1
|
Wang X, Wu W, Yang G, Yang XW, Ma X, Zhu DD, Ahmad K, Khan K, Wang YZ, Sui AR, Guo SY, Kong Y, Yuan B, Luo TY, Liu CK, Zhang P, Zhang Y, Li QF, Wang B, Wu Q, Wu XF, Xiao ZC, Ma QH, Li S. Cell-specific Nav1.6 knockdown reduced astrocyte-derived Aβ by reverse Na +-Ca 2+ transporter-mediated autophagy in alzheimer-like mice. J Adv Res 2024:S2090-1232(24)00309-6. [PMID: 39079584 DOI: 10.1016/j.jare.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Nav1.6 is closely related to the pathology of Alzheimer's Disease (AD), and astrocytes have recently been identified as a significant source of β-amyloid (Aβ). However, little is known about the connection between Nav1.6 and astrocyte-derived Aβ. OBJECTIVE This study explored the crucial role of Nav1.6 in mediated astrocyte-derived Aβ in AD and knockdown astrocytic Nav1.6 alleviates AD progression by promoting autophagy and lysosome-APP fusion. METHODS A mouse model for astrocytic Nav1.6 knockdown was constructed to study the effects of astrocytic Nav1.6 on amyloidosis. The role of astrocytic Nav1.6 on autophagy and lysosome-APP(amyloid precursor protein) fusion was used by transmission electron microscope, immunostaining, western blot and patch clamp. Glial cell activation was detected using immunostaining. Neuroplasticity and neural network were assessed using patch-clamp, Golgi stain and EEG recording. Behavioral experiments were performed to evaluate cognitive defects. RESULTS Astrocytic Nav1.6 knockdown reduces amyloidosis, alleviates glial cell activation and morphological complexity, improves neuroplasticity and abnormal neural networks, as well as promotes learning and memory abilities in APP/PS1 mice. Astrocytic Nav1.6 knockdown reduces itself-derived Aβ by promoting lysosome- APP fusion, which is related to attenuating reverse Na+-Ca2+ exchange current thus reducing intracellular Ca2+ to facilitate autophagic through AKT/mTOR/ULK pathway. CONCLUSION Our findings unveil the crucial role of astrocyte-specific Nav1.6 in reducing astrocyte-derived Aβ, highlighting its potential as a cell-specific target for modulating AD progression.
Collapse
Affiliation(s)
- Xin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Wei Wu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Guang Yang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Wei Yang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xu Ma
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Dan-Dan Zhu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Kabir Ahmad
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Khizar Khan
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ying-Zi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Bo Yuan
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Tian-Yuan Luo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Cheng-Kang Liu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Peng Zhang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yue Zhang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qi-Fa Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qiong Wu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xue-Fei Wu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhi-Cheng Xiao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Quan-Hong Ma
- Institute of Neuroscience & Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China; Department of Neurology and Clinical Research Center of Neurological Disease, the second affilitated Hospital of Soochow University, Suzhou, Jiangsu 215021, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
2
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Kourti M, Metaxas A. A systematic review and meta-analysis of tau phosphorylation in mouse models of familial Alzheimer's disease. Neurobiol Dis 2024; 192:106427. [PMID: 38307366 DOI: 10.1016/j.nbd.2024.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Transgenic models of familial Alzheimer's disease (AD) serve as valuable tools for probing the molecular mechanisms associated with amyloid-beta (Aβ)-induced pathology. In this meta-analysis, we sought to evaluate levels of phosphorylated tau (p-tau) and explore potential age-related variations in tau hyperphosphorylation, within mouse models of AD. The PubMed and Scopus databases were searched for studies measuring soluble p-tau in 5xFAD, APPswe/PSEN1de9, J20 and APP23 mice. Data were extracted and analyzed using standardized procedures. For the 5xFAD model, the search yielded 36 studies eligible for meta-analysis. Levels of p-tau were higher in 5xFAD mice relative to control, a difference that was evident in both the carboxy-terminal (CT) and proline-rich (PR) domains of tau. Age negatively moderated the relationship between genotype and CT phosphorylated tau in studies using hybrid mice, female mice, and preparations from the neocortex. For the APPswe/PSEN1de9 model, the search yielded 27 studies. Analysis showed tau hyperphosphorylation in transgenic vs. control animals, evident in both the CT and PR regions of tau. Age positively moderated the relationship between genotype and PR domain phosphorylated tau in the neocortex of APPswe/PSEN1de9 mice. A meta-analysis was not performed for the J20 and APP23 models, due to the limited number of studies measuring p-tau levels in these mice (<10 studies). Although tau is hyperphosphorylated in both 5xFAD and APPswe/PSEN1de9 mice, the effects of ageing on p-tau are contingent upon the model being examined. These observations emphasize the importance of tailoring model selection to the appropriate disease stage when considering the relationship between Aβ and tau, and suggest that there are optimal intervention points for the administration of both anti-amyloid and anti-tau therapies.
