1
|
Qiong J, Yang H, Xie Y, Zhu P, Chen G, Zhou Q, Yang Z, Tan W, Liu L. Evaluation of comparative chemical profiling and bioactivities of medicinal and non-medicinal parts of Ampelopsis delavayana. Heliyon 2024; 10:e32408. [PMID: 39183833 PMCID: PMC11341298 DOI: 10.1016/j.heliyon.2024.e32408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 08/27/2024] Open
Abstract
Ampelopsis delavayana, a distinctive Yi medicine, utilized the roots as an essential medicinal substance for trauma treatment of the "Yunnan Hong Yao". A. delavayana, however, cannot be cultivated artificially presently, and it has been described with a phenomenon of mixed utilization of roots and stems, impeding pharmaceutical quality control. In response to resource scarcity and standardization issues, the research comprehensively compares the material basis and efficacy of medicinal (roots) and non-medicinal (stems) parts by using chemical profiling and pharmacological methodologies. Chemical disparity between two parts was compared by TLC and HPLC. Analgesia and anti-inflammatory capabilities of both parts were comprehensively evaluated through acetic acid writhing test, hot plate test, and xylene-induced mouse ear swelling test. Additionally, all the extracts were evaluated for anti-inflammatory activities by monitoring regulation of the levels of TNF-α, IL-1β, IL-6, and IgE in ear tissue. Consequently, the findings of TLC and HPLC revealed substantial similarity in the material basis of the medicinal and non-medicinal parts of A. delavayana, and pharmacological activities of anti-inflammatory and analgesic between two parts were consistent. Different extracts remarkably reduced the levels of TNF-α, IL-1β, IL-6, and IgE, demonstrating no discernible differences. Collectively, the comprehensive exploitation indicated that the medicinal and non-medicinal parts of A. delavayana exhibited identical chemical profiling and bioactivities, providing a theoretical rationale and scientific evidence for using stems as a therapeutic part, thereby holding considerable potential for ameliorating the current status of its medicinal reserves.
Collapse
Affiliation(s)
| | | | - Yanqing Xie
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Peifeng Zhu
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Gong Chen
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Qixiu Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Zhuya Yang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Wenhong Tan
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| |
Collapse
|
2
|
Fang B, Wang L, Liu S, Zhou M, Ma H, Chang N, Ning G. Sarsasapogenin regulates the immune microenvironment through MAPK/NF-kB signaling pathway and promotes functional recovery after spinal cord injury. Heliyon 2024; 10:e25145. [PMID: 38322941 PMCID: PMC10844052 DOI: 10.1016/j.heliyon.2024.e25145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Spinal cord injury (SCI) occurs as a result of traumatic events that damage the spinal cord, leading to motor, sensory, or autonomic function impairment. Sarsasapogenin (SA), a natural steroidal compound, has been reported to have various pharmacological applications, including the treatment of inflammation, diabetic nephropathy, and neuroprotection. However, the therapeutic efficacy and underlying mechanisms of SA in the context of SCI are still unclear. This research aimed to investigate the therapeutic effects and mechanisms of SA against SCI by integrating network pharmacology analysis and experimental verification. Network pharmacology results suggested that SA may effectively treat SCI by targeting key targets such as TNF, RELA, JUN, MAPK14, and MAPK8. The underlying mechanism of this treatment may involve the MAPK (JNK) signaling pathway and inflammation-related signaling pathways such as TNF and Toll-like receptor signaling pathways. These findings highlight the therapeutic potential of SA in SCI treatment and provide valuable insights into its molecular mechanisms of action. In vivo experiments confirmed the reparative effect of SA on SCI in rats and suggested that SA could repair SCI by modulating the immune microenvironment. In vitro experiments further investigated how SA regulates the immune microenvironment by inhibiting the MAPK/NF-kB pathways. Overall, this study successfully utilized a combination of network pharmacology and experimental verification to establish that SA can regulate the immune microenvironment via the MAPK/NF-kB signaling pathway, ultimately facilitating functional recovery from SCI. Furthermore, these findings emphasize the potential of natural compounds from traditional Chinese medicine as a viable therapy for SCI treatment.
Collapse
Affiliation(s)
- Bing Fang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Othopaedics, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Liyue Wang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Liu
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Mi Zhou
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongpeng Ma
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangzhi Ning
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Quan YS, Li X, Pang L, Deng H, Chen F, Joon Lee J, Quan ZS, Liu P, Guo HY, Shen QK. Panaxadiol carbamate derivatives: Synthesis and biological evaluation as potential multifunctional anti-Alzheimer agents. Bioorg Chem 2024; 143:106977. [PMID: 38064805 DOI: 10.1016/j.bioorg.2023.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/24/2024]
Abstract
It is reported that panaxadiol has neuroprotective effects. Previous studies have found that compound with carbamate structure introduced at the 3-OH position of 20 (R) -panaxadiol showed the most effective neuroprotective activity with an EC50 of 13.17 μM. Therefore, we designed and synthesized a series of ginseng diol carbamate derivatives with ginseng diol as the lead compound, and tested their anti-AD activity. It was found that the protective effect of compound Q4 on adrenal pheochromocytoma was 80.6 ± 10.85 % (15 μM), and the EC50 was 4.32 μM. According to the ELISA results, Q4 reduced the expression of Aβ25-35 by decreasing β-secretase production. Molecular docking studies revealed that the binding affinity of Q4 to β-secretase was -49.67 kcal/mol, indicating a strong binding affinity of Q4 to β-secretase. Western blotting showed that compound Q4 decreased IL-1β levels, which may contribute to its anti-inflammatory effect. Furthermore, compound Q4 exhibits anti-AD activities by reducing abnormal phosphorylation of tau protein and activation of the mitogen activated protein kinase pathway. The learning and memory deficits in mice treated with Q4in vivo were significantly alleviated. Therefore, Q4 may be a promising multifunctional drug for the treatment of AD, providing a new way for anti-AD drugs.
