1
|
Higgs PG, Muller UF. Principles of in vitro selection of ribozymes from random sequence libraries. J R Soc Interface 2025; 22:20240878. [PMID: 40233799 PMCID: PMC11999736 DOI: 10.1098/rsif.2024.0878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
In vitro selection methods are used to identify catalytic RNAs from pools of random sequences. We discuss the central concepts using experimental data and computational models. Experiments proceed in multiple rounds, each with a reaction step and a step in which reacted sequences are recovered. Sequences are enriched each round by a factor depending on combined reaction and recovery probability. In the first round, there are few functional sequences, and it is necessary to minimize the probability of losing these. In later rounds, the loss probability is negligible, and the procedure can be optimized to maximize the enrichment factor. Clusters of related sequences emerge which descend from separate sequences in the initial pool. The fitness of an RNA depends on how well it matches a structure with specified sequence and base-pair constraints. Sequences that exactly match the constraints may be rare, but sequences a few mutations away are much more common; hence it is likely that clusters descend from suboptimal sequences. There is a high probability that beneficial mutations arise during the experiment. This explains the experimental observation that there is little correlation between cluster frequencies and fitnesses, whereas correlation between enrichment factors and fitnesses is strong.
Collapse
Affiliation(s)
- Paul G. Higgs
- Department of Physics and Astronomy, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich F. Muller
- Department of Chemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Aptamers in Education: Undergraduates Make Aptamers and Acquire 21st Century Skills Along the Way. SENSORS 2019; 19:s19153270. [PMID: 31349595 PMCID: PMC6696043 DOI: 10.3390/s19153270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
Aptamers have a well-earned place in therapeutic, diagnostic, and sensor applications, and we now show that they provide an excellent foundation for education, as well. Within the context of the Freshman Research Initiative (FRI) at The University of Texas at Austin, students have used aptamer selection and development technologies in a teaching laboratory to build technical and 21st century skills appropriate for research scientists. One of the unique aspects of this course-based undergraduate research experience is that students develop and execute their own projects, taking ownership of their experience in what would otherwise be a traditional teaching lab setting. Of the many successes, this work includes the isolation and characterization of novel calf intestinal alkaline phosphatase (anti-CIAP) RNA aptamers by an undergraduate researcher. Further, preliminary survey data suggest that students who participate in the aptamer research experience express significant gains in their self-efficacy to conduct research, and their perceived ability to communicate scientific results, as well as organize and interpret data. This work describes, for the first time, the use of aptamers in an educational setting, highlights the positive student outcomes of the aptamer research experience, and presents the research findings relative to the novel anti-CIAP aptamer.
Collapse
|
4
|
Lu CH, Cecconello A, Willner I. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures. J Am Chem Soc 2016; 138:5172-85. [DOI: 10.1021/jacs.6b00694] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chun-Hua Lu
- The Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alessandro Cecconello
- The Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Orbach R, Willner B, Willner I. Catalytic nucleic acids (DNAzymes) as functional units for logic gates and computing circuits: from basic principles to practical applications. Chem Commun (Camb) 2015; 51:4144-60. [PMID: 25612298 DOI: 10.1039/c4cc09874a] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This feature article addresses the implementation of catalytic nucleic acids as functional units for the construction of logic gates and computing circuits, and discusses the future applications of these systems. The assembly of computational modules composed of DNAzymes has led to the operation of a universal set of logic gates, to field programmable logic gates and computing circuits, to the development of multiplexers/demultiplexers, and to full-adder systems. Also, DNAzyme cascades operating as logic gates and computing circuits were demonstrated. DNAzyme logic systems find important practical applications. These include the use of DNAzyme-based systems for sensing and multiplexed analyses, for the development of controlled release and drug delivery systems, for regulating intracellular biosynthetic pathways, and for the programmed synthesis and operation of cascades.
Collapse
Affiliation(s)
- Ron Orbach
- Institute of Chemistry and the Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
6
|
|
7
|
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114:2881-941. [PMID: 24576227 DOI: 10.1021/cr400354z] [Citation(s) in RCA: 498] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
8
|
Oh SS, Plakos K, Xiao Y, Eisenstein M, Soh HT. In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release. ACS NANO 2013; 7:9675-9683. [PMID: 24168267 PMCID: PMC3919467 DOI: 10.1021/nn404079v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.
Collapse
Affiliation(s)
- Seung Soo Oh
- Materials Department, University of California, Santa Barbara, CA 93106
| | - Kory Plakos
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| | - Yi Xiao
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| | - Michael Eisenstein
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| | - Hyongsok Tom Soh
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| |
Collapse
|
9
|
Becnel LB, McKenna NJ. Minireview: progress and challenges in proteomics data management, sharing, and integration. Mol Endocrinol 2012; 26:1660-74. [PMID: 22902541 DOI: 10.1210/me.2012-1180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The proteome represents the identity, expression levels, interacting partners, and posttranslational modifications of proteins expressed within any given cell. Proteomic studies aim to census the quantitative and qualitative factors regulating the biological relationships of proteins acting in concert as functional cellular networks. In the field of endocrinology, proteomics has been of considerable value in determining the function and mechanism of action of endocrine signaling molecules in the cell membrane, cytoplasm, and nucleus and for the discovery of proteins as candidates for clinical biomarkers. The volume of data that can be generated by proteomics methodologies, up to gigabytes of data within a few hours, brings with it its own logistical hurdles and presents significant challenges to realizing the full potential of these datasets. In this minireview, we describe selected current proteomics methodologies and their application in basic and translational endocrinology before focusing on mass spectrometry as a model for current progress and challenges in data analysis, management, sharing, and integration.
Collapse
Affiliation(s)
- Lauren B Becnel
- Department of Medicine, Hematology and Oncology, Baylor College of Medicine, 1 Baylor Plaza MS-BCM305, Houston, Texas 77030, USA.
| | | |
Collapse
|
10
|
Giambaşu GM, Lee TS, Scott WG, York DM. Mapping L1 ligase ribozyme conformational switch. J Mol Biol 2012; 423:106-22. [PMID: 22771572 DOI: 10.1016/j.jmb.2012.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/21/2012] [Accepted: 06/25/2012] [Indexed: 01/10/2023]
Abstract
L1 ligase (L1L) molecular switch is an in vitro optimized synthetic allosteric ribozyme that catalyzes the regioselective formation of a 5'-to-3' phosphodiester bond, a reaction for which there is no known naturally occurring RNA catalyst. L1L serves as a proof of principle that RNA can catalyze a critical reaction for prebiotic RNA self-replication according to the RNA world hypothesis. L1L crystal structure captures two distinct conformations that differ by a reorientation of one of the stems by around 80Å and are presumed to correspond to the active and inactive state, respectively. It is of great interest to understand the nature of these two states in solution and the pathway for their interconversion. In this study, we use explicit solvent molecular simulation together with a novel enhanced sampling method that utilizes concepts from network theory to map out the conformational transition between active and inactive states of L1L. We find that the overall switching mechanism can be described as a three-state/two-step process. The first step involves a large-amplitude swing that reorients stem C. The second step involves the allosteric activation of the catalytic site through distant contacts with stem C. Using a conformational space network representation of the L1L switch transition, it is shown that the connection between the three states follows different topographical patterns: the stem C swing step passes through a narrow region of the conformational space network, whereas the allosteric activation step covers a much wider region and a more diverse set of pathways through the network.
