique Campus (MMC), 11200 S.W. 8th Street, Miami, FL-33199, USA.
| |
Collapse
|
21
|
The ubiquitous nature of multivesicular release. Trends Neurosci 2015; 38:428-38. [PMID: 26100141 DOI: 10.1016/j.tins.2015.05.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 11/21/2022]
Abstract
'Simplicity is prerequisite for reliability' (E.W. Dijkstra [1]) Presynaptic action potentials trigger the fusion of vesicles to release neurotransmitter onto postsynaptic neurons. Each release site was originally thought to liberate at most one vesicle per action potential in a probabilistic fashion, rendering synaptic transmission unreliable. However, the simultaneous release of several vesicles, or multivesicular release (MVR), represents a simple mechanism to overcome the intrinsic unreliability of synaptic transmission. MVR was initially identified at specialized synapses but is now known to be common throughout the brain. MVR determines the temporal and spatial dispersion of transmitter, controls the extent of receptor activation, and contributes to adapting synaptic strength during plasticity and neuromodulation. MVR consequently represents a widespread mechanism that extends the dynamic range of synaptic processing.
Collapse
|
22
|
Activity-dependent upregulation of presynaptic kainate receptors at immature CA3-CA1 synapses. J Neurosci 2015; 34:16902-16. [PMID: 25505341 DOI: 10.1523/jneurosci.1842-14.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic kainate-type glutamate receptors (KARs) regulate glutamate release probability and short-term plasticity in various areas of the brain. Here we show that long-term depression (LTD) in the area CA1 of neonatal rodent hippocampus is associated with an upregulation of tonic inhibitory KAR activity, which contributes to synaptic depression and causes a pronounced increase in short-term facilitation of transmission. This increased KAR function was mediated by high-affinity receptors and required activation of NMDA receptors, nitric oxide (NO) synthetase, and postsynaptic calcium signaling. In contrast, KAR activity was irreversibly downregulated in response to induction of long-term potentiation in a manner that depended on activation of the TrkB-receptor of BDNF. Both tonic KAR activity and its plasticity were restricted to early stages of synapse development and were lost in parallel with maturation of the network due to ongoing BDNF-TrkB signaling. These data show that presynaptic KARs are targets for activity-dependent modulation via diffusible messengers NO and BDNF, which enhance and depress tonic KAR activity at immature synapses, respectively. The plasticity of presynaptic KARs in the developing network allows nascent synapses to shape their response to incoming activity. In particular, upregulation of KAR function after LTD allows the synapse to preferentially pass high-frequency afferent activity. This can provide a potential rescue from synapse elimination by uncorrelated activity and also increase the computational dynamics of the developing CA3-CA1 circuitry.
Collapse
|
23
|
Xiao Y, Fu H, Han X, Hu X, Gu H, Chen Y, Wei Q, Hu Q. Role of synaptic structural plasticity in impairments of spatial learning and memory induced by developmental lead exposure in Wistar rats. PLoS One 2014; 9:e115556. [PMID: 25536363 PMCID: PMC4275220 DOI: 10.1371/journal.pone.0115556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Lead (Pb) is found to impair cognitive function. Synaptic structural plasticity is considered to be the physiological basis of synaptic functional plasticity and has been recently found to play important roles in learning and memory. To study the effect of Pb on spatial learning and memory at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rats were randomly divided into three groups: Control; Pre-weaning Pb (Parents were exposed to 2 mM PbCl2 3 weeks before mating until weaning of pups); Post-weaning Pb (Weaned pups were exposed to 2 mM PbCl2 for 9 weeks). The spatial learning and memory of rats was measured by Morris water maze (MWM) on PND 85–90. Rat pups in Pre-weaning Pb and Post-weaning Pb groups performed significantly worse than those in Control group (p<0.05). However, there was no significant difference in the performance of MWM between the two Pb-exposure groups. Before MWM (PND 84), the number of neurons and synapses significantly decreased in Pre-weaning Pb group, but not in Post-weaning Pb group. After MWM (PND 91), the number of synapses in Pre-weaning Pb group increased significantly, but it was still less than that of Control group (p<0.05); the number of synapses in Post-weaning Pb group was also less than that of Control group (p<0.05), although the number of synapses has no differences between Post-weaning Pb and Control groups before MWM. In both Pre-weaning Pb and Post-weaning Pb groups, synaptic structural parameters such as thickness of postsynaptic density (PSD), length of synaptic active zone and synaptic curvature increased significantly while width of synaptic cleft decreased significantly compared to Control group (p<0.05). Our data demonstrated that both early and late developmental Pb exposure impaired spatial learning and memory as well as synaptic structural plasticity in Wistar rats.
