1
|
Lan F, Long C, Huang H, Xie Y, Shi W. Hirudin inhibits ferroptosis to improve renal fibrosis by targeting the STAT3/NLRP3 signaling pathway. Acta Cir Bras 2025; 40:e403325. [PMID: 40298655 PMCID: PMC12036808 DOI: 10.1590/acb403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/25/2025] [Indexed: 04/30/2025] Open
Abstract
PURPOSE To reveal the role and underlying mechanism of hirudin in renal fibrosis. METHODS The unilateral ureteral obstruction (UUO) rat model and ferroptosis activator RSL3-induced human kidney proximal tubular epithelial cells (HK-2) were established. Hematoxylin-eosin staining, commercial kits, and immunohistochemistry were used to assess the effect of hirudin on renal function and renal fibrosis. Cell counting kit-8 assay was employed to test cell viability. Ferroptosis indicator levels were detected using commercial kits. The protein levels were examined by Western blot. The STAT3 activator colivelin was introduced to verify the role of the STAT3/NLRP3 signaling pathway in ferroptosis. RESULTS Hirudin alleviated renal injury and improved renal fibrosis in UUO rats. The cell viability of RSL3-treated HK-2 cells was increased after hirudin treatment. In the model group, GPX4, SLC7A11, and glutathione expression decreased, while malondialdehyde and iron content levels increased, indicating that ferroptosis was activated. Besides, p-STAT3 and NLRP3 protein levels were also upregulated. However, hirudin treatment reversed these changes. When the STAT3 activator colivelin was added, the effect of hirudin was altered. CONCLUSION Hirudin improved renal fibrosis by inhibiting ferroptosis via the STAT3/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Fang Lan
- Guangxi University of Traditional Chinese Medicine – The First Affiliated Hospital – Department of Nephrology – Nanning (Guangxi) – China
| | - Chunli Long
- Guangxi University of Traditional Chinese Medicine – School of Nursing – Nanning (Guangxi) – China
| | - Huimin Huang
- Guangxi University of Traditional Chinese Medicine – College of Graduate School – Nanning (Guangxi) – China
| | - Yongxiang Xie
- Guangxi University of Traditional Chinese Medicine – The First Affiliated Hospital – Department of Nephrology – Nanning (Guangxi) – China
| | - Wei Shi
- Guangxi University of Traditional Chinese Medicine – The First Affiliated Hospital – Department of Nephrology – Nanning (Guangxi) – China
| |
Collapse
|
2
|
Wei H, Ren J, Feng X, Zhao C, Zhang Y, Yuan H, Yang F, Li Q. Targeting Hsp90α to inhibit HMGB1-mediated renal inflammation and fibrosis. Cell Prolif 2025; 58:e13774. [PMID: 39566909 PMCID: PMC11882747 DOI: 10.1111/cpr.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/13/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Renal fibrosis, a terminal manifestation of chronic kidney disease, is characterized by uncontrolled inflammatory responses, increased oxidative stress, tubular cell death, and imbalanced deposition of extracellular matrix. 5,2'-Dibromo-2,4',5'-trihydroxydiphenylmethanone (LM49), a polyphenol derivative synthesized by our group with excellent anti-inflammatory pharmacological properties, has been identified as a small-molecule inducer of extracellular matrix degradation. Nonetheless, the protective effects and mechanisms of LM49 on renal fibrosis remain unknown. Here, we report LM49 could effectively alleviate renal fibrosis and improve filtration function. Furthermore, LM49 significantly inhibited macrophage infiltration, pro-inflammatory cytokine production and oxidative stress. Interestingly, in HK-2 cells induced by tumour necrosis factor alpha under oxygen-glucose-serum deprivation conditions, LM49 treatment similarly yielded a reduced inflammatory response, elevated cellular viability and suppressed cell necrosis and epithelial-to-mesenchymal transition. Notably, LM49 prominently suppressed the high-mobility group box 1 (HMGB1) expression, nucleocytoplasmic translocation and activation. Mechanistically, drug affinity responsive target stability and cellular thermal shift assay confirmed that LM49 could interact with the target heat shock protein 90 alpha family class A member 1 (Hsp90α), disrupting the direct binding of Hsp90α to HMGB1 and inhibiting the nuclear export of HMGB1, thereby suppressing the inflammatory response, cell necrosis and fibrogenesis. Furthermore, molecular docking and molecular dynamic simulation revealed that LM49 occupied the N-terminal ATP pocket of Hsp90α. Collectively, our findings show that LM49 treatment can ameliorate renal fibrosis through inhibition of HMGB1-mediated inflammation and necrosis via binding to Hsp90α, providing strong evidence for its anti-inflammatory and anti-fibrotic actions.
Collapse
Affiliation(s)
- Huizhi Wei
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Jinhong Ren
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic InflammationShanxi University of Chinese MedicineTaiyuanChina
| | - Xiue Feng
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Chengxiao Zhao
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Yuanlin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic InflammationShanxi University of Chinese MedicineTaiyuanChina
| | - Hongxia Yuan
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic InflammationShanxi University of Chinese MedicineTaiyuanChina
| | - Fan Yang
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Qingshan Li
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic InflammationShanxi University of Chinese MedicineTaiyuanChina
| |
Collapse
|
3
|
Lee SH, Kim KH, Lee SM, Park SJ, Lee S, Cha RH, Lee JW, Kim DK, Kim YS, Ye SK, Yang SH. STAT3 blockade ameliorates LPS-induced kidney injury through macrophage-driven inflammation. Cell Commun Signal 2024; 22:476. [PMID: 39367511 PMCID: PMC11453053 DOI: 10.1186/s12964-024-01841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3), a multifaceted transcription factor, modulates host immune responses by activating cellular response to signaling ligands. STAT3 has a pivotal role in the pathophysiology of kidney injury by counterbalancing resident macrophage phenotypes under inflammation conditions. However, STAT3's role in acute kidney injury (AKI), particularly in macrophage migration, and in chronic kidney disease (CKD) through fibrosis development, remains unclear. METHODS Stattic (a JAK2/STAT3 inhibitor, 5 mg/kg or 10 mg/kg) was administered to evaluate the therapeutic effect on LPS-induced AKI (L-AKI) and LPS-induced CKD (L-CKD), with animals sacrificed 6-24 h and 14 days post-LPS induction, respectively. The immune mechanisms of STAT3 blockade were determined by comparing the macrophage phenotypes and correlated with renal function parameters. Also, the transcriptomic analysis was used to confirm the anti-inflammatory effect of L-AKI, and the anti-fibrotic role was further evaluated in the L-CKD model. RESULTS In the L-AKI model, sequential increases in BUN and blood creatinine levels were time-dependent, with a marked elevation of 0-6 h after LPS injection. Notably, two newly identified macrophage subpopulations (CD11bhighF4/80low and CD11blowF4/80high), exhibited population changes, with an increase in the CD11bhighF4/80low population and a decrease in the CD11blowF4/80high macrophages. Corresponding to the FACS results, the tubular injury score, NGAL, F4/80, and p-STAT3 expression in the tubular regions were elevated. STAT3 inhibitor injection in L-AKI and L-CKD mice reduced renal injury and fibrosis. M2-type subpopulation with CD206 in CD11blowF4/80high population increased in the Stattic-treated group compared with that in the LPS-alone group in the L-AKI model. Additionally, STAT3 inhibitor reduced inflammation driven by LPS-stimulated macrophages and epithelial cells injury in the co-culture system. Transcriptomic profiling identified 3 common genes in the JAK-STAT, TLR, and TNF signaling pathways and 11 common genes in the LPS with macrophage response. The PI3K-AKT (IL-6, Akt3, and Pik3r1) and JAK-STAT pathways were determined as potential Stattic targets. Further confirmation through mRNA and protein expressions analyses showed that Stattic treatment reduced inflammation in the L-AKI and fibrosis in the L-CKD mice. CONCLUSIONS STAT3 blockade effectively mitigated inflammation by retrieving the CD11blowF4/80high population, further emphasizing the role of STAT3-associated macrophage-driven inflammation in kidney injury.