Collapse
Affiliation(s)
- George M Giambaşu
- BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Ofer I. Wilner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Yao C, Moretti JE, Struss PE, Spall JA, Müller UF. Arginine cofactors on the polymerase ribozyme. PLoS One 2011; 6:e25030. [PMID: 21949841 PMCID: PMC3176810 DOI: 10.1371/journal.pone.0025030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 08/23/2011] [Indexed: 11/27/2022] Open
Abstract
The RNA world hypothesis states that the early evolution of life went through a stage in which RNA served both as genome and as catalyst. The central catalyst in an RNA world organism would have been a ribozyme that catalyzed RNA polymerization to facilitate self-replication. An RNA polymerase ribozyme was developed previously in the lab but it is not efficient enough for self-replication. The factor that limits its polymerization efficiency is its weak sequence-independent binding of the primer/template substrate. Here we tested whether RNA polymerization could be improved by a cationic arginine cofactor, to improve the interaction with the substrate. In an RNA world, amino acid-nucleic acid conjugates could have facilitated the emergence of the translation apparatus and the transition to an RNP world. We chose the amino acid arginine for our study because this is the amino acid most adept to interact with RNA. An arginine cofactor was positioned at ten different sites on the ribozyme, using conjugates of arginine with short DNA or RNA oligonucleotides. However, polymerization efficiency was not increased in any of the ten positions. In five of the ten positions the arginine reduced or modulated polymerization efficiency, which gives insight into the substrate-binding site on the ribozyme. These results suggest that the existing polymerase ribozyme is not well suited to using an arginine cofactor.
Collapse
Affiliation(s)
- Chengguo Yao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Janina E. Moretti
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Peter E. Struss
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Junaid A. Spall
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
An T, Kim KS, Hahn SK, Lim G. Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors. LAB ON A CHIP 2010; 10:2052-6. [PMID: 20617261 DOI: 10.1039/c005276k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aptamer functionalized addressable SWNT-film arrays between cantilever electrodes were successfully developed for biosensor applications. Dielectrophoretically aligned SWNT suspended films made possible highly specific and rapid detection of target proteins with a large binding surface area. Thrombin aptamer immobilized SWNT-film FET biosensor resulted in a real-time, label-free, and electrical detection of thrombin molecules down to a concentration of ca. 7 pM with a step-wise rapid response time of several seconds.
Collapse
Affiliation(s)
- Taechang An
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk, 790-784, Korea
| | | | | | | |
Collapse
|
14
|
Giambasu GM, Lee TS, Sosa CP, Robertson MP, Scott WG, York DM. Identification of dynamical hinge points of the L1 ligase molecular switch. RNA (NEW YORK, N.Y.) 2010; 16:769-780. [PMID: 20167653 PMCID: PMC2844624 DOI: 10.1261/rna.1897810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 12/19/2009] [Indexed: 05/28/2023]
Abstract
The L1 ligase is an in vitro selected ribozyme that uses a noncanonically base-paired ligation site to catalyze regioselectively and regiospecifically the 5' to 3' phosphodiester bond ligation, a reaction relevant to origin of life hypotheses that invoke an RNA world scenario. The L1 ligase crystal structure revealed two different conformational states that were proposed to represent the active and inactive forms. It remains an open question as to what degree these two conformers persist as stable conformational intermediates in solution, and along what pathway are they able to interconvert. To explore these questions, we have performed a series of molecular dynamics simulations in explicit solvent of the inactive-active conformational switch in L1 ligase. Four simulations were performed departing from both conformers in both the reactant and product states, in addition to a simulation where local unfolding in the active state was induced. From these simulations, along with crystallographic data, a set of four virtual torsion angles that span two evolutionarily conserved and restricted regions were identified as dynamical hinge points in the conformational switch transition. The ligation site visits three distinct states characterized by hydrogen bond patterns that are correlated with the formation of specific contacts that may promote catalysis. The insights gained from these simulations contribute to a more detailed understanding of the coupled catalytic/conformational switch mechanism of L1 ligase that may facilitate the design and engineering of new catalytic riboswitches.
Collapse
Affiliation(s)
- George M Giambasu
- Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
15
|
Design principles for ligand-sensing, conformation-switching ribozymes. PLoS Comput Biol 2009; 5:e1000620. [PMID: 20041206 PMCID: PMC2789328 DOI: 10.1371/journal.pcbi.1000620] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 11/17/2009] [Indexed: 11/19/2022] Open
Abstract
Nucleic acid sensor elements are proving increasingly useful in biotechnology and biomedical applications. A number of ligand-sensing, conformational-switching ribozymes (also known as allosteric ribozymes or aptazymes) have been generated by some combination of directed evolution or rational design. Such sensor elements typically fuse a molecular recognition domain (aptamer) with a catalytic signal generator (ribozyme). Although the rational design of aptazymes has begun to be explored, the relationships between the thermodynamics of aptazyme conformational changes and aptazyme performance in vitro and in vivo have not been examined in a quantitative framework. We have therefore developed a quantitative and predictive model for aptazymes as biosensors in vitro and as riboswitches in vivo. In the process, we have identified key relationships (or dimensionless parameters) that dictate aptazyme performance, and in consequence, established equations for precisely engineering aptazyme function. In particular, our analysis quantifies the intrinsic trade-off between ligand sensitivity and the dynamic range of activity. We were also able to determine how in vivo parameters, such as mRNA degradation rates, impact the design and function of aptazymes when used as riboswitches. Using this theoretical framework we were able to achieve quantitative agreement between our models and published data. In consequence, we are able to suggest experimental guidelines for quantitatively predicting the performance of aptazyme-based riboswitches. By identifying factors that limit the performance of previously published systems we were able to generate immediately testable hypotheses for their improvement. The robust theoretical framework and identified optimization parameters should now enable the precision design of aptazymes for biotechnological and clinical applications. Aptamers are nucleic acids that bind their cognate ligands (ranging from metal ions to small molecules to proteins) specifically and tightly. Through rational design and/or directed evolution, aptamers can be engineered into allosteric nucleic acids whose conformations can be regulated by their ligands. Aptamer beacons, aptazymes, and riboswitches all undergo ligand-dependent conformational changes, and have been adapted to signal the concentration of their ligands. However, there is currently no model that can be used to predict how the energetics of conformational change affects signaling, either in vitro or in vivo. We have developed a model that identifies what parameters can be optimized to best yield signals. By focusing on these parameters, it should be possible to more readily design or select more effective conformation-switching nucleic acid biosensors.
