1
|
Cheng C, Ren C, Li MZ, Liu YH, Yao RQ, Yu Y, Yu X, Wang JL, Wang LX, Leng YC, Zhang H, Du FF, Dong N, Wang FQ, Wu Y, Xu F, Zhu XM, Zhang GP, Dong K, Liu S, Yao XQ, Li C, Yao YM. Pharmacologically significant constituents collectively responsible for anti-sepsis action of XueBiJing, a Chinese herb-based intravenous formulation. Acta Pharmacol Sin 2024; 45:1077-1092. [PMID: 38267547 PMCID: PMC11053071 DOI: 10.1038/s41401-023-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mu-Zi Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi-Hui Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Yu
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Li Wang
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Li-Xue Wang
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu-Chun Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Zhang
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Fei-Fei Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Feng-Qing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Fang Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Mei Zhu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Gui-Ping Zhang
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Kai Dong
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Si Liu
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Xiao-Qing Yao
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Chuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Liu M, Li Z, Ouyang Y, Chen M, Guo X, Mazhar M, Kang J, Zhou H, Wu Q, Yang S. Material basis and integrative pharmacology of danshen decoction in the treatment of cardiovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154503. [PMID: 36332387 DOI: 10.1016/j.phymed.2022.154503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are among the primary and predominant threats to human health with increasing incidence. Danshen Decoction (DSD) as an adjuvant therapy can benefit CVDs patients by improving clinical efficacy. PURPOSE The purpose of this study was to identify the active components and potential pharmacological mechanisms of DSD by combining mass spectrometry with a network pharmacology strategy and to review the use of DSD in the treatment of CVDs. METHOD First, the composition of DSD was analyzed by ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). Second, the network pharmacology method was used to elucidate the underlying material basis and possible pharmacological mechanism of DSD for the treatment of CVDs. Finally, clinical and experimental studies on DSD in the past ten years were retrieved from the PubMed and CNKI database, and the content of these studies was used to summarize the latest progress in DSD treatment of CVDs. OUTCOME A total of 35 compounds were found in DSD by manual identification from the analysis of MS, which may be the material basis for the therapeutic effect of DSD. After taking the intersection of 2086 targets related to CVDs, these 35 compounds are considered to play a role in the treatment of CVDs through 210 targets including signal transducer and activator of transcription 3 (STAT3), sarcoma (SRC) and phosphoinositide-3-kinase regulatory subunit (PIK3R), and a total of 168 signaling pathways were involved in the regulation of CVDs by DSD, including PI3K-AKT signaling pathway, Alzheimer disease, and Rap1 signaling pathway. A total of 29 clinical studies using DSD in the treatment of CVDs were included in the literature review, and these studies showed the positive significance of DSD as adjuvant therapy, while 14 experimental studies included in the literature review also demonstrated the effectiveness of DSD in the treatment of CVDs. CONCLUSION DSD plays a role in the treatment of CVDs through a variety of active ingredients. Large-scale clinical research and more in-depth experimental research will help to further reveal the mechanism of DSD in the treatment of CVDs.
Collapse
Affiliation(s)
- Mengnan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Ziyi Li
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Yue Ouyang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Mingtai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Maryam Mazhar
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Junli Kang
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510000, PR China.
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China.