Collapse
Affiliation(s)
- Song-Hee Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Kyu Hong Kim
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seong Min Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seong Joon Park
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sunhwa Lee
- Department of Internal Medicine, Division of Nephrology, Kangwon National University Hospital, Chuncheon, Gangwon-Do, Republic of Korea
| | - Ran-Hui Cha
- Biomedical Research Institute, Seoul National University Hospital, Hospital, Seoul, Republic of Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center of Korea, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sang-Kyu Ye
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea.
- Department of Pharmacology, Seoul National University, Seoul, Republic of Korea.
| | - Seung Hee Yang
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Hospital, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Wang W, Li Y, Zhu F, Huang Y. STAT3-induced upregulation of lncRNA TTN-AS1 aggravates podocyte injury in diabetic nephropathy by promoting oxidative stress. Toxicol Res (Camb) 2024; 13:tfae079. [PMID: 38828128 PMCID: PMC11142850 DOI: 10.1093/toxres/tfae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Background Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus (DM), being the second cause of end-stage renal disease globally. Podocyte injury is closely associated with DN developmen. Our study aimed to investigate the role of long non-coding RNA (lncRNA) TTN-AS1 in DN-associated podocyte injury. Methods The mouse podocyte cell line (MPC5) and human primary podocytes were stimulated by high glucose (HG; 30 nM glucose) to establish the cellular model of DN. Before HG stimulation, both podocytes were transfected with sh-TTN-AS1#1/2 or pcDNA3.1/STAT3 to evaluate the influence of TTN-AS1 knockdown or STAT3 overexpression on HG-induced podocyte injury. TTN-AS1 and STAT3 expression in both podocytes was examined by RT-qPCR. Cell viability and death were assessed by CCK-8 and LDH release assay. ELISA was adopted for testing IL-6 and TNF-α contents in cell supernatants. The levels of oxidative stress markers (ROS, MDA, SOD, and GSH) in cell supernatants were determined by commercial kits. Western blotting was used for measuring the expression of fibrosis markers (fibronectin and α-SMA and podocyte function markers (podocin and nephrin) in podocytes. Results HG stimulation led to decreased cell viability, increased cell death, fibrosis, inflammation, cell dysfunction and oxidative stress in podocytes. However, knockdown of TTN-AS1 ameliorated HG-induced podocyte injury. Mechanically, the transcription factor STAT3 interacted with TTN-AS1 promoter and upregulated TTN-AS1 expression. STAT3 overexpression offset the protective effect of TTN-AS1 silencing on HG-induced podocyte damage. Conclusion Overall, STAT3-mediated upregulation of lncRNA TTN-AS1 could exacerbate podocyte injury in DN through suppressing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Wenzhe Wang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, Hubei 430014, China
| | - Yongxia Li
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, Hubei 430014, China
| | - Fan Zhu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, Hubei 430014, China
| | - Yunfang Huang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, Hubei 430014, China
| |
Collapse
|
5
|
Sadek MA, Rabie MA, El Sayed NS, Sayed HM, Kandil EA. Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: an insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology 2024; 32:1499-1518. [PMID: 38112964 PMCID: PMC11006778 DOI: 10.1007/s10787-023-01399-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Multiple sclerosis (MS) is an incurable chronic neurodegenerative disease where autoimmunity, oxidative stress, and neuroinflammation collaboration predispose myelin sheath destruction. Interestingly, curcumin, a natural polyphenol, showed a neuroprotective effect in numerous neurodegenerative diseases, including MS. Nevertheless, the influence of curcumin against MS-induced cognitive impairment is still vague. Hence, we induced experimental autoimmune encephalomyelitis (EAE) in mice using spinal cord homogenate (SCH) and complete Freund's adjuvant, which eventually mimic MS. This study aimed not only to evaluate curcumin efficacy against EAE-induced cognitive and motor dysfunction, but also to explore a novel mechanism of action, by which curcumin exerts its beneficial effects in MS. Curcumin (200 mg/kg/day) efficacy was evaluated by behavioral tests, histopathological examination, and biochemical tests. Concisely, curcumin amended EAE-induced cognitive and motor impairments, as demonstrated by the behavioral tests and histopathological examination of the hippocampus. Interestingly, curcumin activated the adenosine monophosphate (AMP)-activated protein kinase/silent mating type information regulation 2 homolog 1 (AMPK/SIRT1) axis, which triggered cyclic AMP response element-binding protein/brain-derived neurotrophic factor/myelin basic protein (CREB/BDNF/MBP) pathway, hindering demyelination of the corpus callosum. Furthermore, AMPK/SIRT1 activation augmented nuclear factor erythroid 2-related factor 2 (Nrf2), a powerful antioxidant, amending EAE-induced oxidative stress. Additionally, curcumin abolished EAE-induced neuroinflammation by inhibiting Janus kinase 2 /signal transducers and activators of transcription 3 (JAK2/STAT3) axis, by various pathways, including AMPK/SIRT1 activation. JAK2/STAT3 inhibition halts inflammatory cytokines synthesis. In conclusion, curcumin's neuroprotective effect in EAE is controlled, at least in part, by AMPK/SIRT1 activation, which ultimately minimizes EAE-induced neuronal demyelination, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol 2023; 11:1233259. [PMID: 37635867 PMCID: PMC10450957 DOI: 10.3389/fcell.2023.1233259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most important microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. The Janus kinase/signal transducer and activator of the transcription (JAK/STAT) signaling pathway, which is out of balance in the context of DKD, acts through a range of metabolism-related cytokines and hormones. JAK/STAT is the primary signaling node in the progression of DKD. The latest research on JAK/STAT signaling helps determine the role of this pathway in the factors associated with DKD progression. These factors include the renin-angiotensin system (RAS), fibrosis, immunity, inflammation, aging, autophagy, and EMT. This review epitomizes the progress in understanding the complicated explanation of the etiologies of DKD and the role of the JAK/STAT pathway in the progression of DKD and discusses whether it can be a potential target for treating DKD. It further summarizes the JAK/STAT inhibitors, natural products, and other drugs that are promising for treating DKD and discusses how these inhibitors can alleviate DKD to explore possible potential drugs that will contribute to formulating effective treatment strategies for DKD in the near future.