Collapse
|
16
|
Kashiwagi N, Furuta H, Ikawa Y. Primitive templated catalysis of a peptide ligation by self-folding RNAs. Nucleic Acids Res 2009; 37:2574-83. [PMID: 19264804 PMCID: PMC2677871 DOI: 10.1093/nar/gkp111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNA–polypeptide complexes (RNPs), which play various roles in extant biological systems, have been suggested to have been important in the early stages of the molecular evolution of life. At a certain developmental stage of ancient RNPs, their RNA and polypeptide components have been proposed to evolve in a reciprocal manner to establish highly elaborate structures and functions. We have constructed a simple model system, from which a cooperative evolution system of RNA and polypeptide components could be developed. Based on the observation that several RNAs modestly accelerated the chemical ligation of the two basic peptides. We have designed an RNA molecule possessing two peptide binding sites that capture the two peptides. This designed RNA can also accelerate the peptide ligation. The resulting ligated peptide, which has two RNA-binding sites, can in turn function as a trans-acting factor that enhances the endonuclease activity catalyzed by the designed RNA.
Collapse
Affiliation(s)
- Norimasa Kashiwagi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
17
|
Real-time PCR detection of protein analytes with conformation-switching aptamers. Anal Biochem 2008; 380:164-73. [PMID: 18541130 DOI: 10.1016/j.ab.2008.05.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 11/23/2022]
Abstract
We have developed a novel method that uses conformation-switching aptamers for real-time PCR analysis of protein analytes. The aptamers have been designed so that they assume one secondary structure in the absence of a protein analyte and a different secondary structure in the presence of a protein such as thrombin or platelet-derived growth factor (PDGF). The protein-bound structure in turn assembles a ligation junction for the addition of a real-time PCR primer. Protein concentrations could be specifically detected into the picomolar range, even in the presence of cell lysates. The method has advantages relative to both immunoPCR (because no signal is produced by background binding) and the proximity ligation assay (PLA) (because only one epitope, rather than two epitopes, on a protein surface must be bound).
Collapse
|
18
|
Chiuman W, Li Y. Simple fluorescent sensors engineered with catalytic DNA 'MgZ' based on a non-classic allosteric design. PLoS One 2007; 2:e1224. [PMID: 18030352 PMCID: PMC2077808 DOI: 10.1371/journal.pone.0001224] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Accepted: 10/30/2007] [Indexed: 11/20/2022] Open
Abstract
Most NAE (nucleic acid enzyme) sensors are composed of an RNA-cleaving catalytic motif and an aptameric receptor. They operate by activating or repressing the catalytic activity of a relevant NAE through the conformational change in the aptamer upon target binding. To transduce a molecular recognition event to a fluorescence signal, a fluorophore-quencher pair is attached to opposite ends of the RNA substrate such that when the NAE cleaves the substrate, an increased level of fluorescence can be generated. However, almost all NAE sensors to date harbor either NAEs that cannot accommodate a fluorophore-quencher pair near the cleavage site or those that can accept such a modification but require divalent transition metal ions for catalysis. Therefore, the signaling magnitude and the versatility of current NAE sensors might not suffice for analytical and biological applications. Here we report an RNA-cleaving DNA enzyme, termed ‘MgZ’, which depends on Mg2+ for its activity and can accommodate bulky dye moieties next to the cleavage site. MgZ was created by in vitro selection. The selection scheme entailed acidic buffering and ethanol-based reaction stoppage to remove selfish DNAs. Characterization of MgZ revealed a three-way junction structure, a cleavage rate of 1 min−1, and 26-fold fluorescence enhancement. Two ligand-responsive NAE sensors were rationally designed by linking an aptamer sequence to the substrate of MgZ. In the absence of the target, the aptamer-linked substrate is locked into a conformation that prohibits MgZ from accessing the substrate. In the presence of the target, the aptamer releases the substrate, which induces MgZ-mediated RNA cleavage. The discovery of MgZ and the introduction of the above NAE sensor design strategy should facilitate future efforts in sensor engineering.
Collapse
Affiliation(s)
- William Chiuman
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 2007; 107:3715-43. [PMID: 17715981 DOI: 10.1021/cr0306743] [Citation(s) in RCA: 686] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Famulok
- LIMES Institute, Program Unit Chemical Biology and Medicinal Chemistry, c/o Kekulé-Institut für Organische Chemie und Biochemie, Gerhard Domagk-Strasse 1, 53121 Bonn, Germany.
| | | | | |
Collapse
|
20
|
Abstract
Life originated, according to the RNA World hypothesis, from self-replicating ribozymes that catalyzed ligation of RNA fragments. We have solved the 2.6 angstrom crystal structure of a ligase ribozyme that catalyzes regiospecific formation of a 5' to 3' phosphodiester bond between the 5'-triphosphate and the 3'-hydroxyl termini of two RNA fragments. Invariant residues form tertiary contacts that stabilize a flexible stem of the ribozyme at the ligation site, where an essential magnesium ion coordinates three phosphates. The structure of the active site permits us to suggest how transition-state stabilization and a general base may catalyze the ligation reaction required for prebiotic RNA assembly.
Collapse
Affiliation(s)
- Michael P Robertson
- Center for the Molecular Biology of RNA and Department of Chemistry and Biochemistry, Robert L. Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
21
|
Abstract
Natural and engineered RNA 'parts' can perform a variety of functions, including hybridizing to targets, binding ligands and undergoing programmed conformational changes, and catalyzing reactions. These RNA parts can in turn be assembled into synthetic genetic circuits that regulate gene expression by acting either in cis or in trans on mRNAs. As more parts are discovered and engineered, it should be increasingly possible to create synthetic RNA circuits that are able to carry out complex logical operations in cells, either superimposed on or autonomous to extant gene regulation.