Collapse
Affiliation(s)
- Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Lei Pang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
4
|
Xiong W, Jia L, Cai Y, Chen Y, Gao M, Jin J, Zhu J. Evaluation of the anti-inflammatory effects of PI3Kδ/γ inhibitors for treating acute lung injury. Immunobiology 2023; 228:152753. [PMID: 37832501 DOI: 10.1016/j.imbio.2023.152753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Phosphatidylinositol 3-kinase delta (PI3Kδ) and gamma (PI3Kγ) are predominantly located in immune and hematopoietic cells. It is well-established that PI3Kδ/γ plays important roles in the immune system and participates in inflammation; hence, it could be a potential target for anti-inflammatory therapy. Currently, several PI3K inhibitors are used clinically to treat cancers with aberrant PI3K signaling; however, their role in treating acute respiratory inflammatory diseases has rarely been explored. Herein, we investigated the potential anti-inflammatory activities of several pharmacological PI3K inhibitors, including marketed drugs idelalisib (PI3Kδ), duvelisib (PI3Kδ/γ), and copanlisib (pan-PI3K with preferential α/δ) and the clinical drug eganelisib (PI3Kγ), for treating acute lung injury (ALI). In the lipopolysaccharide-induced RAW264.7 macrophage inflammatory model, the four inhibitors significantly suppressed proinflammatory cytokine expression by inhibiting the PI3K signaling pathway. Oral administration of PI3K inhibitors markedly improved lung injury in a murine model of ALI. PI3K pathway inhibition decreased inflammatory cell infiltration and totalprotein levels, as well as reduced the expression of associated lung inflammatory factors. Collectively, all four representative PI3K inhibitors exerted prominent anti-inflammatory properties, indicating that PI3K δ and/or γ inhibition could be ideal targets to treat respiratory inflammatory diseases by reducing the inflammatory response. The findings of the current study provide a new basis for utilizing PI3K inhibitors to treat acute respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mingzhu Gao
- Department of Clinical Research Center for Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu 214000, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Akash S, Bayıl I, Mahmood S, Mukerjee N, Mili TA, Dhama K, Rahman MA, Maitra S, Mohany M, Al-Rejaie SS, Ali N, Semwal P, Sharma R. Mechanistic inhibition of gastric cancer-associated bacteria Helicobacter pylori by selected phytocompounds: A new cutting-edge computational approach. Heliyon 2023; 9:e20670. [PMID: 37876433 PMCID: PMC10590806 DOI: 10.1016/j.heliyon.2023.e20670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/09/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) is a persistent bacterial inhabitant in the stomachs of approximately half the global populace. This bacterium is directly linked to chronic gastritis, leading to a heightened risk of duodenal and gastric ulcer diseases, and is the predominant risk factor for gastric cancer - the second most common cause of cancer-related deaths globally. The increasing prevalence of antibiotic resistance necessitates the exploration of innovative treatment alternatives to mitigate the H. pylori menace. Methods Initiating our study, we curated a list of thirty phytochemicals based on previous literature and subjected them to molecular docking studies. Subsequently, eight phytocompounds-Glabridin, Isoliquiritin, Sanguinarine, Liquiritin, Glycyrrhetic acid, Beta-carotin, Diosgenin, and Sarsasapogenin-were meticulously chosen based on superior binding scores. These were further subjected to an extensive computational analysis encompassing ADMET profiling, drug-likeness evaluation, principal component analysis (PCA), and molecular dynamic simulations (MDs) in comparison with the conventional drug, Mitomycin. Results The natural compounds investigated demonstrated superior docking affinities to H. pylori targets compared to the standard Mitomycin. Notably, the phytocompounds Diosgenin and Sarsasapogenin stood out due to their exceptional binding affinities and pharmacokinetic properties, including favorable ADMET profiles. Conclusion Our comprehensive and technologically-advanced approach showcases the potential of identified phytocompounds as pioneering therapeutic agents against H. pylori-induced gastric malignancies. In light of our promising in silico results, we recommend these natural compounds as potential candidates for advancing H. pylori-targeted drug development. Given their potential, we strongly advocate for subsequent in vitro and in vivo studies to validate their therapeutic efficacy against this formidable gastrointestinal bacterium.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, 1216, Ashulia, Dhaka, Bangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Turkey
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Chittaranjan Avenue in Sadarghat, Dhaka, 1100, Bangladesh
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute Of Medical and Technical Sciences, Chennai, India
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata, 700126, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Tamanna Akter Mili
- Department of Pharmacy, University of Asia Pacific, 74/A Green Rd, Dhaka, 1205, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | | | - Swastika Maitra
- Department of Microbiology, Adamas University, West Bengal, Kolkata, 700126, India
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, 248002, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
6
|
Xie YQ, Huang JY, Chen YX, Zhou Q, Zhou QX, Yang ZY, Xu SK, Tan WH, Liu L. Anti-inflammatory and analgesic effects of Streblus indicus. Front Pharmacol 2023; 14:1249234. [PMID: 37829300 PMCID: PMC10565225 DOI: 10.3389/fphar.2023.1249234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
The bark of Streblus indicus, a Dai medicine in China, has been listed in the Chinese Materia Medica as possessing hemostatic and analgesic properties. Ethnic medicine books record that its bark or leaves for the treatment of mumps and lymphoma. However, according to the literature survey, anti-inflammatory and analgesic studies available for leaves and branches of S. indicus have been seldom reported so far. The current study focuses on the metabolites of S. indicus bark and leaves responsible for anti-inflammatory and analgesic effects on the basis of bioactive-included acetic acid writhing, hot-plate, and xylene-induced ear swelling. The secretion of inflammatory mediators, TNF-α, IL-6, IL-1β, IL-4, and IL-10, were evaluated for their anti-inflammatory by xylene-induced in mouse ear cells. Histological examination was used to assess the anti-inflammatory and analgesic effects of the branches and leaves of S. indicus, and Western blot analysis determined the mechanism of the methanolic extract of branches and leaves. Different metabolites of S. indicus significantly alleviated analgesic and anti-inflammatory effects, with no discernable differences among them. All metabolites decreased the levels of TNF-α, IL-1β, and IL-6 and increased the levels of IL-4 and IL-10. The analgesic and anti-inflammatory mechanism of the methanolic extract was related to the NF-kB signaling pathway. These results not only would account for scientific knowledge for the traditional application of S. indicus, but also provide a credible theoretical foundation for the further development of anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Yan-Qing Xie