Collapse
Affiliation(s)
- Yingjun Liu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenkuan Wang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jintao Zhang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Gao
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghui Yin
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Lin PL, Weng TT, Duan LX, Zhang LZ, Wei X, Qi SL, You JW, Cao Y, Ge GB, Liu W, He XL, Hu J. Protective effects and regulatory mechanisms of Shen-shuai-yi recipe on renal fibrosis in unilateral ureteral obstruction-induced mice. Heliyon 2023; 9:e17908. [PMID: 37483732 PMCID: PMC10362328 DOI: 10.1016/j.heliyon.2023.e17908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Renal fibrosis (RF) is a common pathological feature of chronic kidney disease (CKD), which remains a major public health problem. As now, there is still lack of chemical or biological drugs to reverse RF. Shen-shuai-yi Recipe (SSYR) is a classical Chinese herbal formula for the treatment of CKD. However, the effects and mechanisms of SSYR in treating RF are still not clear. In this study, the active constituents SSYR for treating RF were explored by UHPLC-Q-Orbitrap HRMS. Bioinformatics analyses were employed to analyze the key pharmacological targets and the core active constituents of SSYR in the treatment of RF. In experimental validation, vehicle or SSYR at doses of 2.12 g/kg/d and 4.25 g/kg/d were given by orally to unilateral ureteric obstruction (UUO) mice. 13 days after treatment, we detected the severity of renal fibrosis, extracellular collagen deposition and pre-fibrotic signaling pathways. Bioinformatics analysis suggested that signal transducer and activator of transcription 3 (STAT3) was the core target and lenticin, luteolin-7-O-rutinoside, hesperidin, kaempferol-3-O-rutinoside, and 3,5,6,7,8,3',4'-heptamethoxyflavone were the key constituents in SSYR for treating RF. SSYR significantly reduced the expressions of fibronectin (FN), α-smooth muscle actin (α-SMA), collagen-I and alleviated renal interstitial collagen deposition in UUO kidneys. In mechanism, SSYR potently blocked the phosphorylation of STAT3 and Smad3 and suppressed the expression of connective tissue growth factor (CTGF). Collectively, SSYR can ameliorate RF via inhibiting the phosphorylation of STAT3 and its downstream and reducing the collagen deposition, suggesting that SSYR can be developed as a novel medicine for treating RF.
Collapse
Affiliation(s)
- Ping-lan Lin
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, Institute of Kidney Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao-tao Weng
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, Institute of Kidney Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lian-xiang Duan
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-zhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, Institute of Kidney Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Wei
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, Institute of Kidney Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng-lan Qi
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, Institute of Kidney Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-wen You
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Cao
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, Institute of Kidney Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-li He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Wang D, Wang F, Huang Y, Wang J, Luo H, Zhang P, Peng J, Tang G, Wang Y, Yu L, Ni D. TSLP/TSLPR promotes renal fibrosis by activating STAT3 in renal fibroblasts. Int Immunopharmacol 2023; 121:110430. [PMID: 37364323 DOI: 10.1016/j.intimp.2023.110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Previous studies have demonstrated the importance of TSLP-TSLPR in inflammatory, allergic, and fibrotic diseases. However, their exact molecular mechanism in regulating renal fibrosis has not been fully explored yet. The current study identified the high expression levels of TSLP and TSLPR in human and mouse hydronephrotic tissues. In addition, immunofluorescence staining showed that TSLP was highly expressed in renal tubular cells, while TSLPR was mainly co-localized with α-SMA, a marker of fibroblasts. Knocking out TSLPR in the UUO model could alleviate the severity of renal fibrosis. Most importantly, the application of antibody blockade of TSLP reduced the fibrotic level in the UUO model. The functional analysis revealed that the hypoxic exposure could induce the overexpression of TSLP in renal tubular cells via HIF-1α. The tubular cell-derived TSLP could bind to the TSLPR of fibroblasts in a paracrine manner to activate them. Specifically, the HIF-1α/TSLP/TSLPR-axis could activate fibroblasts through the STAT3 signaling pathway. This study revealed a mechanistic interaction of HIF-1α/TSLP/TSLPR and STAT3 signaling pathways in the activation and proliferation of human and murine kidney fibroblasts; these pathways might be exploited as a therapeutic target in renal fibrosis.
Collapse
Affiliation(s)
- Decai Wang
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Huiwen Luo
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingtao Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Tang
- Tianma Town Public Health Centre, Dujiangyan City, Chengdu 611830, China
| | - Yaodong Wang
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Li Yu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China; Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Althagafy HS, El-Aziz MA, Ibrahim IM, Abd-Alhameed EK, Hassanein EM. Pharmacological updates of nifuroxazide: Promising preclinical effects and the underlying molecular mechanisms. Eur J Pharmacol 2023; 951:175776. [PMID: 37192715 DOI: 10.1016/j.ejphar.2023.175776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Nifuroxazide (NFX) is a safe nitrofuran antibacterial drug used clinically to treat acute diarrhea and infectious traveler diarrhea or colitis. Recent studies revealed that NFX displays multiple pharmacological effects, including anticancer, antioxidant, and anti-inflammatory effects. NFX has potential roles in inhibiting thyroid, breast, lung, bladder, liver, and colon cancers and osteosarcoma, melanoma, and others mediated by suppressing STAT3 as well as ALDH1, MMP2, MMP9, Bcl2 and upregulating Bax. Moreover, it has promising effects against sepsis-induced organ injury, hepatic disorders, diabetic nephropathy, ulcerative colitis, and immune disorders. These promising effects appear to be mediated by suppressing STAT3 as well as NF-κB, TLR4, and β-catenin expressions and effectively decreasing downstream cytokines TNF-α, IL-1β, and IL-6. Our review summarizes the available studies on the molecular biological mechanisms of NFX in cancer and other diseases and it is recommended to translate the studies in experimental animals and cultured cells and repurpose NFX in various diseases for scientific evidence based on human studies.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - EmadH M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
10
|
Zhou Y, Zhang X, Liu Z, Wang N, Zhao X, Guo R. DNMT1 mediates proliferation, migration and invasion of extravillous trophoblasts by regulating the methylation level of APLNR. Placenta 2023; 138:33-43. [PMID: 37167781 DOI: 10.1016/j.placenta.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Proliferation, migration and invasion of extravillous trophoblasts (EVTs) play an important role in the progression of preeclampsia (PE). The purpose of this study was to investigate the molecular mechanism by which DNA methylase regulates the transcription level of APLNR and affects the phenotypic function of EVTs. MATERIALS AND METHODS PE mice model and H/R model in HTR8/Svneo cells were constructed. Clinical samples of normal pregnant women and PE patients were collected. Expression and methylation level of APLNR in vivo and in vitro were detected. ChIP-qPCR was used to detect the binding of DNA methyltransferase at the APLNR promoter. The expression of DNA methyltransferase 1 (DNMT1), NO and eNOS in vitro were detected. EVTs proliferation, migration and invasion in vitro were detected. RESULTS In placental tissues or HTR8/Svneo cells of the PE model group, the expression of APLNR was reduced and APLNR methylation level was up-regulated. There was no significant difference in the APLNR expression in placental tissues between normal pregnant women and PE patients. H/R conditions only promote the binding of DNMT1 at the APLNR promoter. DNMT1 interference decreased the enrichment degree of DNMT1 in APLNR promoter region and up-regulated the mRNA and protein levels of APLNR in vivo and in vitro. The activation of APLNR by Elabela (ELA) can promote eNOS transcription, thereby promoting cell proliferation and NO level, while eNOS inhibitor can reverse this effect. DNMT1 down-regulation inhibted APLNR methylation level, promoted eNOS transcription, and promoted EVTs proliferation, migration and invasion, which could be revised by the interference of APLNR. DISCUSSION DNMT1 promotes eNOS transcription by inhibting APLNR methylation level, and promotes EVTs proliferation, migration and invasion, thus providing a new and broad application prospect for PE treatment.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Xiaoyan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Zhuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Ning Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Xianlan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zheng Zhou University, Zheng Zhou, 450052, China.