Collapse
Affiliation(s)
- Eric A Davidson
- Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, 1 University Station/A4800, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
22
|
Abstract
The SELEX technique (systematic evolution of ligands by exponential enrichment) provides a powerful tool for the in vitro selection of nucleic acid ligands (aptamers) from combinatorial oligonucleotide libraries against a target molecule. In the beginning of the technique's use, RNA molecules were identified that bind to proteins that naturally interact with nucleic acids or to small organic molecules. In the following years, the use of the SELEX technique was extended to isolate oligonucleotide ligands (aptamers) for a wide range of proteins of importance for therapy and diagnostics, such as growth factors and cell surface antigens. These oligonucleotides bind their targets with similar affinities and specificities as antibodies do. The in vitro selection of oligonucleotides with enzymatic activity, denominated aptazymes, allows the direct transduction of molecular recognition to catalysis. Recently, the use of in vitro selection methods to isolate protein inhibitors has been extended to complex targets, such as membrane-bound receptors, and even entire cells. RNA aptamers have also been expressed in living cells. These aptamers, also called intramers, can be used to dissect intracellular signal transduction pathways. The utility of RNA aptamers for in vivo experiments, as well as for diagnostic and therapeutic purposes, is considerably enhanced by chemical modifications, such as substitutions of the 2'-OH groups of the ribose backbone in order to provide resistance against enzymatic degradation in biological fluids. In an alternative approach, Spiegelmers are identified through in vitro selection of an unmodified D-RNA molecule against a mirror-image (i.e. a D-peptide) of a selection target, followed by synthesis of the unnatural nuclease-resistant L-configuration of the RNA aptamer that recognizes the natural configuration of its selection target (i.e. a L-peptide). Recently, nuclease-resistant inhibitory RNA aptamers have been developed against a great variety of targets implicated in disease. Some results have already been obtained in animal models and in clinical trials.
Collapse
Affiliation(s)
- H Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, São Paulo 05513-970, Brazil.
| |
Collapse
|
23
|
Tomizaki KY, Usui K, Mihara H. Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 2006; 6:782-99. [PMID: 15791688 DOI: 10.1002/cbic.200400232] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sequencing of the human genome has been successfully completed and offers the chance of obtaining a large amount of valuable information for understanding complex cellular events simply and rapidly in a single experiment. Interestingly, in addressing these proteomic studies, the importance of protein-detecting microarray technology is increasing. In the coming few years, microarray technology will become a significantly promising and indispensable research/diagnostic tool from just a speculative technology. It is clear that the protein-detecting microarray is supported by three independent but strongly related technologies (surface chemistry, detection methods, and capture agents). Firstly, a variety of surface-modification methodologies are now widely available and offer site-specific immobilization of capture agents onto surfaces in such a way as to keep the native conformation and activity. Secondly, sensitive and parallel detection apparatuses are being developed to provide highly engineered microarray platforms for simultaneous data acquisition. Lastly, in the development of capture agents, antibodies are now probably the most prominent capture agents for analyzing protein abundances. Alternative scaffolds, such as phage-displayed antibody and protein fragments, which provide the advantage of increasing diversity of proteinic capture agents, however, are under development. An approach involving recombinant proteins fused with affinity tag(s) and coupled with a highly engineered surface chemistry will provide simple production protocols and specific orientations of capture agents on the microarray formats. Peptides and other small molecules can be employed in screening highly potent ligands as well as in measuring enzymatic activities. Protein-detecting microarrays supported by the three key technologies should contribute in accelerating diagnostic/biological research and drug discovery.
Collapse
Affiliation(s)
- Kin-ya Tomizaki
- Department of Bioengineering and The COE21 Program, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-40, 4259 Nagatsuta, Midori, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
24
|
Cho S, Kim JE, Lee BR, Kim JH, Kim BG. Bis-aptazyme sensors for hepatitis C virus replicase and helicase without blank signal. Nucleic Acids Res 2005; 33:e177. [PMID: 16314308 PMCID: PMC1292994 DOI: 10.1093/nar/gni174] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fusion molecule (i.e. aptazyme) of aptamer and hammerhead ribozyme was developed as in situ sensor. Previously, the hammerhead ribozyme conjugated with aptamer through its stem II module showed a significant blank signal by self-cleavage. To reduce or remove its self-cleavage activity in the absence of target molecule, rational designs were attempted by reducing the binding affinity of the aptazyme to its RNA substrate, while maintaining the ribonuclease activity of the aptazyme. Interestingly, the bis-aptazymes which comprise the two aptamer-binding sites at both stem I and stem III of the hammerhead ribozyme showed very low blank signals, and their ratios of reaction rate constants, i.e. signal to noise ratios, were several tens to hundred times higher than those of the stem II-conjugated bis-aptazymes. The reduction in the blank signals seems to be caused by a higher dissociation constant between the main strand of the bis-aptazyme and its substrate arising from multi-point base-pairing of the bis-aptazymes. The bis-aptazymes for HCV replicase and helicase showed high selectivity against other proteins, and a linear relationship existed between their ribozyme activities and the target concentrations. In addition, a bis-aptazyme of dual functions was designed by inserting both aptamers for HCV replicase and helicase into the stem I and stem III of hammerhead ribozyme, respectively, and it also showed greater sensitivity and specificity for both proteins without blank signal.
Collapse
Affiliation(s)
- Suhyung Cho
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National UniversityShinlim-dong, Kwanak-Gu, Seoul 151-744, Korea
| | - Ji-Eun Kim
- School of Chemical and Biological Engineering, Seoul National UniversityShinlim-dong, Kwanak-Gu, Seoul 151-744, Korea
| | - Bo-Rahm Lee
- School of Chemical and Biological Engineering, Seoul National UniversityShinlim-dong, Kwanak-Gu, Seoul 151-744, Korea
| | - June-Hyung Kim
- School of Chemical and Biological Engineering, Seoul National UniversityShinlim-dong, Kwanak-Gu, Seoul 151-744, Korea
| | - Byung-Gee Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National UniversityShinlim-dong, Kwanak-Gu, Seoul 151-744, Korea
- School of Chemical and Biological Engineering, Seoul National UniversityShinlim-dong, Kwanak-Gu, Seoul 151-744, Korea
- To whom correspondence should be addressed at Laboratory of Molecular Biotechnology and Biomaterials, School of Chemical and Biological Engineering, Seoul National University, Shinlim-dong, Kwanak-Gu, Seoul 151-744, Korea. Tel: +82 2 880 6774; Fax: +82 2 883 6020;
| |
Collapse
|
25
|
Barrier M, Mirkes PE. Proteomics in developmental toxicology. Reprod Toxicol 2005; 19:291-304. [PMID: 15686865 DOI: 10.1016/j.reprotox.2004.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/26/2004] [Accepted: 09/03/2004] [Indexed: 10/26/2022]
Abstract
The objective of this presentation is to review the major proteomic technologies available to developmental toxicologists and, when possible, to provide examples of how various proteomic technologies have been used in developmental toxicology or toxicology in general. The field of proteomics is too broad for us to go into great depth about each technology, so we have attempted to provide brief overviews supplemented with many references that cover the subjects in more detail. Proteomics tools produce a global view of complex biological systems by examining complex protein mixtures using large-scale, high-throughput technologies. These technologies speed up the process of protein separation, quantification, and identification. As an important complement to genomics, proteomics allows for the examination of the entire complement of proteins in an organism, tissue, or cell-type. Current proteomics technologies not only identify protein expression, but also post-translational modifications and protein interactions. The field of proteomics is expanding rapidly to provide greater volume and quality of protein information to help understand the multifaceted nature of biological systems.