| | - Sijin Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
3
|
Lu JL, Zeng XS, Zhou X, Yang JL, Ren LL, Long XY, Wang FQ, Olaleye OE, Tian NN, Zhu YX, Dong JJ, Jia WW, Li C. Molecular Basis Underlying Hepatobiliary and Renal Excretion of Phenolic Acids of Salvia miltiorrhiza Roots (Danshen). Front Pharmacol 2022; 13:911982. [PMID: 35620286 PMCID: PMC9127186 DOI: 10.3389/fphar.2022.911982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phenolic acids are cardiovascular constituents (originating from the Chinese medicinal herb Salvia miltiorrhiza root/Danshen) of DanHong and many other Danshen-containing injections. Our earlier pharmacokinetic investigation of DanHong suggested that hepatic and/or renal uptake of the Danshen compounds was the crucial steps in their systemic elimination. This investigation was designed to survey the molecular basis underlying hepatobiliary and renal excretion of the Danshen compounds, i.e., protocatechuic acid, tanshinol, rosmarinic acid, salvianolic acid D, salvianolic acid A, lithospermic acid, and salvianolic acid B. A large battery of human hepatic and renal transporters were screened for transporting the Danshen compounds and then characterized for the uptake kinetics and also compared with associated rat transporters. The samples were analyzed by liquid chromatography/mass spectrometry. Because the Danshen phenolic acids are of poor or fairly good membrane permeability, their elimination via the liver or kidneys necessitates transporter-mediated hepatic or renal uptake from blood. Several human transporters were found to mediate hepatic and/or renal uptake of the Danshen compounds in a compound-molecular-mass-related manner. Lithospermic acid and salvianolic acid B (both >500 Da) underwent systemic elimination, initiated by organic anion-transporting polypeptide (OATP)1B1/OATP1B3-mediated hepatic uptake. Rosmarinic acid and salvianolic acids D (350–450 Da) underwent systemic elimination, initiated by OATP1B1/OATP1B3/organic anion transporter (OAT)2-mediated hepatic uptake and by OAT1/OAT2-mediated renal uptake. Protocatechuic acid and tanshinol (both <200 Da) underwent systemic elimination, initiated by OAT1/OAT2-mediated renal uptake and OAT2-mediated hepatic uptake. A similar scenario was observed with the rat orthologs. The investigation findings advance our understanding of the disposition of the Danshen phenolic acids and could facilitate pharmacokinetic research on other Danshen-containing injections.
Collapse
Affiliation(s)
- Jun-Lan Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue-Shan Zeng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Zhou
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jun-Ling Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yu Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Feng-Qing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Olajide E Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nan-Nan Tian
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ya-Xuan Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Jia Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Wei Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Lan XF, Olaleye OE, Lu JL, Yang W, Du FF, Yang JL, Cheng C, Shi YH, Wang FQ, Zeng XS, Tian NN, Liao PW, Yu X, Xu F, Li YF, Wang HT, Zhang NX, Jia WW, Li C. Pharmacokinetics-based identification of pseudoaldosterogenic compounds originating from Glycyrrhiza uralensis roots (Gancao) after dosing LianhuaQingwen capsule. Acta Pharmacol Sin 2021; 42:2155-2172. [PMID: 33931765 PMCID: PMC8086230 DOI: 10.1038/s41401-021-00651-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11β-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11β-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11β-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 μmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11β-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.
Collapse
Affiliation(s)
- Xiao-Fang Lan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Olajide E Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jun-Lan Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei-Fei Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jun-Ling Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan-Hong Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng-Qing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xue-Shan Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Nan-Nan Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pei-Wei Liao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fang Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying-Fei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong-Tao Wang