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Jing-Yao Huang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Yun-Xiu Chen
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Qi-Xiu Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhu-Ya Yang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Shi-Kui Xu
- Yunnan Institute for Food and Drug Control, Kunming, China
| | - Wen-Hong Tan
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
7
|
Li X, Zhang J, Chen Q, Tang P, Zhang T, Feng Q, Chen J, Liu Y, Wang FP, Peng C, Qin Y, Ouyang L, Xiao K, Liu XY. Diversity-oriented synthesis of diterpenoid alkaloids yields a potent anti-inflammatory agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154907. [PMID: 37295024 DOI: 10.1016/j.phymed.2023.154907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND The diterpenoid alkaloids belong to a highly esteemed group of natural compounds, which display significant biological activities. It is a productive strategy to expand the chemical space of these intriguing natural compounds for drug discovery. METHODS We prepared a series of new derivatives bearing diverse skeletons and functionalities from the diterpenoid alkaloids deltaline and talatisamine based on a diversity-oriented synthesis strategy. The anti-inflammatory activity of these derivatives was initially screened and evaluated by the release of nitric oxide (NO), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-activated RAW264.7 cells. Futhermore, the anti-inflammatory activity of the representative derivative 31a was validated in various inflammatory animal models, including phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mice ear edema, LPS-stimulated acute kidney injury, and collagen-induced arthritis (CIA). RESULTS It was found that several derivatives were able to suppress the secretion of NO, TNF-α, and IL-6 in LPS-activated RAW264.7 cells. Compound 31a, one of the representative derivatives named as deltanaline, demonstrated the strongest anti-inflammatory effects in LPS-activated macrophages and three different animal models of inflammatory diseases by inhibiting nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling and inducing autophagy. CONCLUSION Deltanaline is a new structural compound derived from natural diterpenoid alkaloids, which may serve as a new lead compound for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojie Li
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qifeng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyi Feng
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiajun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yun Liu
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng-Peng Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kai Xiao
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Zhou M, Sun J, Yu Z, Wu Z, Li W, Liu G, Ma L, Wang R, Tang Y. Investigation of Anti-Alzheimer's Mechanisms of Sarsasapogenin Derivatives by Network-Based Combining Structure-Based Methods. J Chem Inf Model 2023; 63:2881-2894. [PMID: 37104820 DOI: 10.1021/acs.jcim.3c00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease with no cure, affects millions of people worldwide and has become one of the biggest healthcare challenges. Some investigated compounds play anti-AD roles at the cellular or the animal level, but their molecular mechanisms remain unclear. In this study, we designed a strategy combining network-based and structure-based methods together to identify targets for anti-AD sarsasapogenin derivatives (AAs). First, we collected drug-target interactions (DTIs) data from public databases, constructed a global DTI network, and generated drug-substructure associations. After network construction, network-based models were built for DTI prediction. The best bSDTNBI-FCFP_4 model was further used to predict DTIs for AAs. Second, a structure-based molecular docking method was employed for rescreening the prediction results to obtain more credible target proteins. Finally, in vitro experiments were conducted for validation of the predicted targets, and Nrf2 showed significant evidence as the target of anti-AD compound AA13. Moreover, we analyzed the potential mechanisms of AA13 for the treatment of AD. Generally, our combined strategy could be applied to other novel drugs or compounds and become a useful tool in identification of new targets and elucidation of disease mechanisms. Our model was deployed on our NetInfer web server (http://lmmd.ecust.edu.cn/netinfer/).
Collapse
Affiliation(s)
- Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiamin Sun
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Mustafa NH, Sekar M, Fuloria S, Begum MY, Gan SH, Rani NNIM, Ravi S, Chidambaram K, Subramaniyan V, Sathasivam KV, Jeyabalan S, Uthirapathy S, Ponnusankar S, Lum PT, Bhalla V, Fuloria NK. Chemistry, Biosynthesis and Pharmacology of Sarsasapogenin: A Potential Natural Steroid Molecule for New Drug Design, Development and Therapy. Molecules 2022; 27:2032. [PMID: 35335393 PMCID: PMC8955086 DOI: 10.3390/molecules27062032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Sarsasapogenin is a natural steroidal sapogenin molecule obtained mainly from Anemarrhena asphodeloides Bunge. Among the various phytosteroids present, sarsasapogenin has emerged as a promising molecule due to the fact of its diverse pharmacological activities. In this review, the chemistry, biosynthesis and pharmacological potentials of sarsasapogenin are summarised. Between 1996 and the present, the relevant literature regarding sarsasapogenin was obtained from scientific databases including PubMed, ScienceDirect, Scopus, and Google Scholar. Overall, sarsasapogenin is a potent molecule with anti-inflammatory, anticancer, antidiabetic, anti-osteoclastogenic and neuroprotective activities. It is also a potential molecule in the treatment for precocious puberty. This review also discusses the metabolism, pharmacokinetics and possible structural modifications as well as obstacles and opportunities for sarsasapogenin to become a drug molecule in the near future. More comprehensive preclinical studies, clinical trials, drug delivery, formulations of effective doses in pharmacokinetics studies, evaluation of adverse effects and potential synergistic effects with other drugs need to be thoroughly investigated to make sarsasapogenin a potential molecule for future drug development.