| |
Collapse
|
11
|
Fang XD, He JK, Chen YX, Ke B, Zhu SY, Fan CQ, Tu WP, Li P. MiR-449a downregulation alleviates the progression of renal interstitial fibrosis by mediating the KLF4/MFN2 axis. Int Urol Nephrol 2023:10.1007/s11255-023-03503-6. [PMID: 36781680 DOI: 10.1007/s11255-023-03503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/12/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) seriously threatens the health of individuals. MiRNAs regulate the progression of fibrosis. Nevertheless, the detailed function of miR-449a in RIF is largely unknown. METHODS In vitro and in vivo models of RIF were developed to evaluate the function of miR-449a. The relationship among miR-449a, KLF4, and MFN2 was explored using a dual-luciferase reporter assay and chromatin immunoprecipitation. Additionally, the pathological changes in the mice were detected using Masson staining. The mRNA and protein expressions were assessed using quantitative reverse transcription polymerase chain reaction and western blot, respectively. RESULTS TGF-β1 downregulated the expressions of KLF4 and MFN2 in TCMK-1 cells, but upregulated the level of miR-449a. The downregulation of miR-449a significantly inhibited TGF-β1-induced upregulation of fibrotic proteins in TCMK-1 cells. Meanwhile, miR-449a directly targeted KLF4. Moreover, KLF4 overexpression activated MFN2 transcription and reversed TGF-β1-induced fibrosis by positively regulating MFN2. Furthermore, the downregulation of miR-449a could obviously alleviate the symptoms of RIF in mice with unilateral ureteral obstruction. CONCLUSION MiR-449a downregulation attenuated the development of RIF by mediating the KLF4/MFN2 axis. Therefore, miR-449a might act as a target in treating RIF.
Collapse
Affiliation(s)
- Xiang-Dong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Jia-Ke He
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Shu-Ying Zhu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Chu-Qiao Fan
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Wei-Ping Tu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| | - Ping Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
12
|
Sun W, Kim DH, Byon CH, Choi HI, Park JS, Bae EH, Ma SK, Kim SW. β-Elemene Attenuates Renal Fibrosis in the Unilateral Ureteral Obstruction Model by Inhibition of STAT3 and Smad3 Signaling via Suppressing MyD88 Expression. Int J Mol Sci 2022; 23:5553. [PMID: 35628363 PMCID: PMC9143890 DOI: 10.3390/ijms23105553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Renal fibrosis is a chronic pathological process that seriously endangers human health. However, the current therapeutic options for this disease are extremely limited. Previous studies have shown that signaling factors such as JAK2/STAT3, Smad3, and Myd88 play a regulatory role in renal fibrosis, and β-elemene is a plant-derived sesquiterpenoid organic compound that has been shown to have anti-inflammatory, anti-cancer, and immunomodulatory effects. In the present study, the anti-fibrotic effect of β-elemene was demonstrated by in vivo and in vitro experiments. It was shown that β-elemene inhibited the synthesis of extracellular matrix-related proteins in unilateral ureteral obstruction mice, and TGF-β stimulated rat interstitial fibroblast cells, including α-smooth muscle actin, vimentin, and connective tissue growth factor, etc. Further experiments showed that β-elemene reduced the expression levels of the above-mentioned fibrosis-related proteins by blocking the phosphorylation of JAK2/STAT3, Smad3, and the expression or up-regulation of MyD88. Notably, knockdown of MyD88 attenuated the phosphorylation levels of STAT3 and Smad3 in TGF-β stimulated NRK49F cell, which may be a novel molecular mechanism by which β-elemene affects renal interstitial fibrosis. In conclusion, this study elucidated the anti-interstitial fibrosis effect of β-elemene, which provides a new direction for future research and development of drugs related to chronic kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea; (W.S.); (D.H.K.); (C.H.B.); (H.I.C.); (J.S.P.); (E.H.B.); (S.K.M.)
| |
Collapse
|
13
|
Resveratrol exerts antiproliferative effects on high-glucose-cultured vascular smooth muscle cells via inhibition of STAT3 and upregulation of mitochondrial gene GRIM-19 which is responsible for STAT3 activation. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-00963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Zhang M, He L, Liu J, Zhou L. Luteolin Attenuates Diabetic Nephropathy through Suppressing Inflammatory Response and Oxidative Stress by Inhibiting STAT3 Pathway. Exp Clin Endocrinol Diabetes 2021; 129:729-739. [PMID: 31896157 DOI: 10.1055/a-0998-7985] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). DN has many pathological changes, but tubular injury is considered to be a crucial pathological feature and plays a key role in the progression of DN. Accumulating studies have confirmed that Luteolin (3,4,5,7-tetrahydroxyflavone, Lut) possesses anti-inflammatory and antioxidant activities, which may play a role in kidney protection in DN. OBJECTIVES This paper described the effects of Lut on appropriated tubular injury in the kidneys of db/db mice and searched the possible mechanisms underlying the kidney protection effect in DN. METHODS Twelve-week-old male C57BL/6 J db/db and C57BL/6 J db/m mice were used for the animal experiments. They were organized into the following five groups for the animal experiments: a db/m group (control, n=6); a db/db group(n=8) ; a db/db group receiving Lut (10 mg/kg/day, n=8)treatment by oral gavage; a db/db group receiving stattic (a selective STAT3 inhibitor,50 mg/Kg/day, n=8) treatment by oral gavage and a db/db group receiving both stattic and Lut treatment by oral gavage. RESULTS In this study, we found that Lut might ameliorate glomerular sclerosis and interstitial fibrosis in DN mouse models through inhibiting the inflammatory response and oxidative stress. And it might play its biological function mainly through repressing the STAT3 activation. CONCLUSIONS Lut attenuates DN mainly via suppression of inflammatory response and oxidative response. STAT3 pathway is the potential target, which ultimately reduces renal fibrosis and delays the progress of DN.