Collapse
Affiliation(s)
- Yongmei Xiao
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hongjun Fu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, United States of America
| | - Xiaojie Han
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoxia Hu
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huaiyu Gu
- School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yilin Chen
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qing Wei
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiansheng Hu
- Department of Preventive Medicine, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- * E-mail:
| |
Collapse
|
24
|
Nosyreva E, Autry AE, Kavalali ET, Monteggia LM. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade. Front Mol Neurosci 2014; 7:94. [PMID: 25520615 PMCID: PMC4249453 DOI: 10.3389/fnmol.2014.00094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/11/2014] [Indexed: 11/13/2022] Open
Abstract
Ketamine is a N-methyl-D-aspartate receptor (NMDAR) antagonist that produces rapid antidepressant responses in individuals with major depressive disorder. The antidepressant action of ketamine has been linked to blocking NMDAR activation at rest, which inhibits eukaryotic elongation factor 2 kinase leading to desuppression of protein synthesis and synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ketamine mediated antidepressant response and the resulting synaptic potentiation in juvenile animals. We found that ketamine did not produce an antidepressant response in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained from juvenile animals, unlike its action in slices from adult animals. The inability of ketamine to trigger an antidepressant response or subsequent synaptic plasticity processes suggests a developmental component to ketamine mediated antidepressant efficacy. We also show that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDARs is sufficient to trigger this effect. These findings suggest that global blockade of NMDARs in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine.
Collapse
Affiliation(s)
- Elena Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Anita E Autry
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Lisa M Monteggia
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
25
|
Alford ST, Alpert MH. A synaptic mechanism for network synchrony. Front Cell Neurosci 2014; 8:290. [PMID: 25278839 PMCID: PMC4166887 DOI: 10.3389/fncel.2014.00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/31/2014] [Indexed: 01/06/2023] Open
Abstract
Within neural networks, synchronization of activity is dependent upon the synaptic connectivity of embedded microcircuits and the intrinsic membrane properties of their constituent neurons. Synaptic integration, dendritic Ca2+ signaling, and non-linear interactions are crucial cellular attributes that dictate single neuron computation, but their roles promoting synchrony and the generation of network oscillations are not well understood, especially within the context of a defined behavior. In this regard, the lamprey spinal central pattern generator (CPG) stands out as a well-characterized, conserved vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized oscillations in which neural elements from the systems to cellular level that control rhythmic locomotion have been determined. We review the current evidence for the synaptic basis of oscillation generation with a particular emphasis on the linkage between synaptic communication and its cellular coupling to membrane processes that control oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic function found in many vertebrate systems to the accessible lamprey central nervous system in which the relationship between neural network activity and behavior is well understood. This enables us to address how Ca2+ signaling in spinal neuron dendrites orchestrate oscillations that drive network behavior.
Collapse
Affiliation(s)
- Simon T Alford
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Michael H Alpert
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
26
|
Hanse E, Seth H, Riebe I. AMPA-silent synapses in brain development and pathology. Nat Rev Neurosci 2013; 14:839-50. [DOI: 10.1038/nrn3642] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Developmental changes in structural and functional properties of hippocampal AMPARs parallels the emergence of deliberative spatial navigation in juvenile rats. J Neurosci 2013; 33:12218-28. [PMID: 23884930 DOI: 10.1523/jneurosci.4827-12.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The neural mechanisms that support the late postnatal development of spatial navigation are currently unknown. We investigated this in rats and found that an increase in the duration of AMPAR-mediated synaptic responses in the hippocampus was related to the emergence of spatial navigation. More specifically, spontaneous alternation rate, a behavioral indicator of hippocampal integrity, increased at the end of the third postnatal week in association with increases in AMPAR response duration at SC-CA1 synapses and synaptically driven postsynaptic discharge of CA1 pyramidal neurons. Pharmacological prolongation of glutamatergic synaptic transmission in juveniles increased the spontaneous alternation rate and CA1 postsynaptic discharge and reduced the threshold for the induction of activity-dependent synaptic plasticity at SC-CA1 synapses. A decrease in GluA1 and increases in GluA3 subunit and transmembrane AMPAR regulatory protein (TARP) expression at the end of the third postnatal week provide a molecular explanation for the increase in AMPAR response duration and reduced efficacy of AMPAR modulators with increasing age. A shift in the composition of AMPARs and increased association with AMPAR protein complex accessory proteins at the end of the third postnatal week likely "turns on" the hippocampus by increasing AMPAR response duration and postsynaptic excitability and reducing the threshold for activity-dependent synaptic potentiation.
Collapse
|
28
|
Yu X, Wang G, Gilmore A, Yee AX, Li X, Xu T, Smith SJ, Chen L, Zuo Y. Accelerated experience-dependent pruning of cortical synapses in ephrin-A2 knockout mice. Neuron 2013; 80:64-71. [PMID: 24094103 DOI: 10.1016/j.neuron.2013.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
Refinement of mammalian neural circuits involves substantial experience-dependent synapse elimination. Using in vivo two-photon imaging, we found that experience-dependent elimination of postsynaptic dendritic spines in the cortex was accelerated in ephrin-A2 knockout (KO) mice, resulting in fewer adolescent spines integrated into adult circuits. Such increased spine removal in ephrin-A2 KOs depended on activation of glutamate receptors, as blockade of the N-methyl-D-aspartate (NMDA) receptors eliminated the difference in spine loss between wild-type and KO mice. We also showed that ephrin-A2 in the cortex colocalized with glial glutamate transporters, which were significantly downregulated in ephrin-A2 KOs. Consistently, glial glutamate transport was reduced in ephrin-A2 KOs, resulting in an accumulation of synaptic glutamate. Finally, inhibition of glial glutamate uptake promoted spine elimination in wild-type mice, resembling the phenotype of ephrin-A2 KOs. Together, our results suggest that ephrin-A2 regulates experience-dependent, NMDA receptor-mediated synaptic pruning through glial glutamate transport during maturation of the mouse cortex.