Collapse
Affiliation(s)
- Nur Hanisah Mustafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (N.H.M.); (P.T.L.)
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (N.H.M.); (P.T.L.)
| | | | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Kuala Lumpur 47500, Malaysia;
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia;
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Malaysia;
| | | | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India;
| | - Subasini Uthirapathy
- Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq;
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamil Nadu, India;
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia; (N.H.M.); (P.T.L.)
| | - Vijay Bhalla
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
10
|
Michels M, Jesus GFA, Voytena APL, Rossetto M, Ramlov F, Córneo E, Feuser P, Gelain D, Dal-Pizzol F. Immunomodulatory Effect of Bifidobacterium, Lactobacillus, and Streptococcus Strains of Paraprobiotics in Lipopolysaccharide-Stimulated Inflammatory Responses in RAW-264.7 Macrophages. Curr Microbiol 2021; 79:9. [PMID: 34905100 DOI: 10.1007/s00284-021-02708-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
The discovery of the potential of paraprobiotics to exert different immunological benefits suggests that further studies should be carried out to determine their potential and mechanisms of action in modulating the immune system. The objective of this study was to investigate the immune response of several microbial-associated molecular patterns (MAMPS) used at different doses in macrophage cell lines RAW-264.7 stimulated with lipopolysaccharide (LPS). Two experiments were conducted. The first was performed to determine a dose response curve for each paraprobiotic (Bifidobacterium lactis, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus paracasei, and Streptococcus thermophilus). Further experiments were carried using only two doses (0.01 g/ml and 0.1 g/ml). RAW-264.7 cells were cultivated in Dubelcco's Modified Eagle's medium supplemented with fetal bovine serum and penicillin/streptomycin. Cells were incubated with LPS (1 μg/ml) and six concentrations of MAMPs were added. RAW-264.7 viability, myeloperoxidase activity, nitrite/nitrate concentration, reactive oxygen species production, oxidative damage, and inflammatory parameters were measured. In the LPS group, there was a significant reduction in cell viability. Myeloperoxidase and nitrite/nitrate concentrations demonstrated a better effect at 0.01 and 0.1 g/ml doses. There was a significant reduction in interleukin-6 (IL-6) levels at 0.1 g/ml dose in all paraprobiotics. IL-10 levels decreased in the LPS group and increased at 0.1 g/ml dose in all paraprobiotics. The dichlorofluorescin diacetate results were reinforced by the observed in oxidative damage. Paraprobiotics are likely to contribute to the improvement of intestinal homeostasis, immunomodulation, and host metabolism.
Collapse
Affiliation(s)
- Monique Michels
- Gabbia Biotechnology, Barra Velha, SC, Brazil. .,Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil. .,Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, 1105 - Bairro Universitário, Criciúma, SC, CEP: 888006-000, Brazil.
| | | | | | | | | | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Paulo Feuser
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Daniel Gelain
- Departament of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
11
|
Yang C, Gong S, Chen X, Wang M, Zhang L, Zhang L, Hu C. Analgecine regulates microglia polarization in ischemic stroke by inhibiting NF-κB through the TLR4 MyD88 pathway. Int Immunopharmacol 2021; 99:107930. [PMID: 34229178 DOI: 10.1016/j.intimp.2021.107930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Therapeutic strategies used to attenuate inflammation and to increase recovery of neurons after a stroke include microglia anti-inflammatory (M2) polarization and repression of proinflammatory (M1). Extracts isolated from Vaccina variola-inoculated rabbit skin, for example analgecine (AGC), have been used as a therapy for patients experiencing lower back pain associated with degenerative diseases of the spine for about twenty years. In the study presented here, neuroprotective effect associated with AGC was analyzed as well as the anti-inflammatory mechanism linked to AGC in terms of attenuating microglia-mediated neuronal damage. Rats were intravenously injected with AGC after middle cerebral artery occlusion (MCAO), which showed to suppress neuronal loss and reduce neurological deficits. In addition, AGC inhibited pro-inflammatory cytokine release and increased anti-inflammatory cytokines. Furthermore, this study revealed that treatment with AGC supported microglia transition from M1 to M2 in both oxygen-glucose deprivation/reperfusion (OGD/R) and LPS/IFN-γ induced microglia cells, as well as indirectly inhibited LPS/IFN-γ-induced neuronal damage through the modulation of microglial polarization. It is also important to note that AGC inhibited NF-κB p65 phosphorylation through repressing TLR4/Myd88/TRAF6 signaling pathway. In addition, we found that TLR4 inhibition by AGC depended on Myd88. Altogether, this work supports that AGC inhibits M1 microglial polarization and promotes anti-inflammation independently and dependently on TLR4/MyD88. Since it is shown to have neuroprotective effects in this study, AGC has great potential to be used in the clinic to reduce inflammation and aid in recovery after stroke.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Shili Gong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xiaoping Chen
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Mingyang Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| | - Chaoying Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
12
|
Zhou JP, Yang XN, Song Y, Zhou F, Liu JJ, Hu YQ, Chen LG. Rosiglitazone alleviates lipopolysaccharide-induced inflammation in RAW264.7 cells via inhibition of NF-κB and in a PPARγ-dependent manner. Exp Ther Med 2021; 22:743. [PMID: 34055059 PMCID: PMC8138265 DOI: 10.3892/etm.2021.10175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Rosiglitazone is a synthetic peroxisome proliferator-activated receptor (PPAR)γ agonist widely used for the treatment of type 2 diabetes. Recent studies have demonstrated that rosiglitazone displays anti-inflammatory effects. The present study aimed to investigate whether rosiglitazone alleviates decreases in RAW264.7 cell viability resulting from lipopolysaccharide (LPS)-induced inflammation, as well as exploring the underlying mechanism. A macrophage inflammatory injury model was established by treating RAW264.7 cells with 100 ng/ml LPS. Cells were divided into LPS and rosiglitazone groups with different concentrations. Cell viability was assessed by performing an MTT assay. The expression of inflammatory cytokines was detected by conducting enzyme-linked immunosorbent assays and reverse transcription-quantitative PCR. Nitric oxidesecretion was assessed using the Griess reagent system. The expression levels of key nuclear factor-κB pathway-associated proteins were detected via western blotting. Rosiglitazone alleviated LPS-induced decrease in RAW264.7 cell viability and inhibited inflammatory cytokine expression in a concentration-dependent manner. Rosiglitazone significantly inhibited LPS-induced upregulation of p65 phosphorylation levels and downregulated IκBα expression levels. However, rosiglitazone-mediated inhibitory effects were reversed by PPARγ knockdown. The results of the present study demonstrated that rosiglitazone significantly inhibited LPS-induced inflammatory responses in RAW264.7 macrophage cells, which was dependent on PPARγ activation and NF-κB suppression.