Collapse
Affiliation(s)
- Miaoyuan Zhang
- Rehabilitation Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Liyu He
- Nephrology Department, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, Hunan, PR China
| | - Jingsong Liu
- Department of Nephrology, Chinese Medicine and Western Medicine Hospital Affiliated to Hunan University of Chinese Medicine, Changsha, PR China
| | - Lin Zhou
- Nephrology Department, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, Hunan, PR China
| |
Collapse
|
15
|
Targeting Canonical and Non-Canonical STAT Signaling Pathways in Renal Diseases. Cells 2021; 10:cells10071610. [PMID: 34199002 PMCID: PMC8305338 DOI: 10.3390/cells10071610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) plays an essential role in the inflammatory reaction and immune response of numerous renal diseases. STATs can transmit the signals of cytokines, chemokines, and growth factors from the cell membrane to the nucleus. In the canonical STAT signaling pathways, upon binding with their cognate receptors, cytokines lead to a caspase of Janus kinases (JAKs) and STATs tyrosine phosphorylation and activation. Besides receptor-associated tyrosine kinases JAKs, receptors with intrinsic tyrosine kinase activities, G-protein coupled receptors, and non-receptor tyrosine kinases can also activate STATs through tyrosine phosphorylation or, alternatively, other post-translational modifications. Activated STATs translocate into the nucleus and mediate the transcription of specific genes, thus mediating the progression of various renal diseases. Non-canonical STAT pathways consist of preassembled receptor complexes, preformed STAT dimers, unphosphorylated STATs (U-STATs), and non-canonical functions including mitochondria modulation, microtubule regulation and heterochromatin stabilization. Most studies targeting STAT signaling pathways have focused on canonical pathways, but research extending into non-canonical STAT pathways would provide novel strategies for treating renal diseases. In this review, we will introduce both canonical and non-canonical STAT pathways and their roles in a variety of renal diseases.
Collapse
|
16
|
Dong J, Cheng XD, Zhang WD, Qin JJ. Recent Update on Development of Small-Molecule STAT3 Inhibitors for Cancer Therapy: From Phosphorylation Inhibition to Protein Degradation. J Med Chem 2021; 64:8884-8915. [PMID: 34170703 DOI: 10.1021/acs.jmedchem.1c00629] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates various biological processes, including proliferation, metastasis, angiogenesis, immune response, and chemoresistance. In normal cells, STAT3 is tightly regulated to maintain a transiently active state, while persistent STAT3 activation occurs frequently in cancers, associating with a poor prognosis and tumor progression. Targeting the STAT3 protein is a potentially promising therapeutic strategy for tumors. Although none of the STAT3 inhibitors has been marketed yet, a few of them have succeeded in entering clinical trials. This Review aims to systematically summarize the progress of the last 5 years in the discovery of directive STAT3 small-molecule inhibitors and degraders, focusing primarily on their structural features, design strategies, and bioactivities. We hope this Review will shed light on future drug design and inhibitor optimization to accelerate the discovery process of STAT3 inhibitors or degraders.
Collapse
Affiliation(s)
- Jinyun Dong
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Xiang-Dong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiang-Jiang Qin
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
17
|
Li P, Liu Y, Qin X, Chen K, Wang R, Yuan L, Chen X, Hao C, Huang X. SIRT1 attenuates renal fibrosis by repressing HIF-2α. Cell Death Discov 2021; 7:59. [PMID: 33758176 PMCID: PMC7987992 DOI: 10.1038/s41420-021-00443-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases. Previous studies have shown that SIRT1 is involved in kidney physiology regulation and protects the kidney from various pathological factors. However, the underlying mechanisms behind its function have yet to be fully elucidated. In our study, we found that ablation of Sirt1 in renal interstitial cells resulted in more severe renal damage and fibrosis in unilateral ureteral obstruction (UUO) model mice. We also observed that hypoxia-inducible factor (HIF)-2α expression was increased in Sirt1 conditional knockout mice, suggesting that HIF-2α might be a substrate of SIRT1, mediating its renoprotective roles. Therefore, we bred Hif2a deficient mice and subjected them to renal trauma through UUO surgery, ultimately finding that Hif2a ablation attenuated renal fibrogenesis induced by UUO injury. Moreover, in cultured NRK-49F cells, activation of SIRT1 decreased HIF-2α and fibrotic gene expressions, and inhibition of SIRT1 stimulated HIF-2α and fibrotic gene expressions. Co-immunoprecipitation analysis revealed that SIRT1 directly interacted with and deacetylated HIF-2α. Together, our data indicate that SIRT1 plays a protective role in renal damage and fibrosis, which is likely due to inhibition of HIF-2α.
Collapse
Affiliation(s)
- Peipei Li
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Yue Liu
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, 8 Jianshe Road, 226300, Nantong, Jiangsu, China
| | - Xiaogang Qin
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, 8 Jianshe Road, 226300, Nantong, Jiangsu, China
| | - Kairen Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Ruiting Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China
| | - Chuanming Hao
- Division of Nephrology, Huashan Hospital, and Nephrology Research Institute, Fudan University, 12 Urumqi Middle Road, Shanghai, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001, Nantong, Jiangsu, China.
| |
Collapse
|
18
|
Hassan NME, Said E, Shehatou GSG. Nifuroxazide suppresses UUO-induced renal fibrosis in rats via inhibiting STAT-3/NF-κB signaling, oxidative stress and inflammation. Life Sci 2021; 272:119241. [PMID: 33600861 DOI: 10.1016/j.lfs.2021.119241] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
The current work explored the influences of nifuroxazide, an in vivo inhibitor of signal transducer and activator of transcription-3 (STAT-3) activation, on tubulointerstitial fibrosis in rats with obstructive nephropathy using unilateral ureteral obstruction (UUO) model. Thirty-two male Sprague Dawley rats were assigned into 4 groups (n = 8/group) at random. Sham and UUO groups were orally administered 0.5% carboxymethyl cellulose (CMC) (2.5 mL/kg/day), while Sham-NIF and UUO-NIF groups were treated with 20 mg/kg/day of NIF (suspended in 0.5% CMC, orally). NIF or vehicle treatments were started 2 weeks after surgery and continued for further 2 weeks. NIF treatment ameliorated kidney function in UUO rats, where it restored serum creatinine, blood urea, serum uric acid and urinary protein and albumin to near-normal levels. NIF also markedly reduced histopathological changes in tubules and glomeruli and attenuated interstitial fibrosis in UUO-ligated kidneys. Mechanistically, NIF markedly attenuated renal immunoexpression of E-cadherin and α-smooth muscle actin (α-SMA), diminished renal oxidative stress (↓ malondialdehyde (MDA) levels and ↑ superoxide dismutase (SOD) activity), lessened renal protein expression of phosphorylated-STAT3 (p-STAT-3), phosphorylated-Src (p-Src) kinase, the Abelson tyrosine kinase (c-Abl) and phosphorylated nuclear factor-kappaB p65 (pNF-κB p65), decreased renal cytokine levels of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) and reduced number of cluster of differentiation 68 (CD68) immunolabeled macrophages in UUO renal tissues, compared to levels in untreated UUO kidneys. Taken together, NIF treatment suppressed interstitial fibrosis in UUO renal tissues, probably via inhibiting STAT-3/NF-κB signaling and attenuating renal oxidative stress and inflammation.