Collapse
Affiliation(s)
- Xinzhu Yu
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Amperometric resolution of a prespike stammer and evoked phases of fast release from retinal bipolar cells. J Neurosci 2013; 33:8144-58. [PMID: 23658155 DOI: 10.1523/jneurosci.5062-12.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neurotransmitter glutamate is used by most neurons in the brain to activate a multitude of different types of glutamate receptors and transporters involved in fast and relatively slower signaling. Synaptic ribbons are large presynaptic structures found in neurons involved in vision, balance, and hearing, which use a large number of glutamate-filled synaptic vesicles to meet their signaling demands. To directly measure synaptic vesicle release events, the ribbon-type presynaptic terminals of goldfish retinal bipolar cells were coaxed to release a false transmitter that could be monitored with amperometry by placing the carbon fiber directly on the larger synaptic terminal. Spontaneous secretion events formed a unimodal charge distribution, but single spike properties were heterogeneous. Larger events rose exponentially without interruption (τ ∼ 30 μs), and smaller events exhibited a stammer in their rising phase that is interpreted as a brief pause in pore dilation, a characteristic commonly associated with large dense core granule fusion pores. These events were entirely Ca(2+)-dependent. Holding the cells at -60 mV halted spontaneous release; and when the voltage was stepped to >-40 mV, secretion ensued. When stepping the voltage to 0 mV, novel kinetic phases of vesicle recruitment were revealed. Approximately 14 vesicles were released per ribbon in two kinetic phases with time constants of 1.5 and 16 ms, which are proposed to represent different primed states within the population of docked vesicles.
Collapse
|
30
|
Bliss TVP, Collingridge GL. Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 2013; 6:5. [PMID: 23339575 PMCID: PMC3562207 DOI: 10.1186/1756-6606-6-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 12/27/2012] [Indexed: 12/17/2022] Open
Abstract
A consensus has famously yet to emerge on the locus and mechanisms underlying the expression of the canonical NMDA receptor-dependent form of LTP. An objective assessment of the evidence leads us to conclude that both presynaptic and postsynaptic expression mechanisms contribute to this type of synaptic plasticity.
Collapse
Affiliation(s)
- Tim V P Bliss
- Division of Neurophysiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
31
|
Mechanisms underlying induction of LTP-associated changes in short-term dynamics of transmission at immature synapses. Neuropharmacology 2012; 67:494-502. [PMID: 23246530 DOI: 10.1016/j.neuropharm.2012.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 01/11/2023]
Abstract
While the activity-dependent mechanisms guiding functional maturation of synaptic transmission postsynaptically are well characterized, less is known about the corresponding presynaptic mechanisms. Here we show that during the first postnatal week, a subset of CA3-CA1 synapses express postsynaptically induced LTP that is tightly associated with a robust decrease in synaptic facilitation, consistent with an increase in release probability (P(r)). The loss of facilitation is readily induced by physiologically relevant pairing protocols at immature synapses and is dependent on activation of NMDA-receptors but not L-type calcium channels. The putative pre- and postsynaptic components of neonatal LTP were distinguished in their downstream signaling requirements, PKC activity being selectively needed for the decrease in facilitation but not for synaptic potentiation per se. These data suggest that maturation of glutamatergic synapses involves a critical period during which presynaptic function is highly susceptible to activity-dependent regulation via a PKC-dependent mechanism.
Collapse
|
32
|
Song B, Lee S, Choi S. LY404187, a potentiator of AMPARs, enhances both the amplitude and 1/CV2 of AMPA EPSCs but not NMDA EPSCs at CA3-CA1 synapses in the hippocampus of neonatal rats. Neurosci Lett 2012; 531:193-7. [PMID: 23103715 DOI: 10.1016/j.neulet.2012.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/13/2012] [Accepted: 10/05/2012] [Indexed: 12/01/2022]
Abstract
Cyclothiazide is a well-known AMPAR potentiator, but it has also been shown to enhance the probability of presynaptic release in some cases. Interestingly, cyclothiazide has been shown to reveal AMPA EPSCs at silent CA3-CA1 synapses (which exhibit NMDA EPSCs but not AMPA EPSCs) in the hippocampus of neonatal or developing rats, but this particular result has not been reproduced at other types of synapses. Although this discrepancy may be due to the different mechanisms underlying silent synapses in distinct brain subregions, it is also possible that cyclothiazide has pre- and postsynaptic molecular targets that are differentially expressed at the different types (or different developing stages) of synapses. In this study, we reexamined, using a new AMPAR potentiator, LY404187, whether AMPAR potentiation leads to the conversion of silent CA3-CA1 synapses into functional synapses (exhibiting both AMPA and NMDA EPSCs) in the hippocampus of neonatal rats. LY404187 did not appear to alter the probability of presynaptic release, as evidenced by the lack of significant changes in both the amplitude and the paired-pulse facilitation ratio (an index of release probability) of NMDA EPSCs. LY404187 enhanced both the amplitude and 1/CV(2) (CV: coefficient of variation) of AMPA EPSCs but not NMDA EPSCs. Because an increase in 1/CV(2) reflects an increased number of functional synapses and/or an enhanced release probability, the LY404187-induced increase in the 1/CV(2) value of AMPA EPSCs, but not NMDA EPSCs, likely indicates an increased number of synapses exhibiting AMPA EPSCs but not an increased number of synapses exhibiting NMDA EPSCs. Because AMPARs and NMDARs are co-localized at the same synapses, our findings are consistent with a scenario in which LY404187 enables silent synapses to acquire AMPA EPSCs.