Collapse
Affiliation(s)
- Jing-Ping Zhou
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Xiao-Ning Yang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Yang Song
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Fei Zhou
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Jing-Jing Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Yi-Qun Hu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Li-Gang Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, P.R. China
| |
Collapse
|
13
|
Zhen H, Hu H, Rong G, Huang X, Tan C, Yu X. VitA or VitD ameliorates bronchopulmonary dysplasia by regulating the balance between M1 and M2 macrophages. Biomed Pharmacother 2021; 141:111836. [PMID: 34214728 DOI: 10.1016/j.biopha.2021.111836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To investigate the therapeutic effects of vitamin A (VitA) or vitamin D (VitD) against bronchopulmonary dysplasia (BPD) and the underlying mechanism from the perspective of macrophage polarization. METHODS A BPD model was established on rats. Hematoxylin and eosin staining was used to evaluate the pathological state of lung tissues. The expression of CD68 was determined by immunohistochemistry assay. The infiltration of M1 and M2 macrophages was marked by immunofluorescence. The expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-10, nitric oxide synthase (NOS), and arginase-1 (Arg-1) were evaluated by quantitative reverse transcription polymerase chain reaction assay, and the ratio of M1/M2 in the bronchoalveolar lavage fluid was determined by flow cytometry. RESULTS Disordered alveolar structure in the lung tissue, thickened alveolar septa, and infiltration of inflammatory cells around the alveolar cavity and pulmonary septa were observed in lipopolysaccharide (LPS)-treated rats. On day 21 post-natal (PN21), the pathological state was aggravated, alveolar simplification was observed, and the expression level of CD68 in the lung tissues was significantly elevated, and these results were dramatically alleviated in the VitA, VitD, and VitA+VitD groups. However, no significant synergistic effect was observed between VitA+VitD and VitA or VitD groups. After the administration with VitA or VitD, IL-10 and Arg-1 were up-regulated on PN10. TNF-α and NOS were up-regulated on PN21. The ratio of macrophage polarization and M2 macrophages increased considerably after the stimulation with LPS, and this result was significantly reversed by VitA or VitD. A significant difference was observed on the effect of different dosages of VitA or VitD on macrophage polarization, among which moderate dosages of VitA or VitD exerted the most significant influence on macrophage polarization. CONCLUSION The BPD-linked pulmonary injury stimulated by LPS can be ameliorated by the introduction of VitA or VitD.
Collapse
Affiliation(s)
- Hong Zhen
- Department of Pediatrics, Langdong Hospital of Guangxi Medical University, No 60 Jinhu Road, Qingxiu district, Nanning city, Guangxi Zhuang Autonomous Region, China.
| | - Hongbo Hu
- Department of Pediatrics, Langdong Hospital of Guangxi Medical University, No 60 Jinhu Road, Qingxiu district, Nanning city, Guangxi Zhuang Autonomous Region, China
| | - Guojie Rong
- Department of Pediatrics, Langdong Hospital of Guangxi Medical University, No 60 Jinhu Road, Qingxiu district, Nanning city, Guangxi Zhuang Autonomous Region, China
| | - Xiuxiu Huang
- Department of Pediatrics, Langdong Hospital of Guangxi Medical University, No 60 Jinhu Road, Qingxiu district, Nanning city, Guangxi Zhuang Autonomous Region, China
| | - Chang Tan
- Department of Pediatrics, Langdong Hospital of Guangxi Medical University, No 60 Jinhu Road, Qingxiu district, Nanning city, Guangxi Zhuang Autonomous Region, China
| | - Xinyuan Yu
- Department of Pediatrics, Langdong Hospital of Guangxi Medical University, No 60 Jinhu Road, Qingxiu district, Nanning city, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
14
|
Qian L, Li JZ, Sun X, Chen JB, Dai Y, Huang QX, Jin YJ, Duan QN. Safinamide prevents lipopolysaccharide (LPS)-induced inflammation in macrophages by suppressing TLR4/NF-κB signaling. Int Immunopharmacol 2021; 96:107712. [PMID: 34162132 DOI: 10.1016/j.intimp.2021.107712] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Inflammation is a basal host defense response that eliminates the causes and consequences of infection and tissue injury. Macrophages are the primary immune cells involved in the inflammatory response. When activated by LPS, macrophages release various pro-inflammatory cytokines, chemokines, inflammatory mediators, and MMPs. However, unbridled inflammation causes further damage to tissues. Safinamide is a selective and reversible monoamine oxidase B (MAOB) inhibitor that has been used for the treatment of Parkinson's disease. In this study, we aimed to investigate whether safinamide has effects on LPS-treated macrophages. Our results show that safinamide inhibited the expression of pro-inflammatory cytokines such as IL-1α, TNF-α, and IL-6. Furthermore, safinamide suppressed the production of CXCL1 and CCL2, thereby preventing leukocyte migration. In addition, safinamide reduced iNOS-derived NO, COX-2-derived PGE2, MMP-2, and MMP-9. Importantly, the functions of safinamide mentioned above were found to be dependent on its inhibitory effect on the TLR4/NF-κB signaling pathway. Our data indicates that safinamide may exert a protective effect against inflammatory response.