Collapse
Affiliation(s)
- Nabila M E Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt.
| |
Collapse
|
19
|
Bolivar S, Espitia-Corredor JA, Olivares-Silva F, Valenzuela P, Humeres C, Anfossi R, Castro E, Vivar R, Salas-Hernández A, Pardo-Jiménez V, Díaz-Araya G. In cardiac fibroblasts, interferon-beta attenuates differentiation, collagen synthesis, and TGF-β1-induced collagen gel contraction. Cytokine 2020; 138:155359. [PMID: 33160814 DOI: 10.1016/j.cyto.2020.155359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Cardiac fibroblasts (CF) play a key role in the homeostasis of the extracellular matrix in cardiac tissue and are newly recognized as inflammatory supporter cells. Besides, CF-to-Cardiac myofibroblast differentiation is commanded by TGF-b, through SMAD signaling pathways, and these last cells are strongly implicated in cardiac fibrosis. In the heart IFN-β is produced by CF; however, the role of IFN-β, STAT proteins, and STAT-homo or heterodimers in the regulation of CF function with or without a fibrotic environment is unknown. CF were isolated from hearts of adult rats, and by western blot analysis we studied STAT1, STAT2, and STAT3 phosphorylation and through specific siRNA against these proteins we analyzed their role in CF functions such as differentiation (α-SMA expression); and pro-collagen type-I synthesis and secretion expression levels; collagen gels contraction and CF migration. In cultured adult rats CF, IFN-β increases phosphorylation of STAT1, STAT2, and STAT3. Both STAT1 and STAT2 were involved in decreasing α-SMA and CF migration induced by TGF-β1. Also, IFN-β through STAT1 regulated pro-collagen type-I protein expression levels, and collagen gels contraction induced by TGF-β1. STAT3 was not involved in any effects of IFN-β studied. In conclusion, IFN-β through STAT1 and STAT2 shows antifibrotic effects on CF TGF-β1-treated, whereas STAT3 did not participate in such effect.
Collapse
Affiliation(s)
- S Bolivar
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - J A Espitia-Corredor
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - F Olivares-Silva
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - P Valenzuela
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - C Humeres
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - R Anfossi
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - E Castro
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - R Vivar
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - A Salas-Hernández
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - V Pardo-Jiménez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - G Díaz-Araya
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
20
|
Strubl S, Torres JA, Spindt AK, Pellegrini H, Liebau MC, Weimbs T. STAT signaling in polycystic kidney disease. Cell Signal 2020; 72:109639. [PMID: 32325185 PMCID: PMC7269822 DOI: 10.1016/j.cellsig.2020.109639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The most common form of polycystic kidney disease (PKD) in humans is caused by mutations in the PKD1 gene coding for polycystin1 (PC1). Among the many identified or proposed functions of PC1 is its ability to regulate the activity of transcription factors of the STAT family. Most STAT proteins that have been investigated were found to be aberrantly activated in kidneys in PKD, and some have been shown to be drivers of disease progression. In this review, we focus on the role of signal transducer and activator of transcription (STAT) signaling pathways in various renal cell types in healthy kidneys as compared to polycystic kidneys, on the mechanisms of STAT regulation by PC1 and other factors, and on the possibility to target STAT signaling for PKD therapy.
Collapse
Affiliation(s)
- Sebastian Strubl
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jacob A Torres
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Alison K Spindt
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
21
|
Mao L, Liu L, Zhang T, Qin H, Wu X, Xu Y. Histone Deacetylase 11 Contributes to Renal Fibrosis by Repressing KLF15 Transcription. Front Cell Dev Biol 2020; 8:235. [PMID: 32363192 PMCID: PMC7180197 DOI: 10.3389/fcell.2020.00235] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis represents a key pathophysiological process in patients with chronic kidney diseases (CKD) and is typically associated with a poor prognosis. Renal tubular epithelial cells (RTECs), in response to a host of pro-fibrogenic stimuli, can trans-differentiate into myofibroblast-like cells and produce extracellular matrix proteins to promote renal fibrosis. In the present study we investigated the role of histone deacetylase 11 (HDAC11) in this process and the underlying mechanism. We report that expression levels of HDAC11 were up-regulated in the kidneys in several different animal models of renal fibrosis. HDAC11 was also up-regulated by treatment of Angiotensin II (Ang II) in cultured RTECs. Consistently, pharmaceutical inhibition with a small-molecule inhibitor of HDAC11 (quisinostat) attenuated unilateral ureteral obstruction (UUO) induced renal fibrosis in mice. Similarly, HDAC11 inhibition by quisinostat or HDAC11 depletion by siRNA blocked Ang II induced pro-fibrogenic response in cultured RTECs. Mechanistically, HDAC11 interacted with activator protein 2 (AP-2α) to repress the transcription of Kruppel-like factor 15 (KLF15). In accordance, KLF15 knockdown antagonized the effect of HDAC11 inhibition or depletion and enabled Ang II to promote fibrogenesis in RTECs. Therefore, we data unveil a novel AP-2α-HDAC11-KLF15 axis that contributes to renal fibrosis.
Collapse
Affiliation(s)
- Lei Mao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Geriatric Nephrology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
22
|
Zhang X, Lu H, Xie S, Wu C, Guo Y, Xiao Y, Zheng S, Zhu H, Zhang Y, Bai Y. Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation-related signalling pathways. Br J Pharmacol 2019; 176:4745-4759. [PMID: 31454852 PMCID: PMC6965682 DOI: 10.1111/bph.14842] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. Previous studies have shown that resveratrol has anti-fibrotic activity, but its potential molecular mechanisms of action are not well understood. EXPERIMENTAL APPROACH The anti-fibrotic effects of resveratrol were assayed in a rat model of unilateral ureteral obstruction (UUO) in vivo and in fibroblasts and tubular epithelial cells (TECs) stimulated by TGF-β1 in vitro. Gene and protein expression levels were analysed by PCR, Western blotting, and immunohistochemical staining. KEY RESULTS Resveratrol inhibits the myofibroblastic phenotype and fibrosis formation in UUO kidneys by targeting fibroblast-myofibroblast differentiation (FMD) and epithelial-mesenchymal transition (EMT). The anti-fibrotic effects of resveratrol correlated with decreased proliferation of TECs in the interstitium and tubules, resulting in suppressed activity of the proliferation-related signalling pathways, including that of the MAPK, PI3K/Akt, Wnt/β-catenin, and JAK2/STAT3 pathways. Resveratrol treatment suppressed TGF-β1-induced FMD and the expression of the myofibroblastic phenotype in fibroblasts in vitro by antagonizing the activation of proliferation-related signalling. Similarly, TGF-β1-mediated overactivation of the proliferation-related signalling in TECs induced EMT, and the myofibroblastic phenotype was suppressed by resveratrol. The anti-fibrotic and anti-proliferative effects of resveratrol were associated with the inactivation of Smad2/3 signalling and resulted in a partial reversal of FMD and EMT and the inhibition of the myofibroblastic phenotype. CONCLUSIONS AND IMPLICATIONS Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in vivo and in vitro via proliferation-related pathways, making it a potential therapeutic agent for preventing renal fibrosis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Hong Lu