Collapse
Affiliation(s)
- Marianne Barrier
- Birth Defects Research Laboratory, Division of Genetics and Developmental Medicine, Department of Pediatrics, University of Washington, Box 356320, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | |
Collapse
|
26
|
Abstract
Just as Darwinian evolution in nature has led to the development of many sophisticated enzymes, Darwinian evolution in vitro has proven to be a powerful approach for obtaining similar results in the laboratory. This review focuses on the development of nucleic acid enzymes starting from a population of random-sequence RNA or DNA molecules. In order to illustrate the principles and practice of in vitro evolution, two especially well-studied categories of catalytic nucleic acid are considered: RNA enzymes that catalyze the template-directed ligation of RNA and DNA enzymes that catalyze the cleavage of RNA. The former reaction, which involves attack of a 2'- or 3'-hydroxyl on the alpha-phosphate of a 5'-triphosphate, is more difficult. It requires a comparatively larger catalytic motif, containing more nucleotides than can be sampled exhaustively within a starting population of random-sequence RNAs. The latter reaction involves deprotonation of the 2'-hydroxyl adjacent to the cleavage site, resulting in cleaved products that bear a 2',3'-cyclic phosphate and 5'-hydroxyl. The difficulty of this reaction, and therefore the complexity of the corresponding DNA enzyme, depends on whether a catalytic cofactor, such as a divalent metal cation or small molecule, is present in the reaction mixture.
Collapse
Affiliation(s)
- Gerald F Joyce
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
27
|
Cruz RPG, Withers JB, Li Y. Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. ACTA ACUST UNITED AC 2004; 11:57-67. [PMID: 15112995 DOI: 10.1016/j.chembiol.2003.12.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 10/09/2003] [Accepted: 10/22/2003] [Indexed: 11/21/2022]
Abstract
We conducted 16 parallel in vitro selection experiments to isolate catalytic DNAs from a common DNA library for the cleavage of all 16 possible dinucleotide junctions of RNA incorporated into a common DNA/RNA chimeric substrate sequence. We discovered hundreds of sequence variations of the 8-17 deoxyribozyme--an RNA-cleaving catalytic DNA motif previously reported--from nearly all 16 final pools. Sequence analyses identified four absolutely conserved nucleotides in 8-17. Five representative 8-17 variants were tested for substrate cleavage in trans, and together they were able to cleave 14 dinucleotide junctions. New 8-17 variants required Mn2+ to support their broad dinucleotide cleavage capabilities. We hypothesize that 8-17 has a tertiary structure composed of an enzymatic core executing catalysis and a structural facilitator providing structural fine tuning when different dinucleotide junctions are given as cleavage sites.
Collapse
Affiliation(s)
- Rani P G Cruz
- Department of Biochemistry, McMaster University, Hamilton, Canada
| | | | | |
Collapse
|
28
|
Vaish NK, Kossen K, Andrews LE, Pasko C, Seiwert SD. Monitoring protein modification with allosteric ribozymes. Methods 2004; 32:428-36. [PMID: 15003605 DOI: 10.1016/j.ymeth.2003.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2003] [Indexed: 10/26/2022] Open
Abstract
An allosteric ribozyme is an RNA-based enzyme (ribozyme) whose catalytic activity is modulated by molecular recognition of a protein. The direct coupling of a detectable catalytic event to molecular recognition by an allosteric ribozyme enables simple assays for quantitative protein detection. Most significantly, the mode of development and molecular recognition characteristics of allosteric ribozymes are fundamentally different from antibodies, providing them with functional characteristics that complement those of antibodies. Allosteric ribozymes can be developed using native proteins and, therefore, are often sensitive to protein conformation. In contrast, antibodies tend to recognize a series of adjacent amino acids as a consequence of antigen presentation and typically are not sensitive to protein conformation. Unlike antibody development, the development of allosteric ribozymes is a completely in vitro process that allows the specificity of an allosteric ribozyme to be tightly controlled. These significant differences from antibodies allow the pre-programmed development of conformation-state-specific protein detection reagents that can be used to investigate the activation-state of signal transduction components.
Collapse
Affiliation(s)
- Narendra K Vaish
- Sirna Therapeutics, Inc, 2950 Wilderness Place, Boulder, CO 80301, USA.
| | | | | | | | | |
Collapse
|
29
|
Robertson MP, Knudsen SM, Ellington AD. In vitro selection of ribozymes dependent on peptides for activity. RNA (NEW YORK, N.Y.) 2004; 10:114-27. [PMID: 14681590 PMCID: PMC1370523 DOI: 10.1261/rna.5900204] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 09/22/2003] [Indexed: 05/20/2023]
Abstract
A peptide-dependent ribozyme ligase (aptazyme ligase) has been selected from a random sequence population based on the small L1 ligase. The aptazyme ligase is activated > 18,000-fold by its cognate peptide effector, the HIV-1 Rev arginine-rich motif (ARM), and specifically recognizes the Rev ARM relative to other peptides containing arginine-rich motifs. Moreover, the aptazyme ligase can preferentially recognize the Rev ARM in the context of the full-length HIV-1 Rev protein. The only cross-reactivity exhibited by the aptazyme is toward the Tat ARM. Reselection of peptide- and protein-dependent aptazymes from a partially randomized population yielded aptazymes that could readily discriminate against the Tat ARM. These results have important implications for the development of aptazymes that can be used in arrays for the detection and quantitation of multiple cellular proteins (proteome arrays).