Collapse
Affiliation(s)
- LuLu Qian
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jun-Zhao Li
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - XueMei Sun
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Jie-Bin Chen
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying Dai
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qiu-Xiang Huang
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Ying-Ji Jin
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Qing-Ning Duan
- Department of Pediatrics, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China.
| |
Collapse
|
15
|
Yu YY, Cui SC, Zheng TN, Ma HJ, Xie ZF, Jiang HW, Li YF, Zhu KX, Huang CG, Li J, Li JY. Sarsasapogenin improves adipose tissue inflammation and ameliorates insulin resistance in high-fat diet-fed C57BL/6J mice. Acta Pharmacol Sin 2021; 42:272-281. [PMID: 32699264 DOI: 10.1038/s41401-020-0427-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Insulin resistance is a major cause of type 2 diabetes and metabolic syndrome. Macrophage infiltration into obese adipose tissue promotes inflammatory responses that contribute to the pathogenesis of insulin resistance. Suppression of adipose tissue inflammatory responses is postulated to increase insulin sensitivity in obese patients and animals. Sarsasapogenin (ZGY) is one of the metabolites of timosaponin AIII in the gut, which has been shown to exert anti-inflammatory action. In this study, we investigated the effects of ZGY treatment on obesity-induced insulin resistance in mice. We showed that pretreatment with ZGY (80 mg·kg-1·d-1, ig, for 18 days) significantly inhibited acute adipose tissue inflammatory responses in LPS-treated mice. In high-fat diet (HFD)-fed obese mice, oral administration of ZGY (80 mg·kg-1·d-1, for 6 weeks) ameliorated insulin resistance and alleviated inflammation in adipose tissues by reducing the infiltration of macrophages. Furthermore, we demonstrated that ZGY not only directly inhibited inflammatory responses in macrophages and adipocytes, but also interrupts the crosstalk between macrophages and adipocytes in vitro, improving adipocyte insulin resistance. The insulin-sensitizing and anti-inflammatory effects of ZGY may result from inactivation of the IKK /NF-κB and JNK inflammatory signaling pathways in adipocytes. Collectively, our findings suggest that ZGY ameliorates insulin resistance and alleviates the adipose inflammatory state in HFD mice, suggesting that ZGY may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.
Collapse
|
16
|
Zhou L, Shi X, Yin H, Huang Y, Wang R, Ma L. Design, Synthesis and Biological Evaluation of Nobiletin Derivatives as Multifunctional Agents for the Treatment of Alzheimer's Disease. ChemistrySelect 2021. [DOI: 10.1002/slct.202004239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Licheng Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ximeng Shi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Huanhuan Yin
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
17
|
Peng J, Zhao K, Zhu J, Wang Y, Sun P, Yang Q, Zhang T, Han W, Hu W, Yang W, Ruan J, Qian Y. Sarsasapogenin Suppresses RANKL-Induced Osteoclastogenesis in vitro and Prevents Lipopolysaccharide-Induced Bone Loss in vivo. Drug Des Devel Ther 2020; 14:3435-3447. [PMID: 32943842 PMCID: PMC7474134 DOI: 10.2147/dddt.s256867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/23/2020] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Osteoclasts are giant polynuclear cells; their main function is bone resorption. An increased number of osteoclasts and enhanced bone resorption exert significant effects on osteoclast-related bone-lytic diseases, including osteoporosis. Given the limitations of current therapies for osteolytic diseases, it is urgently required to develop safer and more effective alternatives. Sarsasapogenin, a major sapogenin from Anemarrhena asphodeloides Bunge, possesses potent antitumor effects and inhibits NF-κB and MAPK signaling. However, the manner in which it affects osteoclasts is unclear. METHODS We investigated the effects of anti-osteoclastogenic and anti-resorptive of sarsasapogenin on bone marrow-derived osteoclasts. RESULTS Sarsasapogenin inhibited multiple RANKL-induced signaling cascades, thereby inhibiting the induction of key osteoclast transcription factor NFATc1. The in vivo and in vitro results were consistent: sarsasapogenin treatment protected against bone loss in a mouse osteolysis model induced by lipopolysaccharide. CONCLUSION Our research confirms that sarsasapogenin can be used as a new treatment for osteoclast-related osteolytic diseases.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi530021, People’s Republic of China
| | - Kangxian Zhao
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Jiling Zhu
- Department of Clinical Medicine, Medical College of Shaoxing University, Shaoxing, Zhejiang312000, People’s Republic of China
| | - Yanben Wang
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Peng Sun
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Qichang Yang
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| | - Wenjun Hu
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| | - Wanlei Yang
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| | - Jianwei Ruan
- Department of Orthopaedics, Taizhou Municipal Hospital, Taizhou318000, Zhejiang, Republic of China
| | - Yu Qian
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi530021, People’s Republic of China
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Department of Orthopaedics, Shaoxing People’s Hospital, Zhejiang University School of Medicine, Shaoxing312000, Zhejiang, People’s Republic of China
| |
Collapse
|
18
|
Yang GX, Huang Y, Zheng LL, Zhang L, Su L, Wu YH, Li J, Zhou LC, Huang J, Tang Y, Wang R, Ma L. Design, synthesis and evaluation of diosgenin carbamate derivatives as multitarget anti-Alzheimer’s disease agents. Eur J Med Chem 2020; 187:111913. [DOI: 10.1016/j.ejmech.2019.111913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