- Hebei Yiling Chinese Medicine Research Institute, Shijiazhuang, 050035, China
| | - Nai-Xia Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei-Wei Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
5
|
Hsu SK, Chang WT, Lin IL, Chen YF, Padalwar NB, Cheng KC, Teng YN, Wang CH, Chiu CC. The Role of Necroptosis in ROS-Mediated Cancer Therapies and Its Promising Applications. Cancers (Basel) 2020; 12:E2185. [PMID: 32764483 PMCID: PMC7465132 DOI: 10.3390/cancers12082185] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past decades, promising therapies targeting different signaling pathways have emerged. Among these pathways, apoptosis has been well investigated and targeted to design diverse chemotherapies. However, some patients are chemoresistant to these therapies due to compromised apoptotic cell death. Hence, exploring alternative treatments aimed at different mechanisms of cell death seems to be a potential strategy for bypassing impaired apoptotic cell death. Emerging evidence has shown that necroptosis, a caspase-independent form of cell death with features between apoptosis and necrosis, can overcome the predicament of drug resistance. Furthermore, previous studies have also indicated that there is a close correlation between necroptosis and reactive oxygen species (ROS); both necroptosis and ROS play significant roles both under human physiological conditions such as the regulation of inflammation and in cancer biology. Several small molecules used in experiments and clinical practice eliminate cancer cells via the modulation of ROS and necroptosis. The molecular mechanisms of these promising therapies are discussed in detail in this review.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Wen-Tsan Chang
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Nitin Balkrushna Padalwar
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, Tamilnadu, India;
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Municipal Hsiaokang Hospital, Kaohsiung 812, Taiwan;
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan;
| | - Chi-Huei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Li Y, Chen Y, Huang X, Huang D, Gan H, Yao N, Hu Z, Li R, Zhan X, Xie K, Jiang J, Cai D. Tanshinol A Ameliorates Triton-1339W-Induced Hyperlipidemia and Liver Injury in C57BL/6J Mice by Regulating mRNA Expression of Lipemic-Oxidative Injury Genes. Lipids 2020; 55:127-140. [PMID: 32058595 DOI: 10.1002/lipd.12217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Tanshinol A, which is derived from a traditional Chinese herbal Radix Salviae Miltiorrhizae is indicative of a hypolipidemic candidate. Therefore, we aim to validate its hypolipidemic activity of tanshinol A and explore its mechanism in triton-1339W-induced hyperlipidemic mice model, which possess multiply pathogenesis for endogenous lipid metabolism disorder. Experimental hyperlipidemia mice are treated with or without tanshinol A (i.g. 40, 20, 10 mg/kg), and blood and liver tissue were collected for validating its hypolipidemic and hepatic protective effect, and hepatic mRNA expression profile, which was associated with lipid metabolism dysfunction and liver injury, was detected by RT-qPCR. As results show, triton-1339W-induced abnormal of serum TC, TAG, HDL-C, LDL-C, SOD, MDA, GOT, and GPT is remarkably attenuated by tanshinol A. In pathological experiment, triton-1339W-induced hepatocellular ballooning degeneration, irregular central vein congestion, and inflammation infiltration are alleviated by tanshinol A. Correspondingly, hepatic mRNA expression of Atf4, Fgf21, Vldlr, Nqo1, Pdk4, and Angptl4, which are genes regulating lipemic-oxidative injury, are significantly increased by tanshinol A by 2~6 fold. Abcg5, Cd36, and Apob, which are responsible for cholesterol metabolism, are mildly upregulated. Noticeably, triton-1339W-suppressed expressions of Ptgs2/Il10, which are genes responsible for acute inflammation resolution in liver injury, are remarkably increased by tanshinol A. Conclusively, tanshinol A exerted hypolipidemic effect and hepatoprotective effect through restoring triton-1339W-suppressed mRNA expression, which may be involved in Atf4/Fgf21/Vldlr and Ptgs2/Il-10 signaling pathways.
Collapse
Affiliation(s)
- Yuting Li