Collapse
MESH Headings
- Amino Acid Motifs
- Arginine/metabolism
- Base Sequence
- Binding Sites
- Gene Products, rev/metabolism
- Gene Products, tat/metabolism
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- In Vitro Techniques
- Ligases/chemical synthesis
- Ligases/genetics
- Ligases/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- RNA, Catalytic/chemical synthesis
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Viral
- Selection, Genetic
- Sequence Homology, Nucleic Acid
- Substrate Specificity
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
|
30
|
|
31
|
Vaish NK, Jadhav VR, Kossen K, Pasko C, Andrews LE, McSwiggen JA, Polisky B, Seiwert SD. Zeptomole detection of a viral nucleic acid using a target-activated ribozyme. RNA (NEW YORK, N.Y.) 2003; 9:1058-72. [PMID: 12923255 PMCID: PMC1370471 DOI: 10.1261/rna.5760703] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 06/18/2003] [Indexed: 05/20/2023]
Abstract
We describe a strategy for the ultra-sensitive detection of nucleic acids using "half" ribozymes that are devoid of catalytic activity unless completed by a trans-acting target nucleic acid. The half-ribozyme concept was initially demonstrated using a construct derived from a multiple turnover Class I ligase. Iterative RNA selection was carried out to evolve this half-ribozyme into one activated by a conserved sequence present in the hepatitis C virus (HCV) genome. Following sequence optimization of substrate RNAs, this HCV-activated half-ribozyme displayed a maximal turnover rate of 69 min(-1) (pH 8.3) and was induced in rate by approximately 2.6 x 10(9)-fold by the HCV target. It detected the HCV target oligonucleotide in the zeptomole range (6700 molecules), a sensitivity of detection roughly 2.6 x 10(6)-fold greater than that previously demonstrated by oligonucleotide-activated ribozymes, and one that is sufficient for molecular diagnostic applications.
Collapse
|
32
|
|
33
|
Steele D, Kertsburg A, Soukup GA. Engineered catalytic RNA and DNA : new biochemical tools for drug discovery and design. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:131-44. [PMID: 12749730 DOI: 10.2165/00129785-200303020-00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the fundamental discovery that RNA catalyzes critical biological reactions, the conceptual and practical utility of nucleic acid catalysts as molecular therapeutic and diagnostic agents continually develops. RNA and DNA catalysts are particularly attractive tools for drug discovery and design due to their relative ease of synthesis and tractable rational design features. Such catalysts can intervene in cellular or viral gene expression by effectively destroying virtually any target RNA, repairing messenger RNAs derived from mutant genes, or directly disrupting target genes. Consequently, catalytic nucleic acids are apt tools for dissecting gene function and for effecting gene pharmacogenomic strategies. It is in this capacity that RNA and DNA catalysts have been most widely utilized to affect gene expression of medically relevant targets associated with various disease states, where a number of such catalysts are presently being evaluated in clinical trials. Additionally, biotechnological prospects for catalytic nucleic acids are seemingly unlimited. Controllable nucleic acid catalysts, termed allosteric ribozymes or deoxyribozymes, form the basis of effector or ligand-dependent molecular switches and sensors. Allosteric nucleic acid catalysts promise to be useful tools for detecting and scrutinizing the function of specified components of the metabolome, proteome, transcriptome, and genome. The remarkable versatility of nucleic acid catalysis is thus the fountainhead for wide-ranging applications of ribozymes and deoxyribozymes in biomedical and biotechnological research.
Collapse
Affiliation(s)
- David Steele
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | | | |
Collapse
|
34
|
Sydor JR, Nock S. Protein expression profiling arrays: tools for the multiplexed high-throughput analysis of proteins. Proteome Sci 2003; 1:3. [PMID: 12831399 PMCID: PMC165414 DOI: 10.1186/1477-5956-1-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2003] [Accepted: 06/10/2003] [Indexed: 12/05/2022] Open
Abstract
The completion of the human genome sequence has led to a rapid increase in genetic information. The invention of DNA microarrays, which allow for the parallel measurement of thousands of genes on the level of mRNA, has enabled scientists to take a more global view of biological systems. Protein microarrays have a big potential to increase the throughput of proteomic research. Microarrays of antibodies can simultaneously measure the concentration of a multitude of target proteins in a very short period of time. The ability of protein microarrays to increase the quantity of data points in small biological samples on the protein level will have a major impact on basic biological research as well as on the discovery of new drug targets and diagnostic markers. This review highlights the current status of protein expression profiling arrays, their development, applications and limitations.
Collapse
Affiliation(s)
- Jens R Sydor
- Infinity Pharmaceuticals, 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Steffen Nock
- Promab Biotechnologies Inc., 1300 Bancroft Ave, San Leandro, CA 94577, USA
| |
Collapse
|
35
|
Levy M, Ellington AD. Exponential growth by cross-catalytic cleavage of deoxyribozymogens. Proc Natl Acad Sci U S A 2003; 100:6416-21. [PMID: 12743371 PMCID: PMC164461 DOI: 10.1073/pnas.1130145100] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have designed an autocatalytic cycle based on the highly efficient 10-23 RNA-cleaving deoxyribozyme that is capable of exponential amplification of catalysis. In this system, complementary 10-23 variants were inactivated by circularization, creating deoxyribozymogens. Upon linearization, the enzymes can act on their complements, creating a cascade in which linearized species accumulate exponentially. Seeding the system with a pool of linear catalysts resulted not only in amplification of function but in sequence selection and represents an in vitro selection experiment conducted in the absence of any protein enzymes.
Collapse
Affiliation(s)
- Matthew Levy
- Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas, Austin 78712, USA
| | | |
Collapse
|
36
|
Silverman SK. Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA (NEW YORK, N.Y.) 2003; 9:377-83. [PMID: 12649489 PMCID: PMC1370404 DOI: 10.1261/rna.2200903] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Switches and sensors play important roles in our everyday lives. The chemical properties of RNA make it amenable for use as a switch or sensor, both artificially and in nature. This review focuses on recent advances in artificial RNA switches and sensors. Researchers have been applying classical biochemical principles such as allostery in elegant ways that are influencing the development of biosensors and other applications. Particular attention is given here to allosteric ribozymes (aptazymes) that are regulated by small organic molecules, by proteins, or by oligonucleotides. Also discussed are ribozymes whose activities are controlled by various nonallosteric strategies.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
37
|
Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 2003; 27:75-97. [PMID: 12697343 DOI: 10.1016/s0168-6445(03)00020-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery 20 years ago that some RNA molecules, called ribozymes, are able to catalyze chemical reactions was a breakthrough in biology. Over the last two decades numerous natural RNA motifs endowed with catalytic activity have been described. They all fit within a few well-defined types that respond to a specific RNA structure. The prototype catalytic domain of each one has been engineered to generate trans-acting ribozymes that catalyze the site-specific cleavage of other RNA molecules. On the 20th anniversary of ribozyme discovery we briefly summarize the main features of the different natural catalytic RNAs. We also describe progress towards developing strategies to ensure an efficient ribozyme-based technology, dedicating special attention to the ones aimed to achieve a new generation of therapeutic agents.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|
38
|
Gullberg M, Fredriksson S, Taussig M, Jarvius J, Gustafsdottir S, Landegren U. A sense of closeness: protein detection by proximity ligation. Curr Opin Biotechnol 2003; 14:82-6. [PMID: 12566006 DOI: 10.1016/s0958-1669(02)00011-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly specific and sensitive procedures will be required to evaluate proteomes. Proximity ligation is a recently introduced mechanism for protein analysis. In this technique, the convergence of sets of protein-binding reagents on individual target molecules juxtaposes attached nucleic acid sequences. Through a ligation reaction a DNA reporter sequence is created, which can be amplified. The procedure thus encodes detected proteins as specific nucleic acid sequences in what may be viewed as a reverse translation reaction.