Collapse
Affiliation(s)
- Beomjong Song
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
33
|
CREB-dependent transcriptional control and quantal changes in persistent long-term potentiation in hippocampal interneurons. J Neurosci 2012; 32:6335-50. [PMID: 22553039 DOI: 10.1523/jneurosci.5463-11.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mounting evidence indicates an important role of long-term synaptic plasticity in hippocampal inhibitory interneurons in learning and memory. The cellular and molecular mechanisms that underlie such persistent changes in synaptic function in interneurons remain, however, largely undetermined. A transcription- and translation-dependent form of long-term potentiation was uncovered at excitatory synapses onto hippocampal interneurons in oriens-alveus (OA-INs) which is induced by activation of type 1 metabotropic glutamate receptors (cL-LTP(mGluR1)). Here, we use (1) a combination of pharmacological siRNA knock-down and overexpression approaches to reveal the molecular mechanisms of transcriptional control via cAMP response element-binding protein (CREB) during induction, and (2) quantal analysis to identify synaptic changes during maintenance of cL-LTP(mGluR1) in rat hippocampus. Induction stimulated CREB phosphorylation in OA-INs via extracellular signal-regulated protein kinase (ERK) signaling. Also, CREB knockdown impaired cL-LTP(mGluR1), whereas CREB overexpression facilitated the induction, demonstrating a necessary and permissive role of CREB via ERK signaling in transcriptional control in cL-LTP(mGluR1). Quantal analysis of synaptic responses during cL-LTP(mGluR1) maintenance revealed an increased number of quanta released, corresponding to enhanced transmitter release and a larger quantal size, indicating enhanced responsiveness to individual quanta. Fluctuation analysis of synaptic currents uncovered an increase in conductance and number of functional postsynaptic receptors contributing to single quanta. Our findings indicate that CREB-dependent transcription is a necessary permissive switch for eliciting persistent presynaptic and postsynaptic quantal changes at excitatory synapses in inhibitory local circuits, uncovering cell type-specific coupling of induction and expression mechanisms during persistent synaptic plasticity which may contribute to hippocampal long-term memory processes.
Collapse
|
34
|
Povysheva NV, Johnson JW. Tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons. J Neurophysiol 2012; 107:2232-43. [PMID: 22236713 DOI: 10.1152/jn.01017.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tonically activated neuronal currents mediated by N-methyl-d-aspartate receptors (NMDARs) have been hypothesized to contribute to normal neuronal function as well as to neuronal pathology resulting from excessive activation of glutamate receptors (e.g., excitotoxicity). Whereas cortical excitatory cells are very vulnerable to excitotoxic insult, the data regarding resistance of inhibitory cells (or interneurons) are inconsistent. Types of neurons with more pronounced tonic NMDAR current potentially associated with the activation of extrasynaptic NMDARs could be expected to be more vulnerable to excessive activation by glutamate. In this study, we compared tonic activation of NMDARs in excitatory pyramidal cells and inhibitory fast-spiking interneurons in prefrontal cortical slices. We assessed tonic NMDAR current by measuring holding current shift as well as noise reduction following NMDAR blockade after removal of spontaneous glutamate release. In addition, we compared NMDAR miniature excitatory postsynaptic currents (EPSCs) in both cell types. We have demonstrated for the first time that tonic NMDAR currents are present in inhibitory fast-spiking interneurons. We found that the magnitude of tonic NMDAR current is similar in pyramidal cells and fast-spiking interneurons, and that quantal release of glutamate does not significantly impact tonic NMDAR current.