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | | | - Cunzao Wu
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shizhang Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yan Zhang
- Department of TransplantationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Kidney Health, Center for Health AssessmentWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
23
|
Abramicheva PA, Balakina TA, Morozov IA, Schelkunova TA, Smirnova OV. Prolactin Signaling Pathways Determining Its Direct Effects on Kidneys in the Cholestasis of Pregnancy Model. BIOCHEMISTRY (MOSCOW) 2019; 84:1204-1212. [DOI: 10.1134/s0006297919100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Wasiak S, Tsujikawa LM, Halliday C, Stotz SC, Gilham D, Jahagirdar R, Kalantar-Zadeh K, Robson R, Sweeney M, Johansson JO, Wong NC, Kulikowski E. Benefit of Apabetalone on Plasma Proteins in Renal Disease. Kidney Int Rep 2018; 3:711-721. [PMID: 29854980 PMCID: PMC5976837 DOI: 10.1016/j.ekir.2017.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Apabetalone, a small molecule inhibitor, targets epigenetic readers termed BET proteins that contribute to gene dysregulation in human disorders. Apabetalone has in vitro and in vivo anti-inflammatory and antiatherosclerotic properties. In phase 2 clinical trials, this drug reduced the incidence of major adverse cardiac events in patients with cardiovascular disease. Chronic kidney disease is associated with a progressive loss of renal function and a high risk of cardiovascular disease. We studied the impact of apabetalone on the plasma proteome in patients with impaired kidney function. METHODS Subjects with stage 4 or 5 chronic kidney disease and matched controls received a single dose of apabetalone. Plasma was collected for pharmacokinetic analysis and for proteomics profiling using the SOMAscan 1.3k platform. Proteomics data were analyzed with Ingenuity Pathway Analysis to identify dysregulated pathways in diseased patients, which were targeted by apabetalone. RESULTS At baseline, 169 plasma proteins (adjusted P value <0.05) were differentially enriched in renally impaired patients versus control subjects, including cystatin C and β2 microglobulin, which correlate with renal function. Bioinformatics analysis of the plasma proteome revealed a significant activation of 42 pathways that control immunity and inflammation, oxidative stress, endothelial dysfunction, vascular calcification, and coagulation. At 12 hours postdose, apabetalone countered the activation of pathways associated with renal disease and reduced the abundance of disease markers, including interleukin-6, plasminogen activator inhibitor-1, and osteopontin. CONCLUSION These data demonstrated plasma proteome dysregulation in renally impaired patients and the beneficial impact of apabetalone on pathways linked to chronic kidney disease and its cardiovascular complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Robson
- Christchurch Clinical Studies Trust, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|
25
|
Liu J, Zhou L, He L, Zhong Y, Zhang X, Xiao B, Liu G. Periplaneta Americana Extract May Attenuate Renal Fibrosis through Inhibiting Janus Tyrosine Kinase 2/Signal Transducer and Activator of Transcription 3 Pathway. Pharmacology 2018; 102:1-8. [PMID: 29669350 DOI: 10.1159/000488535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/19/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Periplaneta americana is one of the ancient insect groups with the strongest vitality. Periplaneta americana extract (PAE) has been explored as an alternative remedy for many diseases. Although much progress has been made in the study about PAE, the role of the drug in renal disease is rarely reported, especially in renal fibrosis. This study was designed to evaluate the renoprotective effect of PAE treatment to renal fibrosis. METHOD An in vivo, unilateral ureteral obstruction (UUO) mouse model was built. Then the mice were treated with PAE (100 mg/kg body weight) once daily by oral gavage, again starting on the day of UUO and continued for 1 week. At the end of 1 week, the mice were sacrificed; kidney samples were collected for further analysis. In vitro, Boston University mouse proximal tubular cells were plated in 35-mm dishes at a density of 0.3 * 106 cells/dish. Then the cells were treated with 5-ng/mL TGF-β1 in serum-free DMEM medium for an indicated length of time. The experimental groups were pretreated with the indicated concentrations of PAE (0.3125 mg/mL). The cells were further cultured for 24 h, and then cells were monitored morphologically or collected for biochemical analyses. RESULTS Both in vivo and vitro PAE inhibits the expression of FN and alpha-smooth muscle actin and suppresses renal fibrosis. Importantly, PAE protects against renal fibrosis by inhibiting Janus tyrosine kinase 2 (JAK)/signal transducer and activator of transcription 3 (STAT) tyrosine phosphorylation. CONCLUSION PAE attenuates renal fibrosis through the suppression of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Jingsong Liu
- Department of Nephrology, Hospital Affiliated to Hunan Academy of Chinese Medicine, Chinese Medicine and Western Medicine Hospital Affliated to Hunan University of Chinese Medicine, Changsha, China
| | - Lin Zhou
- Nephrology Department, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Liyu He
- Nephrology Department, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China
| | - Ying Zhong
- Department of Nephrology, Hospital Affiliated to Hunan Academy of Chinese Medicine, Chinese Medicine and Western Medicine Hospital Affliated to Hunan University of Chinese Medicine, Changsha, China
| | - Xiaobai Zhang
- Department of Nephrology, Hospital Affiliated to Hunan Academy of Chinese Medicine, Chinese Medicine and Western Medicine Hospital Affliated to Hunan University of Chinese Medicine, Changsha, China
| | - Bofei Xiao
- Department of Nephrology, Hospital Affiliated to Hunan Academy of Chinese Medicine, Chinese Medicine and Western Medicine Hospital Affliated to Hunan University of Chinese Medicine, Changsha, China
| | - Guoyong Liu
- Department of Nephrology, The First Affiliated Hospital of Changde Vocational Technical College, Changde, China
| |
Collapse
|
26
|
c-Myc promotes renal fibrosis by inducing integrin αv-mediated transforming growth factor-β signaling. Kidney Int 2017; 92:888-899. [PMID: 28483378 DOI: 10.1016/j.kint.2017.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 01/11/2023]
Abstract
Fibrogenesis involves the activation of renal fibroblasts upon kidney injury. However, the mechanisms underlying renal fibroblast activation are poorly characterized. c-Myc is a predominant oncogene encoding a pleiotropic transcription factor that participates in the regulation of various genes, including genes vital for regulating the cell cycle, cell proliferation, and apoptosis. Here we tested whether renal fibrosis in unilateral ureteral obstruction and folic acid-induced renal fibrosis mouse models are associated with the overexpression of c-Myc. Transforming growth factor-β (TGF-β) has been identified as a key mediator of renal fibrosis, and it is secreted in an inactive form as a complex with latency-associated peptide and latent TGF-β-binding proteins. Five αv-containing integrins with different β -subunits can activate TGF-β, and consistent with this we found that c-Myc bound directly to the promoter of integrin αv in renal fibroblasts activating its transcription. This, in turn, induced activation of TGF-β signaling. Pharmacological blockade of c-Myc attenuated renal fibrosis in vivo in the ureteral obstruction and folic acid-treated mouse models and inhibited the proliferation and activation of renal fibroblasts in vitro. Thus, c-Myc overexpression stimulated proliferation and activation of renal fibroblasts by inducing integrin αv -mediated TGF-β signaling. Hence, targeting c-Myc may have clinical utility in the treatment of renal fibrosis.