- Department of Pharmacology of Traditional Chinese Medicine, The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Yuxing Chen
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Xuejun Huang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Dane Huang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Haining Gan
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Nan Yao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Zixuan Hu
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Ruyue Li
- Department of Pharmacology of Traditional Chinese Medicine, The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Xinyi Zhan
- Department of Pharmacology of Traditional Chinese Medicine, The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Kaifeng Xie
- Department of Pharmacology of Traditional Chinese Medicine, The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Jieyi Jiang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| | - Dake Cai
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China.,Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong, 510095, China
| |
Collapse
|
7
|
Li J, Olaleye OE, Yu X, Jia W, Yang J, Lu C, Liu S, Yu J, Duan X, Wang Y, Dong K, He R, Cheng C, Li C. High degree of pharmacokinetic compatibility exists between the five-herb medicine XueBiJing and antibiotics comedicated in sepsis care. Acta Pharm Sin B 2019; 9:1035-1049. [PMID: 31649852 PMCID: PMC6804443 DOI: 10.1016/j.apsb.2019.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Managing the dysregulated host response to infection remains a major challenge in sepsis care. Chinese treatment guideline recommends adding XueBiJing, a five-herb medicine, to antibiotic-based sepsis care. Although adding XueBiJing further reduced 28-day mortality via modulating the host response, pharmacokinetic herb–drug interaction is a widely recognized issue that needs to be studied. Building on our earlier systematic chemical and human pharmacokinetic investigations of XueBiJing, we evaluated the degree of pharmacokinetic compatibility for XueBiJing/antibiotic combination based on mechanistic evidence of interaction risk. Considering both XueBiJing‒antibiotic and antibiotic‒XueBiJing interaction potential, we integrated informatics-based approach with experimental approach and developed a compound pair-based method for data processing. To reflect clinical reality, we selected for study XueBiJing compounds bioavailable for drug interactions and 45 antibiotics commonly used in sepsis care in China. Based on the data of interacting with drug metabolizing enzymes and transporters, no XueBiJing compound could pair, as perpetrator, with the antibiotics. Although some antibiotics could, due to their inhibition of uridine 5′-diphosphoglucuronosyltransferase 2B15, organic anion transporters 1/2 and/or organic anion-transporting polypeptide 1B3, pair with senkyunolide I, tanshinol and salvianolic acid B, the potential interactions (resulting in increased exposure) are likely desirable due to these XueBiJing compounds' low baseline exposure levels. Inhibition of aldehyde dehydrogenase by 7 antibiotics probably results in undesirable reduction of exposure to protocatechuic acid from XueBiJing. Collectively, XueBiJing/antibiotic combination exhibited a high degree of pharmacokinetic compatibility at clinically relevant doses. The methodology developed can be applied to investigate other drug combinations.
Collapse
Key Words
- 4-MU, 4-methylumbelliferone
- 4-MUG, 4-methylumbelliferyl-β-d-glucuronide
- ABC transporter, ATP-binding cassette transporter
- ADR, adverse drug reaction
- ALDH, aldehyde dehydrogenase
- AMP, adenosine monophosphate
- AQ, amodiaquine
- ATP, adenosine triphosphate
- Antibiotic
- BCRP, breast cancer resistance protein
- BSEP, bile salt export pump
- CLR, renal clearance
- CLtot,p, total plasma clearance
- COMT, catechol-O-methyltransferase
- Cmax, maximum plasma concentration
- Combination drug therapy
- DDI, drug‒drug interaction
- DEAQ, desethylamodiaquine
- E2, β-estradiol
- E217βG, estradiol-17β-d-glucuronide
- E23βG, β-estradiol-3-β-d-glucuronide
- GF, glomerular filtration
- GFR, glomerular filtration rate
- HEK-293, human embryonic kidney 293 cell line
- Herb‒drug interaction
- IC50, half-maximal inhibitory concentration
- Km, Michaelis constant
- MATE, multidrug and toxin extrusion protein
- MDR1, multidrug resistance transporter 1
- MRP, multidrug resistance protein
- NAD+, nicotinamide adenine dinucleotide
- OAT, organic anion transporter
