1
|
Mori Y, Terasaki M, Osaka N, Fujikawa T, Yashima H, Saito T, Kataoka Y, Ohara M, Higashimoto Y, Matsui T, Yamagishi SI. DNA Aptamer Raised against Advanced Glycation End Products Improves Sperm Concentration, Motility, and Viability by Suppressing Receptors for Advanced Glycation End Product-Induced Oxidative Stress and Inflammation in the Testes of Diabetic Mice. Int J Mol Sci 2024; 25:5947. [PMID: 38892134 PMCID: PMC11172898 DOI: 10.3390/ijms25115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for male infertility, but the underlying molecular mechanisms remain unclear. Advanced glycation end products (AGEs) are pathogenic molecules for diabetic vascular complications. Here, we investigated the effects of the DNA aptamer raised against AGEs (AGE-Apt) on testicular and sperm abnormalities in a T2DM mouse model. KK-Ay (DM) and wild-type (non-DM) 4- and 7-week-old male mice were sacrificed to collect the testes and spermatozoa for immunofluorescence, RT-PCR, and histological analyses. DM and non-DM 7-week-old mice were subcutaneously infused with the AGE-Apt or control-aptamer for 6 weeks and were then sacrificed. Plasma glucose, testicular AGEs, and Rage gene expression in 4-week-old DM mice and plasma glucose, testicular AGEs, oxidative stress, and pro-inflammatory gene expressions in 7-week-old DM mice were higher than those in age-matched non-DM mice, the latter of which was associated with seminiferous tubular dilation. AGE-Apt did not affect glycemic parameters, but it inhibited seminiferous tubular dilation, reduced the number of testicular macrophages and apoptotic cells, and restored the decrease in sperm concentration, motility, and viability of 13-week-old DM mice. Our findings suggest that AGEs-Apt may improve sperm abnormality by suppressing AGE-RAGE-induced oxidative stress and inflammation in the testes of DM mice.
Collapse
Affiliation(s)
- Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Anti-Glycation Research Section, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan
| | - Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Naoya Osaka
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Tomoki Fujikawa
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Hironori Yashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Tomomi Saito
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Yurie Kataoka
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| | - Yuichiro Higashimoto
- Department of Chemistry, Kurume University School of Medicine, Kurume 830-0011, Fukuoka, Japan;
| | - Takanori Matsui
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji 910-1195, Fukui, Japan
| | - Sho-ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University Graduate School of Medicine, Shinagawa 142-8555, Tokyo, Japan; (M.T.); (S.-i.Y.)
| |
Collapse
|
2
|
Protopapas N, Hamilton LE, Warkentin R, Xu W, Sutovsky P, Oko R. The perforatorium and postacrosomal sheath of rat spermatozoa share common developmental origins and protein constituents†. Biol Reprod 2020; 100:1461-1472. [PMID: 30939204 PMCID: PMC6561862 DOI: 10.1093/biolre/ioz052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 01/27/2023] Open
Abstract
The perinuclear theca (PT) is a cytosolic protein capsule that surrounds the nucleus of eutherian spermatozoa. Compositionally, it is divided into two regions: the subacrosomal layer (SAL) and the postacrosomal sheath (PAS). In falciform spermatozoa, a third region of the PT emerges that extends beyond the nuclear apex called the perforatorium. The formation of the SAL and PAS differs, with the former assembling early in spermiogenesis concomitant with acrosome formation, and the latter dependent on manchette descent during spermatid elongation. The perforatorium also forms during the elongation phase of spermiogenesis, suggesting that like the PAS, its assembly is facilitated by the manchette. The temporal similarity in biogenesis between the PAS and perforatorium led us to compare their molecular composition using cell fractionation and immunodetection techniques. Although the perforatorium is predominantly composed of its endemic protein FABP9/PERF15, immunolocalization indicates that it also shares proteins with the PAS. These include WBP2NL/PAWP, WBP2, GSTO2, and core histones, which have been implicated in early fertilization and zygotic events. The compositional homogeny between the PAS and perforatorium supports our observation that their development is linked. Immunocytochemistry indicates that both PAS and perforatorial biogenesis depend on the transport and deposition of cytosolic proteins by the microtubular manchette. Proteins translocated from the manchette pass ventrally along the spermatid head into the apical perforatorial space prior to PAS deposition in the wake of manchette descent. Our findings demonstrate that the perforatorium and PAS share a mechanism of developmental assembly and thereby contain common proteins that facilitate fertilization.