Collapse
Affiliation(s)
- Nadezhda V Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
35
|
Wang J, Richards DA. Spatial regulation of exocytic site and vesicle mobilization by the actin cytoskeleton. PLoS One 2011; 6:e29162. [PMID: 22195014 PMCID: PMC3237607 DOI: 10.1371/journal.pone.0029162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/22/2011] [Indexed: 01/31/2023] Open
Abstract
Numerous studies indicate a role for the actin cytoskeleton in secretion. Here, we have used evanescent wave and widefield fluorescence microscopy to study the involvement of the actin cytoskeleton in secretion from PC12 cells. Secretion was assayed as loss of ANF-EmGFP in widefield mode. Under control conditions, depolarization induced secretion showed two phases: an initial rapid rate of loss of vesicular cargo (tau = 1.4 s), followed by a slower, sustained drop in fluorescence (tau = 34.1 s). Pretreatment with Latrunculin A changed the kinetics to a single exponential, slightly faster than the fast component of control cells (1.2 s). Evanescent wave microscopy allowed us to examine this at the level of individual events, and revealed equivalent changes in the rates of vesicular arrival at the plasma membrane immediately following and during the sustained phase of release. Co-transfection of mCherry labeled β-actin and ANF-EmGFP demonstrated that sites of exocytosis had an inverse relationship with sites of actin enrichment. Disruption of visualized actin at the membrane resulted in the loss of specificity of exocytic site.
Collapse
Affiliation(s)
- Jie Wang
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - David A. Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Hong I, Kim J, Lee J, Park S, Song B, Kim J, An B, Park K, Lee HW, Lee S, Kim H, Park SH, Eom KD, Lee S, Choi S. Reversible plasticity of fear memory-encoding amygdala synaptic circuits even after fear memory consolidation. PLoS One 2011; 6:e24260. [PMID: 21949700 PMCID: PMC3176280 DOI: 10.1371/journal.pone.0024260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
It is generally believed that after memory consolidation, memory-encoding synaptic circuits are persistently modified and become less plastic. This, however, may hinder the remaining capacity of information storage in a given neural circuit. Here we consider the hypothesis that memory-encoding synaptic circuits still retain reversible plasticity even after memory consolidation. To test this, we employed a protocol of auditory fear conditioning which recruited the vast majority of the thalamic input synaptic circuit to the lateral amygdala (T-LA synaptic circuit; a storage site for fear memory) with fear conditioning-induced synaptic plasticity. Subsequently the fear memory-encoding synaptic circuits were challenged with fear extinction and re-conditioning to determine whether these circuits exhibit reversible plasticity. We found that fear memory-encoding T-LA synaptic circuit exhibited dynamic efficacy changes in tight correlation with fear memory strength even after fear memory consolidation. Initial conditioning or re-conditioning brought T-LA synaptic circuit near the ceiling of their modification range (occluding LTP and enhancing depotentiation in brain slices prepared from conditioned or re-conditioned rats), while extinction reversed this change (reinstating LTP and occluding depotentiation in brain slices prepared from extinguished rats). Consistently, fear conditioning-induced synaptic potentiation at T-LA synapses was functionally reversed by extinction and reinstated by subsequent re-conditioning. These results suggest reversible plasticity of fear memory-encoding circuits even after fear memory consolidation. This reversible plasticity of memory-encoding synapses may be involved in updating the contents of original memory even after memory consolidation.
Collapse
Affiliation(s)
- Ingie Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The dynamic role of beta-catenin in synaptic plasticity. Neuropharmacology 2011; 62:78-88. [PMID: 21903109 DOI: 10.1016/j.neuropharm.2011.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 01/30/2023]
Abstract
In addition to its role in development and cell proliferation, β-catenin has been implicated in neuronal synapse regulation and remodeling. Here we review basic molecular and structural mechanisms of synaptic plasticity, followed by a description of the structure and function of β-catenin. We then describe a role for β-catenin in the cellular processes underlying synaptic plasticity. We also review recent data demonstrating that β-catenin mRNA and protein phosphorylation are dynamically regulated during fear memory consolidation in adult animals. Such alterations are correlated with a change in the association of β-catenin with cadherin, and deletion of the β-catenin gene prevents fear learning. Overall, the extant data suggest that β-catenin may function in mediating the structural changes associated with memory formation. This suggests a general role for β-catenin in synaptic remodeling and stabilization underlying long-term memory in adults, and possible roles for dysfunction in the β-catenin pathway in disorders of memory impairment (e.g. Alzheimer's Disease) and in disturbances in which emotional memories are too strong or resistant to inhibition (e.g. fear learning in Posttraumatic Stress Disorder). Further understanding of the β-catenin pathway may lead to better appreciation for the structural mechanisms underlying learning and memory as well as provide novel therapeutic approaches in memory related disorders. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|
38
|
Rudolph S, Overstreet-Wadiche L, Wadiche JI. Desynchronization of multivesicular release enhances Purkinje cell output. Neuron 2011; 70:991-1004. [PMID: 21658590 DOI: 10.1016/j.neuron.2011.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