- OATP, organic anion-transporting polypeptide
- OCT, organic cation transporter
- PAH, para-aminohippuric acid
- PK, pharmacokinetic
- PKC, pharmacokinetic compatibility
- Pharmacokinetic compatibility
- SLC transporter, solute carrier transporter
- Sepsis
- TEA, tetraethylammonium
- TFP, trifluoperazine
- TFPG, trifluoperazine-N-β-d-glucuronide
- TS, tubular secretion
- UGT, uridine 5′-diphosphoglucuronosyltransferases
- VSS, apparent volume of distribution at steady state
- XueBiJing
- fe-U, fraction of dose excreted unchanged into urine
- fu-p, unbound fraction in plasma
- t1/2, elimination half-life
Collapse
|
8
|
Zhu P, Liu Z, Zhou J, Chen Y. Tanshinol inhibits the growth, migration and invasion of hepatocellular carcinoma cells via regulating the PI3K-AKT signaling pathway. Onco Targets Ther 2018; 12:87-99. [PMID: 30588033 PMCID: PMC6304085 DOI: 10.2147/ott.s185997] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Tanshinol is an active constituent of Salvia miltiorrhiza and possess anti-inflammatory, antioxidant, and anti-bacterial activity. Herein, we explored the role of tanshinol on the growth and aggressiveness of hepatocellular carcinoma (HCC) cells in vitro and in vivo. Materials and methods The proliferation of a panel of HCC cell lines was measured using MTT assay. The expressions of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) were detected by immunofluorescence staining and immunohistochemical assay. The levels of Bcl-2 and Bax were determined using immunoblotting assay. The secretions of matrix metalloproteinase-2 (MMP-2) and MMP-9 were detected by ELISA. The migration and invasion abilities of HepG2 cell were determined using wound healing and Transwell invasion assays. The apoptosis of HepG2 cell induced by tanshinol was analyzed by Annexin V/propidium iodide staining. A xenograft model was constructed to investigate the inhibitory effect of tanshinol on HepG2 cell growth in vivo. To further investigate the role of tanshinol on the metastasis of HepG2 cell in vivo, an experimental metastasis assay was performed. Results Tanshinol inhibited the growth and colony formation of HCC cell in vitro. Tanshinol also induced the apoptosis of HepG2 cell and inhibited the migration and invasion of HepG2 cell. In in vivo experiments, tanshinol suppressed the tumor growth and metastasis of HepG2 cell. Furthermore, the phosphorylation of PI3K and AKT was decreased by tanshinol in vitro and in vivo. Conclusion Tanshinol exerts its anti-cancer effects via regulating the PI3K-AKT signaling pathway in HCC.
Collapse
Affiliation(s)
- Pingting Zhu
- School of Nursing, Yangzhou University, Yangzhou, China, .,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China,
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - JiaoJiao Zhou
- School of Nursing, Yangzhou University, Yangzhou, China,
| | - Yuanyuan Chen
- School of Nursing, Yangzhou University, Yangzhou, China,
| |
Collapse
|
9
|
Salvia miltiorrhiza Roots against Cardiovascular Disease: Consideration of Herb-Drug Interactions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9868694. [PMID: 28473993 PMCID: PMC5394393 DOI: 10.1155/2017/9868694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/12/2017] [Indexed: 11/18/2022]
Abstract
Salvia miltiorrhiza root (Danshen) is widely used in Asia for its cardiovascular benefits and contains both hydrophilic phenolic acids and lipophilic tanshinones, which are believed to be responsible for its therapeutic efficacy. This review summarized the effects of these bioactive components from S. miltiorrhiza roots on pharmacokinetics of comedicated drugs with mechanic insights regarding alterations of protein binding, enzyme activity, and transporter activity based on the published data stemming from both in vitro and in vivo human studies. In vitro studies indicated that cytochrome P450 (CYP450), carboxylesterase enzyme, catechol-O-methyltransferase, organic anion transporter 1 (OAT1) and OAT3, and P-glycoprotein were the major targets involved in S. miltiorrhiza-drug interactions. Lipophilic tanshinones had much more potent inhibitory effects towards CYPs activities compared to hydrophilic phenolic acids, evidenced by much lower Ki values of the former. Clinical S. miltiorrhiza-drug interaction studies were mainly conducted using CYP1A2 and CYP3A4 probe substrates. In addition, the effects of coexisting components on the pharmacokinetic behaviors of those noted bioactive compounds were also included herein.