Collapse
Affiliation(s)
- Nicole Protopapas
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Lauren E Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ruben Warkentin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Peter Sutovsky
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Colombia, Missouri, USA.,Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Colombia, Missouri, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Mochida K, Hasegawa A, Ogonuki N, Inoue K, Ogura A. Early production of offspring by in vitro fertilization using first-wave spermatozoa from prepubertal male mice. J Reprod Dev 2019; 65:467-473. [PMID: 31447476 PMCID: PMC6815745 DOI: 10.1262/jrd.2019-042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mature male mice (aged 10–12 weeks or older) are conventionally used for in vitro fertilization (IVF) in order to achieve high fertilization rates (e.g., > 70%). Here,
we sought to determine the earliest age at which male mice (C57BL/6J strain) can be used efficiently for producing offspring via IVF. Because we noted that the addition of reduced
glutathione (GSH) to the IVF medium significantly increased the fertilizing ability of spermatozoa from prepubertal males, we used this IVF protocol for all experiments. Spermatozoa first
reached the caudal region of the epididymides at day 35; however, they were unable to fertilize oocytes. Caudal epididymal spermatozoa first became competent for oocyte fertilization at day
37, albeit at a low rate (2.9%). A high fertilization rate (72.0%) was obtained at day 40, and 52.4% of the embryos thus obtained developed into offspring after embryo transfer. Moreover, we
found that corpus epididymal spermatozoa in prepubertal mice could fertilize oocytes; however, the fertilization rates were always < 50%, regardless of the age of the males. Caput
epididymal spermatozoa failed to fertilize oocytes irrespective of the age of the males. Therefore, we propose that caudal epididymal spermatozoa from male mice aged 40 days can be
efficiently used for IVF, to obtain offspring in the shortest attainable time. This protocol will reduce the turnover time required for the generation of mice by ~1 month compared with that
of the conventional IVF protocol.
Collapse
Affiliation(s)
- Keiji Mochida
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Narumi Ogonuki
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Kimiko Inoue
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan.,RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Liao Y, Chang HC, Liang FX, Chung PJ, Wei Y, Nguyen TP, Zhou G, Talebian S, Krey LC, Deng FM, Wong TW, Chicote JU, Grifo JA, Keefe DL, Shapiro E, Lepor H, Wu XR, DeSalle R, Garcia-España A, Kim SY, Sun TT. Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol Biol Cell 2018; 29:3128-3143. [PMID: 30303751 PMCID: PMC6340209 DOI: 10.1091/mbc.e18-08-0496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uroplakin (UP) tetraspanins and their associated proteins are major mammalian urothelial differentiation products that form unique two-dimensional crystals of 16-nm particles (“urothelial plaques”) covering the apical urothelial surface. Although uroplakins are highly expressed only in mammalian urothelium and are often referred to as being urothelium specific, they are also expressed in several mouse nonurothelial cell types in stomach, kidney, prostate, epididymis, testis/sperms, and ovary/oocytes. In oocytes, uroplakins colocalize with CD9 on cell-surface and multivesicular body-derived exosomes, and the cytoplasmic tail of UPIIIa undergoes a conserved fertilization-dependent, Fyn-mediated tyrosine phosphorylation that also occurs in Xenopus laevis eggs. Uroplakin knockout and antibody blocking reduce mouse eggs’ fertilization rate in in vitro fertilization assays, and UPII/IIIa double-knockout mice have a smaller litter size. Phylogenetic analyses showed that uroplakin sequences underwent significant mammal-specific changes. These results suggest that, by mediating signal transduction and modulating membrane stability that do not require two-dimensional-crystal formation, uroplakins can perform conserved and more ancestral fertilization functions in mouse and frog eggs. Uroplakins acquired the ability to form two-dimensional-crystalline plaques during mammalian divergence, enabling them to perform additional functions, including umbrella cell enlargement and the formation of permeability and mechanical barriers, to protect/modify the apical surface of the modern-day mammalian urothelium.