|
19
|
Pei L, Ye Y, Zhao W, Ye Q, Ge S, Jiang ZW, Liang XQ, Gan HX, Ma L. A validated UPLC-MS/MS method for quantitative determination of a potent neuroprotective agent Sarsasapogenin-AA13 in rat plasma: Application to pharmacokinetic studies. Biomed Chromatogr 2020; 34:e4775. [PMID: 31845362 DOI: 10.1002/bmc.4775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 11/12/2022]
Abstract
Sarsasapogenin-AA13(AA13), a sarsasapogenin derivative, exhibited good neuroprotective and anti-inflammatory activities in vitro and therapeutic effects on learning and memory dysfunction in amyloid-β-injected mice. A sensitive UPLC-MS/MS method was developed and validated to quantitatively determine AA13 in rat plasma and was further applied to evaluate the pharmacokinetic behaviour of AA13 in rats that were administered AA13 intravenously and orally. This method was validated to exhibit excellent linearity in the concentration range of 1-1000 ng/mL. The lower limit of quantification was 1 ng/mL for AA13 in rat plasma. Intra-day accuracy for AA13 was in the range of 90-114%, and inter-day accuracy was in the range of 97-103 %. The relative standard deviation of intra-day and inter-day assay was less than 15%. After a single oral administration of AA13 at the dose of 25 mg/kg, Cmax of AA13 was 1266.4 ± 316.1 ng/mL. AUC0-48 h was 6928.5 ± 1990.1 h·ng/mL, and t1/2 was 10.2 ± 0.8 h. Under intravenous administration of AA13 at a dosage of 250 μg/kg, AUC0-48 h was 785.7 ± 103.3 h⋅ng/mL, and t1/2 was 20.8 ± 7.2 h. Based on the results, oral bioavailability (F %) of AA13 in rats at 25 mg/kg was 8.82 %.
Collapse
Affiliation(s)
- Lixia Pei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyi Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenshu Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songlan Ge
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Wei Jiang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Qiang Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Xian Gan
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lei Ma
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
20
|
Baihu Jia Guizhi Decoction Improves Rheumatoid Arthritis Inflammation by Regulating Succinate/SUCNR1 Metabolic Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3258572. [PMID: 31949465 PMCID: PMC6948314 DOI: 10.1155/2019/3258572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis. Succinate is an inflammatory metabolic signal that exacerbates RA synovitis by activating succinate receptor 1 (SUCNR1) to amplify the release of IL-1β. Thus, inhibition of succinate activation of SUCRN1 could be an effective method to inhibit the inflammation of RA. Baihu Jia Guizhi decoction (BHGZ), which is composed of Gypsum Fibrosum, Anemarrhena asphodeloides Bge., Cinnamomum cassia Presl., Glycyrrhiza uralensis Fisch., and Oryza sativa L., is a Traditional Chinese Medicine (TCM) prescription used to treat RA in clinic. In addition, TCM believes that damp and heat environment is one of the causes of RA. In this study, we tested the role of damp and heat environments in exacerbating RA inflammation and the anti-inflammatory effect of BHGZ, based on succinate/SUCNR1/IL-1β pathway in the adjuvant arthritis (AA) model with damp and heat environment (AA + DHE). Results showed that paw swelling and synovial pathology were significantly increased in AA rats, and these results were aggravated by stimulation in damp and heat environment. BHGZ improved AA + DHE rats' paw swelling, synovial hyperplasia, and inflammatory cell infiltration and reduced IL-1β. In addition, AA rats significantly increased the expression of SUCNR1, and the stimulation of damp and heat environment not only increased the expression of SUCNR1 but also promoted the accumulation of succinate. BHGZ simultaneously reduced the concentration of succinate and the expression of SUCNR1. Finally, SDH activity was decreased in AA rats and AA + DHE rats, while BHGZ increased SDH activity and then reduced succinate concentration. Therefore, we prove that damp and heat environment deteriorated the inflammation of RA which is the activation of succinate/SUCNR1 pathway, while BHGZ regulates SDH activity to reduce the accumulation of succinate and inhibit the activation of SUCNR1 that is the underlying mechanism of its treatment of RA.
Collapse
|
21
|
Pei L, Ge S, Ye Y, Jiang Z, Liang X, Zhao W, Ma L. Development and validation of a UPLC-MS/MS method for determination of Sarsasapogenin-AA22 in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2018; 32:e4295. [PMID: 29797524 DOI: 10.1002/bmc.4295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 11/12/2022]
Abstract
A sarsasapogenin derivative, sarsasapogenin-AA22 (AA22), with cyclobutylamine at the 3-hydroxyl position of sarsasapogenin, has great neuroprotective activity in PC12 cells and NO production inhibitory activity in RAW264.7 cell lines. A method was developed to determine AA22 in rat plasma which was further applied to evaluate the pharmacokinetics of AA22 after taking a single dose of AA22. Liquid chromatography tandem mass spectrometry was used in the method, while diosgenin was used as internal standard. A simple protein precipitation based on acetonitrile was utilized. A simple sample cleanup promoted the throughput of the method considerably. The method was validated over the range of 1-1000 ng/mL with a correlation coefficient > 0.99. The lower limit of quantification was 1 ng/mL for AA22 in plasma. Intra- and inter-day accuracies for AA22 were 92-111 and 100-103%, respectively, and the inter-day precision was <15%. After a single oral dose of 25 mg/kg of AA22, the mean peak plasma concentration of AA22 was 2114 ± 362 ng/mL at 6 h. The area under the plasma concentration-time curve was 196,098 ± 69,375 h ng/mL, and the elimination half-life was 8.7 ± 2.2 h.