Collapse
Affiliation(s)
- Mats Gullberg
- The Beijer Laboratory, Department of Genetics and Pathology, Rudbeck Laboratory, Se-751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Hesselberth JR, Robertson MP, Knudsen SM, Ellington AD. Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal Biochem 2003; 312:106-12. [PMID: 12531194 DOI: 10.1016/s0003-2697(02)00441-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Allosteric ribozymes (aptazymes) can transduce the noncovalent recognition of analytes into the catalytic generation of readily observable signals. Aptazymes are easily engineered, can detect diverse classes of biologically relevant molecules, and have high signal-to-noise ratios. These features make aptazymes useful candidates for incorporation into biosensor arrays. Allosteric ribozyme ligases that can recognize a variety of analytes ranging from small organics to proteins have been generated. Upon incorporation into an array format, multiple different aptazyme ligases were able to simultaneously detect their cognate analytes with high specificity. Analyte concentrations could be accurately measured into the nanomolar range. The fact that analytes induced the formation of new covalent bonds in aptazyme ligases (as opposed to noncovalent bonds in antibodies) potentiated stringent washing of the array, leading to improved signal-to-noise ratios and limits of detection.
Collapse
Affiliation(s)
- Jay R Hesselberth
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The theory that an RNA world played a pivotal role in life's evolutionary past has prompted investigations into the scope of RNA catalysis. These efforts have attempted to demonstrate the plausibility of an RNA-based genetic system, which would require RNA molecules that catalyze their own replication. The mechanistic features of modern protein polymerases have been used to guide the laboratory evolution of catalytic RNAs (ribozymes) that exhibit polymerase-like activity. Ribozymes have been developed that recognize a primer-template complex in a general way and catalyze the template-directed polymerization of mononucleotides. These experiments demonstrate that RNA replicase behavior is likely within the catalytic repertoire of RNA, although many obstacles remain to be overcome in order to demonstrate that RNA can catalyze its own replication in a manner that could have sustained a genetic system on the early Earth.
Collapse
Affiliation(s)
- Kathleen E McGinness
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
41
|
Kertsburg A, Soukup GA. A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res 2002; 30:4599-606. [PMID: 12409449 PMCID: PMC135812 DOI: 10.1093/nar/gkf596] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To exert control over RNA folding and catalysis, both molecular engineering strategies and in vitro selection techniques have been applied toward the development of allosteric ribozymes whose activities are regulated by the binding of specific effector molecules or ligands. We now describe the isolation and characterization of a new and considerably versatile RNA element that functions as a communication module to render disparate RNA folding domains interdependent. In contrast to some existing communication modules, the novel 9-nt RNA element is demonstrated to function similarly between a variety of catalysts that include the hepatitis delta virus, hammerhead, X motif and Tetrahymena group I ribozymes, and various ligand-binding domains. The data support a mechanistic model of RNA folding in which the element is comprised of both canonical and non-canonical base pairs and an unpaired nucleotide in the active, effector-bound conformation. Aside from enabling effector-controlled RNA function through rational design, the element can be utilized to identify sites in large RNAs that are susceptible to effector regulation.
Collapse
Affiliation(s)
- Alexis Kertsburg
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | |
Collapse
|
42
|
Vaish NK, Dong F, Andrews L, Schweppe RE, Ahn NG, Blatt L, Seiwert SD. Monitoring post-translational modification of proteins with allosteric ribozymes. Nat Biotechnol 2002; 20:810-5. [PMID: 12118241 DOI: 10.1038/nbt719] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An allosteric hammerhead ribozyme activated specifically by the unphosphorylated form of the protein kinase ERK2 was created through a rational design strategy that relies on molecular recognition of ERK2 to decrease the formation of an alternate, inactive ribozyme conformer. Neither closely related mitogen-activated protein kinases (MAPKs) nor the phosphorylated form of ERK2 induced ribozyme activity. The ribozyme quantitatively detected ERK2 added to mammalian cell lysates and also functioned quantitatively in a multiplexed solution-phase assay. This same strategy was used to construct a second ribozyme selectively activated by the phosphorylated (active) form of ERK2. This approach is generally applicable to the development of ribozymes capable of monitoring post-translational modification of specific proteins.
Collapse
Affiliation(s)
- Narendra K Vaish
- Ribozyme Pharmaceuticals, Inc., 2950 Wilderness Place, Boulder, CO 80301, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ohuchi SJ, Ikawa Y, Shiraishi H, Inoue T. Modular engineering of a Group I intron ribozyme. Nucleic Acids Res 2002; 30:3473-80. [PMID: 12140333 PMCID: PMC137077 DOI: 10.1093/nar/gkf453] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
All Group I intron ribozymes contain a conserved core region consisting of two helical domains, P4-P6 and P3-P7. Recent studies have demonstrated that the elements required for catalysis are concentrated in the P3-P7 domain. We carried out in vitro selection experiments by using three newly constructed libraries on a variant of the T4 td Group I ribozyme containing only a P3-P7 domain in its core. Selected variants with new peripheral elements at L7.1, L8 or L9 after nine cycles efficiently catalyzed the reversal reaction of the first step of self-splicing. The variants from this selection contained a short sequence complementary to the substrate RNA without exception. The most active variant, which was 3-fold more active than the parental wild-type ribozyme, was developed from the second selection by employing a clone from the first selection. The results show that the P3-P7 domain can stand as an independent catalytic module to which a variety of new domains for enhancing the activity of the ribozyme can be added.