The release of neurotransmitter-filled vesicles after action potentials occurs with discrete time courses: submillisecond phasic release that can be desynchronized by activity followed by "delayed release" that persists for tens of milliseconds. Delayed release has a well-established role in synaptic integration, but it is not clear whether desynchronization of phasic release has physiological consequences. At the climbing fiber to Purkinje cell synapse, the synchronous fusion of multiple vesicles is critical for generating complex spikes. Here we show that stimulation at physiological frequencies drives the temporal dispersion of vesicles undergoing multivesicular release, resulting in a slowing of the EPSC on the millisecond timescale. Remarkably, these changes in EPSC kinetics robustly alter the Purkinje cell complex spike in a manner that promotes axonal propagation of individual spikelets. Thus, desynchronization of multivesicular release enhances the precise and efficient information transfer by complex spikes.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | |
Collapse
|
39
|
Yang JL, Sykora P, Wilson DM, Mattson MP, Bohr VA. The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency. Mech Ageing Dev 2011; 132:405-11. [PMID: 21729715 DOI: 10.1016/j.mad.2011.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/27/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the vertebrate central nervous system and plays an important role in synaptic plasticity required for learning and memory. Activation of glutamate ionotropic receptors promptly triggers membrane depolarization and Ca(2+) influx, resulting in the activation of several different protein kinases and transcription factors. For example, glutamate-mediated Ca(2+) influx activates Ca(2+)/calmodulin-dependent kinase, protein kinase C, and mitogen activated protein kinases resulting in activation of transcription factors such as cyclic AMP response element binding protein (CREB). Abnormally prolonged exposure to glutamate causes neuronal injury, and such "excitotoxicity" has been implicated in many acute and chronic diseases including ischemic stroke, epilepsy, amyotrophic lateral sclerosis, Alzheimer's, Huntington's and Parkinson's diseases. Interestingly, although glutamate-induced Ca(2+) influx can cause DNA damage by a mitochondrial reactive oxygen species-mediated mechanism, the Ca(2+) simultaneously activates CREB, resulting in up-regulation of the DNA repair and redox protein apurinic/apyrimidinic endonuclease 1. Here, we review connections between physiological or aberrant glutamate receptor activation, Ca(2+)-mediated signaling, oxidative DNA damage and repair efficiency, and neuronal vulnerability. We conclude that glutamate signaling involves an adaptive cellular stress response pathway that enhances DNA repair capability, thereby protecting neurons against injury and disease.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
40
|
Grybko MJ, Hahm ET, Perrine W, Parnes JA, Chick WS, Sharma G, Finger TE, Vijayaraghavan S. A transgenic mouse model reveals fast nicotinic transmission in hippocampal pyramidal neurons. Eur J Neurosci 2011; 33:1786-98. [PMID: 21501254 DOI: 10.1111/j.1460-9568.2011.07671.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relative contribution to brain cholinergic signaling by synaptic- and diffusion-based mechanisms remains to be elucidated. In this study, we examined the prevalence of fast nicotinic signaling in the hippocampus. We describe a mouse model where cholinergic axons are labeled with the tauGFP fusion protein driven by the choline acetyltransferase promoter. The model provides for the visualization of individual cholinergic axons at greater resolution than other available models and techniques, even in thick, live, slices. Combining calcium imaging and electrophysiology, we demonstrate that local stimulation of visualized cholinergic fibers results in rapid excitatory postsynaptic currents mediated by the activation of α7-subunit-containing nicotinic acetylcholine receptors (α7-nAChRs) on CA3 pyramidal neurons. These responses were blocked by the α7-nAChR antagonist methyllycaconitine and potentiated by the receptor-specific allosteric modulator 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596). Our results suggest, for the first time, that synaptic nAChRs can modulate pyramidal cell plasticity and development. Fast nicotinic transmission might play a greater role in cholinergic signaling than previously assumed. We provide a model for the examination of synaptic properties of basal forebrain cholinergic innervation in the brain.
Collapse
Affiliation(s)
- Michael J Grybko
- Department of Physiology and Biophysics, School of Medicine, University of Colorado, Aurora, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Prebil M, Vardjan N, Jensen J, Zorec R, Kreft M. Dynamic monitoring of cytosolic glucose in single astrocytes. Glia 2011; 59:903-13. [PMID: 21381116 DOI: 10.1002/glia.21161] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
Abstract
It is becoming increasingly clear that astrocytes are no longer playing a subservient role to neurons in the central nervous system (CNS), and that these cells are being considered as active communication integrators. They respond to neurotransmitters by the regulated release of gliotransmitters. The delay between neurotransmitter activation and the release of gliotransmitters from astrocytes is in the time-domain of subseconds, much slower than the submillisecond synaptic delay. Astrocytes also control microcirculation and provide metabolic support for neurons. However, the dynamics of their energy metabolic response to neurotransmitter application is not known. We here used a FRET glucose nanosensor to dynamically measure the cytosolic glucose concentration in single astrocytes. We show that following the adrenaline or noradrenaline stimulation the availability of cytosolic glucose is increased promptly after stimulation with a time-constant of 116.7 s and 115.9 s, respectively. A decline in cytosolic glucose concentration with a time-constant of 50.7 s was observed during glutamate and 16.7 s during lactate addition to astrocytes, when these were bathed in the presence of extracellular glucose-containing solution, likely reflecting predominant glucose engagement in glycogen synthesis. In contrast, in the glucose-free extracellular solution, glutamate application to astrocytes resulted in a slow increase in cytosolic glucose concentration, consistent with the view that glutamate may be an alternative energy source in hypoglycemic conditions. We conclude that astrocytic cytosolic glucose metabolism responds in the time-domain of tens of seconds, which is slower compared to the whole brain functional magnetic resonance imaging measurements of the local intravascular hemodynamic response.