Collapse
Affiliation(s)
- Malamati Kourti
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus.
| | - Athanasios Metaxas
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
He Z, Zhang H, Li X, Tu S, Wang Z, Han S, Du X, Shen L, Li N, Liu Q. The protective effects of Esculentoside A through AMPK in the triple transgenic mouse model of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154555. [PMID: 36610160 DOI: 10.1016/j.phymed.2022.154555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neurofibrillary tangles comprising hyperphosphorylated tau are vital factors associated with the pathogenesis of Alzheimer's disease (AD). The elimination or reduction of hyperphosphorylated and abnormally aggregated tau is a valuable measure in AD therapy. Esculentoside A (EsA), isolated from Phytolacca esculenta, exhibits pharmacotherapeutic efficacy in mice with amyloid beta-induced AD. However, whether EsA affects tau pathology and its specific mechanism of action in AD mice remains unclear. PURPOSE To investigate the roles and mechanisms of EsA in cognitive decline and tau pathology in a triple transgenic AD (3 × Tg-AD) mouse model. METHODS EsA (5 and 10 mg/kg) was administered via intraperitoneal injection to 8-month-old AD mice for eight consecutive weeks. Y-maze and novel object recognition tasks were used to evaluate the cognitive abilities of mice. Potential signaling pathways and targets in EsA-treated AD mice were assessed using quantitative proteomic analysis. The NFT levels and hippocampal synapse numbers were investigated using Gallyas-Braak silver staining and transmission electron microscopy, respectively. Western blotting and immunofluorescence assays were used to measure the expression of tau-associated proteins. RESULTS EsA administration attenuated memory and recognition deficits and synaptic damage in AD mice. Isobaric tags for relative and absolute quantitation proteomic analysis of the mouse hippocampus revealed that EsA modulated the expression of some critical proteins, including brain-specific angiogenesis inhibitor 3, galectin-1, and Ras-related protein 24, whose biological roles are relevant to synaptic function and autophagy. Further research revealed that EsA upregulated AKT/GSK3β activity, in turn, inhibited tau hyperphosphorylation and promoted autophagy to clear abnormally phosphorylated tau. In hippocampus-derived primary neurons, inhibiting AMP-activated protein kinase (AMPK) activity through dorsomorphin could eliminate the effect of EsA, as revealed by increased tau hyperphosphorylation, downregulated activity AKT/GSK3β, and blocked autophagy. CONCLUSIONS To our knowledge, this study is the first to demonstrate that EsA attenuates cognitive decline by targeting the pathways of both tau hyperphosphorylation and autophagic clearance in an AMPK-dependent manner and it shows a high reference value in AD pharmacotherapy research.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Sixin Tu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
5
|
Gu L, Cai N, Li M, Bi D, Yao L, Fang W, Wu Y, Hu Z, Liu Q, Lin Z, Lu J, Xu X. Inhibitory Effects of Macelignan on Tau Phosphorylation and Aβ Aggregation in the Cell Model of Alzheimer's Disease. Front Nutr 2022; 9:892558. [PMID: 35662922 PMCID: PMC9159362 DOI: 10.3389/fnut.2022.892558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder mainly affecting old population. In this study, two Tau overexpressing cell lines (SH-SY5Y/Tau and HEK293/Tau), N2a/SweAPP cell line, and 3× Transgene (APPswe/PS1M146V/TauP301L) mouse primary nerve cell lines were used as AD models to study the activity and molecular mechanism of macelignan, a natural compound extracted from Myristica fragrans, against AD. Our study showed that macelignan could reduce the phosphorylation of Tau at Thr 231 site, Ser 396 site, and Ser 404 site in two overexpressing Tau cell lines. It also could decrease the phosphorylation of Tau at Ser 404 site in mouse primary neural cells. Further investigation of its mechanism found that macelignan could reduce the phosphorylation of Tau by increasing the level of autophagy and enhancing PP2A activity in Tau overexpressing cells. Additionally, macelignan could activate the PERK/eIF2α signaling pathway to reduce BACE1 translation, which further inhibits the cleavage of APP and ultimately suppresses Aβ deposition in N2a/SweAPP cells. Taken together, our results indicate that macelignan has the potential to be developed as a treatment for AD.