Collapse
Affiliation(s)
- Shoji J Ohuchi
- Graduate School of Science and. Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
44
|
Hartig JS, Najafi-Shoushtari SH, Grüne I, Yan A, Ellington AD, Famulok M. Protein-dependent ribozymes report molecular interactions in real time. Nat Biotechnol 2002; 20:717-22. [PMID: 12089558 DOI: 10.1038/nbt0702-717] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most approaches to monitoring interactions between biological macromolecules require large amounts of material, rely upon the covalent modification of an interaction partner, or are not amenable to real-time detection. We have developed a generalizable assay system based on interactions between proteins and reporter ribozymes. The assay can be configured in a modular fashion to monitor the presence and concentration of a protein or of molecules that modulate protein function. We report two applications of the assay: screening for a small molecule that disrupts protein binding to its nucleic acid target and screening for protein protein interactions. We screened a structurally diverse library of antibiotics for small molecules that modulate the activity of HIV-1 Rev-responsive ribozymes by binding to Rev. We identified an inhibitor that subsequently inhibited HIV-1 replication in cells. A simple format switch allowed reliable monitoring of domain-specific interactions between the blood-clotting factor thrombin and its protein partners. The rapid identification of interactions between proteins or of compounds that disrupt such interactions should have substantial utility for the drug-discovery process.
Collapse
Affiliation(s)
- Jörg S Hartig
- Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Wang DY, Lai BHY, Sen D. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. J Mol Biol 2002; 318:33-43. [PMID: 12054766 DOI: 10.1016/s0022-2836(02)00046-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel and general approach is described for generating versions of RNA-cleaving ribozymes (RNA enzymes) and DNAzymes (DNA enzymes), whose catalytic activity can be controlled by the binding of activator molecules. Variants of the RNA-cleaving 10-23 DNAzyme and 8-17 DNAzyme were created, whose catalysis was activated by up to approximately 35-fold by the binding of the effector adenosine. The design of such variants was possible even though the tertiary folding of the two DNAzymes is not known. Variants of the hammerhead ribozyme were constructed, to respond to the effectors ATP and flavin mononucleotide. Whereas in conventional allosteric ribozymes, effector-binding modulates the chemical step of catalysis, here, effectors exercise their effect upon the substrate-binding step, by stabilizing the enzyme-substrate complex. Because such an approach for controlling the activity of DNAzymes/ribozymes requires no prior knowledge of the enzyme's secondary or tertiary folding, this regulatory strategy should be generally applicable to any RNA-cleaving ribozyme or DNAzyme, natural or in vitro selected, provided substrate-recognition is achieved by Watson-Crick base-pairing.
Collapse
Affiliation(s)
- Dennis Y Wang
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
46
|
Wang DY, Lai BHY, Feldman AR, Sen D. A general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes. Nucleic Acids Res 2002; 30:1735-42. [PMID: 11937626 PMCID: PMC113219 DOI: 10.1093/nar/30.8.1735] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A general approach is described for controlling the RNA-cleaving activity of nucleic acid enzymes (ribozymes and DNAzymes) via the use of oligonucleotide effectors (regulators). In contrast to the previously developed approaches of allosteric and facilitator-mediated regulation of such enzymes, this approach, called 'expansive' regulation, requires that the regulator bind simultaneously to both enzyme and substrate to form a branched three-way complex. Such three-way enzyme-substrate-regulator complexes are catalytically competent relative to the structurally unstable enzyme-substrate complexes. Using the 8-17 and bipartite DNAzymes and the hammerhead ribozyme as model systems, 20- to 30-fold rate enhancements were achieved in the presence of regulators of engineered variants of the above three enzymes, even under unoptimized conditions. Broadly, using this approach ribozyme and DNAzyme variants that are amenable to regulation by oligonucleotide effectors can be designed even in the absence of any knowledge of the folded structure of the relevant ribozyme or DNAzyme. Expansive regulation therefore represents a new and potentially useful technology for both the regulation of nucleic acid enzymes and the detection of specific RNA transcripts.
Collapse
Affiliation(s)
- Dennis Y Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Way, Burnaby, BC V5A 1S6, Canada
| | | | | | | |
Collapse
|
47
|
Abstract
Effector-activated ribozymes that respond to small organic molecules have previously been generated by appending binding species (aptamers) to ribozymes. In order to determine if deoxyribozymes can similarly be activated by effector molecules, we have appended an anti-adenosine aptamer to a selected deoxyribozyme ligase. The resultant constructs are specifically activated by ATP. Optimization of the joining region resulted in ligases that are activated up to 460-fold by ATP. The selected deoxyribozyme catalyzes ligation largely via a templating mechanism. Effector activation is surprisingly achieved by suppression of the rate of the background, templated ligation reaction in the absence of the effector molecule, probably by misalignment of the oligonucleotide substrates. This novel allosteric mechanism has not previously been observed for nucleic-acid catalysts and is rare even in protein catalysts.
Collapse
Affiliation(s)
- Matthew Levy
- Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
48
|
Archemix: drug discovery innovation based on evolutionary nucleic acid technology platforms. Drug Discov Today 2002. [DOI: 10.1016/s1359-6446(02)02170-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
McGinness KE, Joyce GF. RNA-catalyzed RNA ligation on an external RNA template. CHEMISTRY & BIOLOGY 2002; 9:297-307. [PMID: 11927255 DOI: 10.1016/s1074-5521(02)00110-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Variants of the hc ligase ribozyme, which catalyzes ligation of the 3' end of an RNA substrate to the 5' end of the ribozyme, were utilized to evolve a ribozyme that catalyzes ligation reactions on an external RNA template. The evolved ribozyme catalyzes the joining of an oligonucleotide 3'-hydroxyl to the 5'-triphosphate of an RNA hairpin molecule. The ribozyme can also utilize various substrate sequences, demonstrating a largely sequence-independent mechanism for substrate recognition. The ribozyme also carries out the ligation of two oligonucleotides that are bound at adjacent positions on a complementary template. Finally, it catalyzes addition of mononucleoside 5'-triphosphates onto the 3' end of an oligonucleotide primer in a template-dependent manner. The development of ribozymes that catalyze polymerase-type reactions contributes to the notion that an RNA world could have existed during the early history of life on Earth.
Collapse
Affiliation(s)
- Kathleen E McGinness
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | | |
Collapse
|
50
|
Abstract
RNA and DNA molecules can be engineered to function as molecular switches that trigger catalytic events when a specific target molecule becomes bound. Recent studies on the underlying biochemical properties of these constructs indicate that a significant untapped potential exists for the practical application of allosteric nucleic acids. Engineered molecular switches can be used to report the presence of specific analytes in complex mixtures, making possible the creation of new types of biosensor devices and genetic control elements.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|