Collapse
|
27
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol 2016; 227:66-82. [PMID: 27852009 DOI: 10.1016/j.ijcard.2016.11.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) retains a leadership as a major cause of human death worldwide. Although a substantial progress was attained in the development of cardioprotective and vasculoprotective drugs, a search for new efficient therapeutic strategies and promising targets is under way. Modulation of epigenetic CVD mechanisms through administration epigenetically active agents is one of such new approaches. Epigenetic mechanisms involve heritable changes in gene expression that are not linked to the alteration of DNA sequence. Pathogenesis of CVDs is associated with global genome-wide changes in DNA methylation and histone modifications. Epigenetically active compounds that influence activity of epigenetic modulators such as DNA methyltransferases (DNMTs), histone acetyltransferases, histone deacetylases (HDACs), etc. may correct these pathogenic changes in the epigenome and therefore be used for CVD therapy. To date, many epigenetically active natural substances (such as polyphenols and flavonoids) and synthetic compounds such as DNMT inhibitors or HDAC inhibitors are known. Both native and chemical DNMT and HDAC inhibitors possess a wide range of cytoprotective activities such as anti-inflammatory, antioxidant, anti-apoptotic, anti-anfibrotic, and anti-hypertrophic properties, which are beneficial of treatment of a variety of CVDs. However, so far, only synthetic DNMT inhibitors enter clinical trials while synthetic HDAC inhibitors are still under evaluation in preclinical studies. In this review, we consider epigenetic mechanisms such as DNA methylation and histone modifications in cardiovascular pathology and the epigenetics-based therapeutic approaches focused on the implementation of DNMT and HDAC inhibitors.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, 121609, Russia; National Research Center for Preventive Medicine, Moscow, 101000, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
28
|
Downregulation of angiotensin type 1 receptor and nuclear factor-κB by sirtuin 1 contributes to renoprotection in unilateral ureteral obstruction. Sci Rep 2016; 6:33705. [PMID: 27659793 PMCID: PMC5034227 DOI: 10.1038/srep33705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
Activation of sirtuin 1 (Sirt1) attenuates unilateral ureteral obstruction (UUO)-induced inflammation and fibrosis, suggesting that Sirt1 may prevent tubulointerstitial fibrosis. In this study, we explored changes in the expression of Sirt1 in the kidneys of UUO-treated rats and evaluated the effects of Sirt1 activation or inhibition on renal pathology and mediators of UUO pathogenesis, especially angiotensin II and nuclear factor (NF)-κB, in rats and rat renal fibroblasts. Sirt1 expression increased in the obstructed kidney but not in the contralateral kidney and was mainly detected in tubulointerstitial cells. Resveratrol, a Sirt1 activator, decreased UUO-induced inflammation and fibrosis, while sirtinol, a Sirt1 inhibitor, enhanced UUO-induced inflammation. UUO increased renal angiotensin type 1 receptor (AT1R), NF-κB, monocyte chemotactic protein 1 (MCP-1), and fibronectin expression. Resveratrol attenuated these UUO-induced changes, whereas sirtinol enhanced them, with the exception of fibronectin. In renal fibroblasts, Sirt1 overexpression reduced AT1R and NF-κB levels, while Sirt1 knockdown had the opposite effects. Sirtinol increased the levels of AT1R, NF-κB, MCP-1, and connective tissue growth factor (CTGF), while resveratrol reduced AT1R levels. Our results suggested that Sirt1 inhibited AT1R and NF-κB expression in renal fibroblasts and that these mechanisms may play roles in alleviating UUO-induced damages.
Collapse
|
29
|
Kang HJ, Yi YW, Hou SJ, Kim HJ, Kong Y, Bae I, Brown ML. Disruption of STAT3-DNMT1 interaction by SH-I-14 induces re-expression of tumor suppressor genes and inhibits growth of triple-negative breast tumor. Oncotarget 2015; 8:83457-83468. [PMID: 29137356 PMCID: PMC5663528 DOI: 10.18632/oncotarget.4054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/08/2015] [Indexed: 01/01/2023] Open
Abstract
Epigenetic regulation of gene expression is an emerging target to treat several human diseases including cancers. In cancers, expressions of many tumor suppressor genes are suppressed by hyper-methylation in their regulatory regions. Herein, we describe a novel carbazole SH-I-14 that decreased the level of the acetyl-STAT3 at the K685 residue. Mutation analysis revealed that SH-I-14 disrupted STAT3-DNMT1 interaction by removing acetyl group from K685 of STAT3. Finally, the inhibition of STAT3-DNMT1 interaction by SH-I-14 resulted in re-expression of tumor suppressor genes such as VHL and PDLIM4 through de-methylation of their promoter regions. In addition, SH-I-14 showed anti-proliferative effect in triple-negative breast cancer (TNBC) cell lines in vitro and anti-tumor effect in a mouse xenograft model of MDA-MB-231 tumor. Taken together, our results suggest that targeting acetyl-STAT3 (K685) provides potential therapeutic opportunity to treat a subset of human cancers.
Collapse
Affiliation(s)
- Hyo Jin Kang
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Yong Weon Yi
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Shu-Jie Hou
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.,Center for Drug Discovery, Georgetown University Medical Center, Washington, DC, USA
| | - Hee Jeong Kim
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Yali Kong
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.,Center for Drug Discovery, Georgetown University Medical Center, Washington, DC, USA
| | - Insoo Bae
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.,Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC, USA.,Center for Drug Discovery, Georgetown University Medical Center, Washington, DC, USA.,Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Milton L Brown
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.,Center for Drug Discovery, Georgetown University Medical Center, Washington, DC, USA.,Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
30
|
Ni J, Shen Y, Wang Z, Shao DC, Liu J, Kong YL, Fu LJ, Zhou L, Xue H, Huang Y, Zhang W, Yu C, Lu LM. P300-dependent STAT3 acetylation is necessary for angiotensin II-induced pro-fibrotic responses in renal tubular epithelial cells. Acta Pharmacol Sin 2014; 35:1157-66. [PMID: 25088002 DOI: 10.1038/aps.2014.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/20/2014] [Indexed: 02/07/2023]
Abstract
AIM To explore the signal transducer and activator of transcription 3 (STAT3) signaling pathway, especially STAT3 acetylation, in angiotensin II (Ang II)-induced pro-fibrotic responses in renal tubular epithelial cells. METHODS Rat renal tubular epithelial cell line (NRK-52E) was used. STAT3 acetylation and phosphorylation, as well as the expression of fibronectin, collagen IV and transforming growth factor-β1 (TGF-β1) were examined using Western blotting. The level and localization of STAT3 phosphorylation on Tyr705 were detected with fluorescence immunocytochemistry. The cells were transfected with a plasmid vector carrying p300 gene or siRNA targeting p300 to regulate p300 expression. RESULTS Overexpression of p300 significantly increased STAT3 acetylation on Lys685, STAT3 phosphorylation on Tyr705, and the expression of TGF-β1, collagen IV and fibronectin in the cells. Treatment of the cells with Ang II (1 μmol/L) significantly increased STAT3 phosphorylation on Tyr705 through JAK2 activation, and dose-dependently increased the expression of fibronectin, collagen IV and TGF-β1. Pretreatment with curcumin, an inhibitor of JAK2 and p300, blocked Ang II-induced effects. Knockdown of p300 significantly decreased STAT3 acetylation on Lys685, and abolished Ang II-stimulated STAT3 phosphorylation on Tyr705, whereas pretreatment of the cells with C646, a selective inhibitor of p300, inhibited Ang II-induced STAT3 nuclear translocation and the expression of TGF-β1, collagen IV and fibronectin. Pretreatment of the cells with AG490, a JAK2 inhibitor, markedly inhibited Ang II-induced STAT3 phosphorylation on Tyr705 and fibronectin expression. CONCLUSION p300-dependent STAT3 acetylation is necessary for Ang II-induced STAT3 phosphorylation and the consequent pro-fibrotic responses in renal tubular epithelial cells in vitro.
Collapse
|