Collapse
Affiliation(s)
- Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Hung-Chi Chang
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016.,Department of Obstetrics and Gynecology, National Taiwan University, Taipei 10617, Taiwan
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | | | - Yuan Wei
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Tuan-Phi Nguyen
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Ge Zhou
- Regeneron, Tarrytown, NY 10591
| | - Sheeva Talebian
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Lewis C Krey
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University, Tainan 701, Taiwan
| | - Javier U Chicote
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - James A Grifo
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Ellen Shapiro
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Xue-Ru Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Robert DeSalle
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Antonio Garcia-España
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Sang Yong Kim
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| |
Collapse
|
5
|
Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Sci Rep 2016; 6:33714. [PMID: 27666019 PMCID: PMC5036054 DOI: 10.1038/srep33714] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
The acrosome reaction (AR) is a process of membrane fusion and lytic enzyme release, which enables sperm to penetrate the egg surroundings. It is widely recognized that specific sperm proteins form an active network prior to fertilization, and their dynamic relocation is crucial for the sperm-egg fusion. The unique presence of the membrane cofactor protein CD46 in the sperm acrosomal membrane was shown, however, its behaviour and connection with other sperm proteins has not been explored further. Using super resolution microscopy, we demonstrated a dynamic CD46 reorganisation over the sperm head during the AR, and its interaction with transmembrane protein integrins, which was confirmed by proximity ligation assay. Furthermore, we propose their joint involvement in actin network rearrangement. Moreover, CD46 and β1 integrins with subunit α3, but not α6, are localized into the apical acrosome and are expected to be involved in signal transduction pathways directing the acrosome stability and essential protein network rearrangements prior to gamete fusion.
Collapse
|
6
|
Păunescu TG, Shum WWC, Huynh C, Lechner L, Goetze B, Brown D, Breton S. High-resolution helium ion microscopy of epididymal epithelial cells and their interaction with spermatozoa. Mol Hum Reprod 2014; 20:929-37. [PMID: 25015675 PMCID: PMC4172170 DOI: 10.1093/molehr/gau052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 01/19/2023] Open
Abstract
We examined the rat and mouse epididymis using helium ion microscopy (HIM), a novel imaging technology that uses a scanning beam of He(+) ions to produce nanometer resolution images of uncoated biological samples. Various tissue fixation, sectioning and dehydration methods were evaluated for their ability to preserve tissue architecture. The cauda epididymidis was luminally perfused in vivo to remove most spermatozoa and the apical surface of the epithelial lining was exposed. Fixed epididymis samples were then subjected to critical point drying (CPD) and HIM. Apical stereocilia in principal cells and smaller apical membrane extensions in clear cells were clearly distinguishable in both rat and mouse epididymis using this technology. After perfusion with an activating solution containing CPT-cAMP, a permeant analog of cAMP, clear cells exhibited an increase in the number and size of membrane ruffles or microplicae. In contrast, principal cells did not exhibit detectable structural modifications. High-resolution HIM imaging clearly showed the ultrastructure of residual sperm cells, including the presence of concentric rings on the midpiece, and of cytoplasmic droplets in some spermatozoa. Close epithelium-sperm interactions were also detected. We found a number of sperm cells whose heads were anchored within the epididymal epithelium. In certain cases, the surface of the sperm cytoplasmic droplet was covered with vesicle-like structures whose size is consistent with that of epididymosomes. In conclusion, we describe here the first application of HIM technology to the study of the structure and morphology of the rodent epididymis. HIM technology represents a major imaging breakthrough that can be successfully applied to study the epididymis and spermatozoa, with the goal of advancing our understanding of their structure and function.
Collapse
Affiliation(s)
- Teodor G Păunescu
- Department of Medicine, Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Center, CPZN 8204, 185 Cambridge St, Boston, MA 02114, USA
| | - Winnie W C Shum
- Department of Medicine, Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Center, CPZN 8204, 185 Cambridge St, Boston, MA 02114, USA Present address: School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | | | | | - Dennis Brown
- Department of Medicine, Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Center, CPZN 8204, 185 Cambridge St, Boston, MA 02114, USA
| | - Sylvie Breton
- Department of Medicine, Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Center, CPZN 8204, 185 Cambridge St, Boston, MA 02114, USA
| |
Collapse
|