Collapse
Affiliation(s)
- Mateja Prebil
- Faculty of Medicine, Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
43
|
Cousin MA, Evans GJO. Activation of silent and weak synapses by cAMP-dependent protein kinase in cultured cerebellar granule neurons. J Physiol 2011; 589:1943-55. [PMID: 21486806 DOI: 10.1113/jphysiol.2010.200477] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Presynaptic long term potentiation of synaptic transmission activates silent synapses and potentiates existing active synapses. We sought to visualise these two processes by studying the cAMP-dependent protein kinase (PKA) potentiation of presynaptic vesicle cycling in cultured cerebellar granule neurons.Using FM dyes to label the pool of recycling synaptic vesicles,we found that trains of electrical stimulation which do not potentiate already active synapses are sufficient to rapidly activate a discrete population comprising silent and very low activity synapses. Silent synapse activation required PKA activity and conversely, active synapses could be silenced by PKA inhibition. Surprisingly, the recycling pool of synaptic vesicles in recently activated synapses was larger than in already active synapses and equivalent to synapses treated with forskolin. Imaging of synaptic vesicle cycling and cytosolic Ca(2+) in individual nerve terminals confirmed that silent synapses have evoked Ca(2+) transients comparable to those of active synapses. Furthermore, across populations of active synapses, changes in Ca(2+) influx did not correlate with changes in the size of the pool of recycling synaptic vesicles. Finally, we found that stimulation of synapsin phosphorylation, but not RIM1α, by PKA was frequency dependent and long lasting. These data are consistent with the idea that PKA regulates synaptic vesicle recycling downstream of Ca(2+) influx and that this pathway is highly active in recently activated synapses.
Collapse
Affiliation(s)
- Michael A Cousin
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
44
|
Estradiol acutely potentiates hippocampal excitatory synaptic transmission through a presynaptic mechanism. J Neurosci 2011; 30:16137-48. [PMID: 21123560 DOI: 10.1523/jneurosci.4161-10.2010] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although recent evidence suggests that the hippocampus is a source of 17β-estradiol (E2), the physiological role of this neurosteroid E2, as distinct from ovarian E2, is unknown. One likely function of neurosteroid E2 is to acutely potentiate excitatory synaptic transmission, but the mechanism of this effect is not well understood. Using whole-cell voltage-clamp recording of synaptically evoked EPSCs in adult rat hippocampal slices, we show that, in contrast to the conclusions of previous studies, E2 potentiates excitatory transmission through a presynaptic mechanism. We find that E2 acutely potentiates EPSCs by increasing the probability of glutamate release specifically at inputs with low initial release probability. This effect is mediated by estrogen receptor β (ERβ) acting as a monomer, whereas ERα is not required. We further show that the E2-induced increase in glutamate release is attributable primarily to increased individual vesicle release probability and is associated with higher average cleft glutamate concentration. These two findings together argue strongly that E2 promotes multivesicular release, which has not been shown before in the adult hippocampus. The rapid time course of acute EPSC potentiation and its concentration dependence suggest that locally synthesized neurosteroid E2 may activate this effect in vivo.
Collapse
|
45
|
Richards DA. Regulation of exocytic mode in hippocampal neurons by intra-bouton calcium concentration. J Physiol 2010; 588:4927-36. [PMID: 20962005 DOI: 10.1113/jphysiol.2010.197509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Release of neurotransmitters from synaptic vesicles is a central event in synaptic transmission. Recent evidence suggests that synaptic vesicles fuse with the plasma membrane by multiple routes during exocytosis, but the regulation and physiological implications of this choice are unclear. At hippocampal synapses in culture, two modes of synaptic vesicle exocytosis can be distinguished by virtue of the rate and extent of loss of a fluorescent lipid marker (FM1-43). Here we investigate these two modes of exocytosis using fluorescence imaging of FM1-43, combined with quantitative Ca(2+) imaging using Oregon green BAPTA-1 (OGB1), to examine how the balance of exocytic mode changes during a stimulus train. Our findings are twofold: that the full fusion mode becomes progressively favoured through the course of a 5 or 10 Hz stimulus train, and that this occurs in parallel with presynaptic accumulation of calcium. Blockade of calcium accumulation with AM-EGTA also prevents the conversion of exocytic mode. This conversion of exocytic mode may provide insight as to the mechanisms underpinning short term plasticity.