Collapse
Affiliation(s)
- Lixia Pei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songlan Ge
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiyi Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziwei Jiang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenshu Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Yang GX, Ge SL, Wu Y, Huang J, Li SL, Wang R, Ma L. Design, synthesis and biological evaluation of 3-piperazinecarboxylate sarsasapogenin derivatives as potential multifunctional anti-Alzheimer agents. Eur J Med Chem 2018; 156:206-215. [PMID: 30006165 DOI: 10.1016/j.ejmech.2018.04.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
Abstract
A series of multifunctional 3-piperazinecarboxylate sarsasapogenin derivatives were designed and synthesized against Alzheimer's disease (AD). The protection against H2O2-triggered oxidative stress in PC12 cells, and inhibition on LPS-induced NO production in RAW264.7 cell lines in vitro by these derivatives were firstly evaluated. Most of the compounds showed better antioxidant and antiinflammatory activities compared with sarsasapogenin, especially AA34 and AA36. Structure-activity relationships revealed that benzyl group, electron-donating group and intramolecular hydrogen bond might be beneficial to enhancing their neuroprotective activities. Moreover, Aβ42 was the optimum predicted target based on the high 3D molecular similarity between compound AA36 and caprospinol. In the following experiments, AA36 significantly protected PC12 cells from Aβ-induced damage and improved learning and memory impairments in Aβ-injected mice. Thus AA36 is regarded as a potent anti-AD agent and N-substituted piperazinecarboxylate can be served as a promising structural unit for anti-AD drug design.
Collapse
Affiliation(s)
- Gui-Xiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Song-Lan Ge
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yan Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Shi-Liang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
23
|
Dong D, Mao Y, Huang C, Jiao Q, Pan H, Ma L, Wang R. Astrocytes mediated the nootropic and neurotrophic effects of Sarsasapogenin-AA13 via upregulating brain-derived neurotrophic factor. Am J Transl Res 2017; 9:4015-4025. [PMID: 28979677 PMCID: PMC5622246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Rhizoma Anemarrhena, a widely used traditional Chinese medicine, has previously been shown to have neuroprotective effect. Sarsasapogenin-AA13 (AA13) is a novel synthetic derivative of Sarsasapogenin, which is extracted from Rhizoma Anemarrhena. The aim of this study is to investigate the nootropic and neurotrophic effects of AA13 and underlying mechanisms. In vitro, cell viability of rat primary astrocytes treated with AA13 and neurons cultured with conditioned medium of AA13-treated rat primary astrocytes was tested by MTT assays. In vivo, a pharmacological model of cognitive impairment induced by scopolamine was employed and spatial memory of the mice was assessed by Morris water maze. This study found that AA13 increased cell viability of primary astrocytes and AA13-treated astrocyte-conditioned medium enhanced the survival rate of primary neurons. Interestingly, AA13 markedly enhanced the level of BDNF in astrocytes. Furthermore, AA13 (6 mg/kg) improved the cognitive deficits in animal models (p<0.05) and BDNF and PSD95 levels were increased in brain. Therefore, we hypothesize that AA13 exerts nootropic and neurotrophic activities through astrocytes mediated upregulation of BDNF secretion. The results suggest that AA13 could be a potential compound for cognitive impairment after further research.
Collapse
Affiliation(s)
- Dong Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, PR China
| | - Yu Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, PR China
| | - Cui Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, PR China
| | - Qian Jiao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, PR China
| | - Hui Pan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, PR China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, PR China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, PR China
| |
Collapse
|
24
|
Huang C, Dong D, Jiao Q, Pan H, Ma L, Wang R. Sarsasapogenin-AA13 ameliorates Aβ-induced cognitive deficits via improving neuroglial capacity on Aβ clearance and antiinflammation. CNS Neurosci Ther 2017; 23:498-509. [PMID: 28466999 DOI: 10.1111/cns.12697] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 01/14/2023] Open
Abstract
AIMS Sarsasapogenin has been reported to improve dementia symptoms somehow, probably through modulating the function of cholinergic system, suppressing neurofibrillary tangles, and inhibiting inflammation. However, the role of sarsasapogenin in response to beta-amyloid (Aβ) remains to be delineated. This study aimed to determine the therapeutic effect of sarsasapogenin-13 (AA13, a sarsasapogenin derivative) on learning and memory impairments in Aβ-injected mice, as well as the role of AA13 in neuroglia-mediated antiinflammation and Aβ clearance. METHODS Focusing on the role of AA13 in regulating glial responses to Aβ, we conducted behavioral, morphological, and protein expression studies to explore the effects of AA13 on Aβ clearance and inflammatory regulation. RESULTS The results indicated that oral administration of AA13 attenuated the memory deficits of intracerebroventricular (i.c.v.) Aβ-injected mice; also, AA13 protected neuroglial cells against Aβ-induced cytotoxicity. The further mechanical studies demonstrated that AA13 reversed the upregulation of proinflammatory M1 markers and increased the expression of antiinflammatory M2 markers in Aβ-treated cells. Furthermore, AA13 facilitated Aβ clearance through promoting Aβ phagocytosis and degradation. AA13 modulated the expression of fatty acid translocase (CD36), insulin-degrading enzyme (IDE), neprilysin (NEP), and endothelin-converting enzyme (ECE) in neuroglia. CONCLUSION The present study indicated that the neuroprotective effect of AA13 might relate to its modulatory effects on microglia activation state, phagocytic ability, and expression of Aβ-degrading enzymes, which makes it a promising therapeutic agent in the early stage of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Cui Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dong Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qian Jiao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Pan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|