Collapse
|
10
|
Sreenivasmurthy SG, Liu JY, Song JX, Yang CB, Malampati S, Wang ZY, Huang YY, Li M. Neurogenic Traditional Chinese Medicine as a Promising Strategy for the Treatment of Alzheimer's Disease. Int J Mol Sci 2017; 18:272. [PMID: 28134846 PMCID: PMC5343808 DOI: 10.3390/ijms18020272] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Hippocampal neurogenesis plays a critical role in the formation of new neurons during learning and memory development. Attenuation of neurogenesis in the brain is one of the primary causes of dementia in Alzheimer's disease (AD), and, conversely, modulating the process of hippocampal neurogenesis benefit patients with AD. Traditional Chinese medicine (TCM), particularly herbal medicine, has been in use for thousands of years in Asia and many regions of the world for the treatment of cancer, cardiovascular diseases and neurodegenerative diseases. In this review, we summarize the role of neurotrophic factors, signal transducing factors, epigenetic modulators and neurotransmitters in neurogenesis, and we also discuss the functions of several Chinese herbs and their active molecules in activating multiple pathways involved in neurogenesis. TCM herbs target pathways such as Notch, Wnt, Sonic Hedgehog and receptor tyrosine kinase pathway, leading to activation of a signaling cascade that ultimately enhances the transcription of several important genes necessary for neurogenesis. Given these pathway activating effects, the use of TCM herbs could be an effective therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Sravan Gopalkrishnashetty Sreenivasmurthy
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Jing-Yi Liu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ju-Xian Song
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chuan-Bin Yang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Sandeep Malampati
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Zi-Ying Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying-Yu Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
11
|
Wu X, Ma J, Ye Y, Lin G. Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb–drug interactions. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:236-253. [DOI: 10.1016/j.jchromb.2015.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
12
|
Pharmacokinetics of catechols in human subjects intravenously receiving XueBiJing injection, an emerging antiseptic herbal medicine. Drug Metab Pharmacokinet 2016; 31:95-98. [DOI: 10.1016/j.dmpk.2015.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022]
|
13
|
Li M, Wang F, Huang Y, Du F, Zhong C, Olaleye OE, Jia W, Li Y, Xu F, Dong J, Li J, Lim JBR, Zhao B, Jia L, Li L, Li C. Systemic exposure to and disposition of catechols derived from Salvia miltiorrhiza roots (Danshen) after intravenous dosing DanHong injection in human subjects, rats, and dogs. Drug Metab Dispos 2015; 43:679-90. [PMID: 25670806 DOI: 10.1124/dmd.114.061473] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
DanHong injection is a Danshen (Salvia miltiorrhiza roots)-based injectable solution for treatment of coronary artery disease and ischemic stroke. Danshen catechols are believed to be responsible for the injection's therapeutic effects. This study aimed to characterize systemic exposure to and elimination of Danshen catechols in human subjects, rats, and dogs receiving intravenous DanHong injection. A total of 28 catechols were detected, with content levels of 0.002-7.066 mM in the injection, and the major compounds included tanshinol, protocatechuic aldehyde, salvianolic acid B, rosmarinic acid, salvianolic acids A and D, and lithospermic acid with their daily doses ≥10 μmol/subject. After dosing, tanshinol, salvianolic acid D, and lithospermic acid exhibited considerable exposure in human subjects and rats. However, only tanshinol had considerable exposure in dogs. The considerable exposure to tanshinol was due to its having the highest dose, whereas that to salvianolic acid D and lithospermic acid was due to their relatively long elimination half-lives in the human subjects and rats. Protocatechuic aldehyde and rosmarinic acid circulated in the bloodstream predominantly as metabolites; salvianolic acids A and B exhibited low plasma levels with their human plasma metabolites little or not detected. Tanshinol and salvianolic acid D were eliminated mainly via renal excretion. Elimination of other catechols involved hepatobiliary and/or renal excretion of their metabolites. Methylation was found to be the primary metabolism for most Danshen catechols and showed intercompound and interspecies differences in rate and degree in vitro. The information gained here is relevant to pharmacological and toxicological research on DanHong injection.
Collapse
Affiliation(s)
- Meijuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Fengqing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Yühong Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Feifei Du
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Chenchun Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Olajide E Olaleye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Weiwei Jia
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Yanfen Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Fang Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Jiajia Dong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Jian Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Justin B R Lim
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Buchang Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Lifu Jia
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Li Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| | - Chuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (M.L., F.W., F.D., C.Z., O.E.O., W.J., F.X., J.D., J.L., J.B.R.L., L.L., C.L.); University of Chinese Academy of Sciences, Shanghai, China (M.L., L.L., C.L.); Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicines, Tianjin, China (Y.H., Y.L.); Buchang Pharmacy Group, Xi'an, Shaanxi Province, China (B.Z., L.J.); and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China (C.L.)
| |
Collapse
|