Collapse
Affiliation(s)
- David A Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
46
|
Tomàs J, Santafé MM, Lanuza MA, García N, Besalduch N, Tomàs M. Silent synapses in neuromuscular junction development. J Neurosci Res 2010; 89:3-12. [DOI: 10.1002/jnr.22494] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/23/2010] [Accepted: 07/11/2010] [Indexed: 11/09/2022]
|
47
|
Intracellular tetanization with hyperpolarizing currents potentiates synapses formed by mossy fibers on pyramidal cells in hippocampal field CA3 in rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2010; 40:813-9. [PMID: 20635206 DOI: 10.1007/s11055-010-9331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 02/09/2009] [Indexed: 10/19/2022]
Abstract
Studies on living rat hippocampal slices using point recording in the whole cell configuration addressed the efficiency of the synaptic responses of pyramidal neurons in field CA3 in conditions of minimal stimulation of mossy fibers. Paired-pulse responses were recorded before and after intracellular tetanizing hyperpolarization of pyramidal neurons. In these conditions, potentiation of excitatory synaptic transmission lasting at least 20 min was seen. This phenomenon, termed hyperpolarizing tetanization-induced long-term potentiation, could arise without simultaneous mossy fiber stimulation and showed signs of having a presynaptic origin. Administration of a Ca2+ chelator into pyramidal neurons completely suppressed this potentiation. The results obtained from these experiments suggest that induction of long-term potentiation evoked by hyperpolarizing tetanization was postsynaptic, while its expression appeared to be presynaptic. These results provide evidence of the importance of gamma-rhythm hyperpolarizing oscillations in altering the efficiency of synaptic inputs and the role of its network organization in the mechanisms of cellular plasticity.
Collapse
|
48
|
Kang J, Kang N, Yu Y, Zhang J, Petersen N, Tian GF, Nedergaard M. Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons. Neuroscience 2010; 169:1601-9. [PMID: 20600669 DOI: 10.1016/j.neuroscience.2010.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/21/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Sulforhodamine 101 (SR101) has been extensively used for investigation as a specific marker for astroglia in vivo and activity-dependent dye for monitoring regulated exocytosis. Here, we report that SR101 has bioactive effects on neuronal activity. Perfusion of slices with SR101 (1 microM) for 10 min induced long-term potentiation of intrinsic neuronal excitability (LTP-IE) and a long-lasting increase in evoked EPSCs (eEPSCs) in CA1 pyramidal neurons in hippocampal slices. The increase in intrinsic neuronal excitability was a result of negative shifts in the action potential (AP) threshold. The N-methyl D-aspartate receptor (NMDAR) antagonist, AP-5 (50 microM), blocked SR101-induced LTP-IE, but glutamate receptor blockers, AP-5 (50 microM), MCPG (200 microM), and MSOP (100 microM), only partially blocked SR101-induced potentiation of eEPSCs. SR101 induced an enhancement of evoked synaptic NMDAR currents, suggesting that SR101 enhances activation of synaptic NMDARs. SR101-induced LTP-IE and potentiation of synaptic transmission triggered spontaneous neuronal firing in slices and in vivo epileptic seizures. Our results suggest that SR101 is an epileptogenic agent that long-lastingly lowers the AP threshold to increase intrinsic neuronal excitability and enhances the synaptic efficacy to increase synaptic inputs. As such, SR101 can be used as an experimental tool to induce epileptic seizures.
Collapse
Affiliation(s)
- J Kang
- Department of Cell Biology and Anatomy, New York Medical College, Basic Science Building, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Jorgačevski J, Fošnarič M, Vardjan N, Stenovec M, Potokar M, Kreft M, Kralj-Iglič V, Iglič A, Zorec R. Fusion pore stability of peptidergic vesicles. Mol Membr Biol 2010; 27:65-80. [DOI: 10.3109/09687681003597104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Properties of glutamatergic synapses in immature layer Vb pyramidal neurons: coupling of pre- and postsynaptic maturational states. Exp Brain Res 2010; 200:169-82. [PMID: 19862508 DOI: 10.1007/s00221-009-2051-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/06/2009] [Indexed: 01/12/2023]
Abstract
Following initial contact formation, glutamatergic synapses in cortical neurons undergo pronounced functional maturation. These maturational events, occurring both pre- and postsynaptically, have been well described in the developing hippocampus. In this paper, we characterized glutamatergic synapses in immature layer Vb pyramidal neurons of the mouse somatosensory cortex during early postnatal development. At postnatal day 7, a significant subpopulation of glutamatergic synapses exhibited a low release probability that was accompanied by strong paired-pulse facilitation of AMPA EPSCs (paired-pulse ratio C > or = 2). Increasing extracellular Ca(2+) concentration increased release probability and led to paired-pulse depression. During further postnatal development, these functionally immature synapses disappeared. As shown pharmacologically,these synapses expressed postsynaptic NMDA receptors containing NR2B subunits, while NMDA receptors with NR2A subunits were lacking. Taken together, a low release probability presynaptically was coupled to postsynaptic NR2B signaling. This subpopulation of neocortical synapses thus differed from the majority of synapses in the developing hippocampus, where high release probability is coupled to NR2B signaling. The novel type of functionally immature glutamatergic synapse described here might play an important role in early developmental synapse elimination and in the activity-dependent refinement of the neocortical synaptic microcircuitry.
Collapse
|