Collapse
Affiliation(s)
- Liang Gu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Nan Cai
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Meiting Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weishan Fang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jun Lu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand
- *Correspondence: Jun Lu
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Xu Xu
| |
Collapse
|
6
|
Yu X, Cai Y, Zhao X, Wu C, Liu J, Niu T, Shan X, Lu Y, Ruan Y, He J. Investigation of the chemical structure of anti-amyloidogenic constituents extracted from Thamnolia vermicularis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115059. [PMID: 35114341 DOI: 10.1016/j.jep.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thamnolia vermicularis (Sw.) Schaer (T. vermicularis) is known to have therapeutic effects on various diseases in Southwest China. Recent research has highlighted that T. vermicularis may suppress Aβ level and Tau hyperphosphorylation to improve the pathological characteristics of Alzheimer's disease, indicating that it might have the potential to treat Alzheimer's disease. AIM OF THE STUDY The objective of this study was to evaluate the inhibitory effect of T. vermicularis on the fibril formation of a typical amyloidogenic protein, hen egg white lysozyme (HEWL), and to identify the effective components that could potentially enable an extract of T. vermicularis to be used in the development of novel therapeutic agents. MATERIALS AND METHODS A water extract was prepared from T. vermicularis (TVWE) and its inhibitory effect on amyloid fibrillation in vitro was investigated using thioflavin T and 8-anilinonapthalene-1-sulfonic acid spectrofluorometric analyses. The anti-amyloidogenic components of TVWE were separated and qualitatively analyzed using thin layer chromatography (TLC), supercritical carbon dioxide extraction (SFE-CO2), and liquid chromatography-mass spectrometry. Finally, the effect of the bioactive components on the structure of HEWL in the early stages of fibrillogenesis was determined by molecular docking simulation. RESULTS TVWE strongly inhibited the ability of HEWL to form an amyloid fibril, yielding an IC50 of 0.018 mg/mL for the inhibition of fibrillogenesis. The chemical constituents in the various TVWE fractions resolved by TLC were qualitatively identified by liquid chromatography-quadrupole/time-of-flight mass spectrometry (LC-Q-TOF-MS). The target components were predicted by reviewing the existing literature on T. vermicularis, in which the components of T. vermicularis, along with three small molecules (molecular weight: 182) were preliminarily identified. Molecular docking simulation showed that these small molecules were bound to the core region of HEWL, affecting its stability. Finally, the active anti-amyloidogenic components were extracted from whole T. vermicularis using SFE-CO2 and then identified. CONCLUSION The potential components of TVWE that could prevent HEWL fibrillogenesis were primarily identified using TLC, LC-Q-TOF-MS, and SFE-CO2. The candidate small-molecule compounds were further predicted by combining the LC-Q-TOF-MS results with molecular docking analysis. The effective components of T. vermicularis were extracted using SFE-CO2. Together, these methods could constitute a practical strategy for the isolation and identification of anti-amyloidogenic components from a traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiaobo Yu
- School of Life Science, Liaoning University, Shenyang, 110036, PR China; Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Yisheng Cai
- School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, 110101, PR China
| | - Chenyu Wu
- School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Junqing Liu
- School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Tingting Niu
- School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xu Shan
- School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Yanjie Lu
- School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Yanan Ruan
- School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianwei He
- School of Life Science, Liaoning University, Shenyang, 110036, PR China; Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China.
| |
Collapse
|
7
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
8
|
Guo X, Bao X, Wang X, Liu D, Liu P, Chi T, Ji X, Zheng Z, Chen G, Zou L. OAB-14 Effectively Ameliorates the Dysfunction of the Endosomal-Autophagic-Lysosomal Pathway in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2021; 12:3985-3993. [PMID: 34652916 DOI: 10.1021/acschemneuro.1c00209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Alzheimer's disease (AD), damaged Aβ clearance contributes to elevated levels of Aβ that cause a series of cytotoxic cascade reactions. Thus, targeting Aβ clearance has now been considered a valid therapeutic approach for AD. Cellular uptake and degradation are important mechanisms for Aβ clearance, which are mainly performed by the endosomal-autophagic-lysosomal (EAL) pathway. Our previous study showed that OAB-14, a novel small molecule designed with bexarotene as the lead compound, treatment for 3 months significantly alleviated cognitive disorders and remarkably reduced the deposition of Aβ without affecting its production in APP/PS1 transgenic mice. Here, we further revealed that enhancement of the EAL activity is one of the mechanisms that increases Aβ clearance after OAB-14 administration for 3 months. OAB-14 facilitates receptor-mediated endocytosis and restores autophagy flux via the AMPK/mTOR pathway. Meanwhile, OAB-14 enhances the lysosomal activity, and reduced Aβ accumulation in lysosomes was observed in OAB-14-treated AD mice. These results suggest that OAB-14 may promote Aβ clearance in lysosomes by alleviating the EAL dysfunction in AD mice.
Collapse
Affiliation(s)
- Xiaoli Guo
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xiaojuan Wang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Danyang Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Tianyan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xuefei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Zhonghui Zheng
- Shandong Xinhua Pharmaceutical Co., Ltd., Zibo, Shandong 255086, P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Libo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
9
|
Sun XL, Zhang JB, Guo YX, Xia TS, Xu LC, Rahmand K, Wang GP, Li XJ, Han T, Wang NN, Xin HL. Xanthohumol ameliorates memory impairment and reduces the deposition of β-amyloid in APP/PS1 mice via regulating the mTOR/LC3II and Bax/Bcl-2 signalling pathways. J Pharm Pharmacol 2021; 73:1230-1239. [PMID: 33909081 DOI: 10.1093/jpp/rgab052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Xanthohumol (XAN) is a unique component of Humulus lupulus L. and is known for its diverse biological activities. In this study, we investigated whether Xanthohumol could ameliorate memory impairment of APP/PS1 mice, and explored its potential mechanism of action. METHODS APP/PS1 mice were used for in vivo test and were treated with N-acetylcysteine and Xanthohumol for 2 months. Learning and memory levels were evaluated by the Morris water maze. Inflammatory and oxidative markers in serum and hippocampus and the deposition of Aβ in the hippocampus were determined. Moreover, the expression of autophagy and apoptosis proteins was also evaluated by western blot. KEY FINDINGS Xanthohumol significantly reduced the latency and increased the residence time of mice in the target quadrant. Additionally, Xanthohumol increased superoxide dismutase level and reduced Interleukin-6 and Interleukin-1β levels both in serum and hippocampus. Xanthohumol also significantly reduced Aβ deposition in the hippocampus and activated autophagy and anti-apoptotic signals. CONCLUSIONS Xanthohumol effectively ameliorates memory impairment of APP/PS1 mice by activating mTOR/LC3 and Bax/Bcl-2 signalling pathways, which provides new insight into the neuroprotective effects of Xanthohumol.
Collapse
Affiliation(s)
- Xiao-Lei Sun
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, ShanghaiChina.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, JinanChina
| | - Jia-Bao Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, ShanghaiChina
| | - Yun-Xiang Guo
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, ShanghaiChina
| | - Tian-Shuang Xia
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, ShanghaiChina
| | - Ling-Chuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, JinanChina
| | - Khalid Rahmand
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Guo-Ping Wang
- Xinjiang Institute of Chinese Materia Medica, Urumqi, China
| | - Xiao-Jin Li
- Xinjiang Institute of Chinese Materia Medica, Urumqi, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, ShanghaiChina
| | - Na-Ni Wang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, ShanghaiChina
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, ShanghaiChina
| |
Collapse
|
10
|
Bulbocodin D ameliorate cognitive impairment in APP/PS1 transgenic mice by modulating amyloid-beta burden, oxidative status and neuroinflammation. Psychopharmacology (Berl) 2021; 238:2073-2082. [PMID: 33811504 DOI: 10.1007/s00213-021-05832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Amyloid β peptide (Aβ) triggers a series of pathological events including microglial activation, oxidative stress, and inflammation-causing neuronal death and typical pathological changes in Alzheimer's disease (AD). OBJECTIVES This study aimed to investigate the therapeutic effects and mechanism of bulbocodin D for AD in vivo. METHODS In this study, Morris water maze (MWM) analysis was used to detect the cognitive ability of APP/PS1 mice after gavage with bulbocodin D for 2 months. Levels of Aβ40, Aβ42, IL-1β, and TNF-α were evaluated by ELISA. Aβ plaques and biomarkers of neuroinflammation were also investigated through histological analysis. RESULTS We established that bulbocodin D significantly improved cognitive deficits in APP/PS1 transgenic mice and reduced the levels of amyloid plaque, Aβ40, and Aβ42. Bulbocodin D also reduced levels of microglial markers IbA1, GFAP, and antioxidant enzymes and reduced the products of lipid peroxidation and proinflammatory cytokines. CONCLUSION In summary, the present study provides preclinical evidence that oral bulbocodin D can reduce AD pathology.
Collapse
|
11
|
Prasanth MI, Malar DS, Tencomnao T, Brimson JM. The emerging role of the sigma-1 receptor in autophagy: hand-in-hand targets for the treatment of Alzheimer's. Expert Opin Ther Targets 2021; 25:401-414. [PMID: 34110944 DOI: 10.1080/14728222.2021.1939681] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Autophagy is a cellular catabolic mechanism that helps clear damaged cellular components and is essential for normal cellular and tissue function. The sigma-1 receptor (σ-1R) is a chaperone protein involved in signal transduction, neurite outgrowth, and plasticity, improving memory, and neuroprotection. Recent evidence shows that σ-1R can promote autophagy. Autophagy activation by the σ-1Rs along with other neuroprotective effects makes it an interesting target for the treatment of Alzheimer's disease. AF710B, T-817 MA, and ANAVEX2-73 are some of the σ-1R agonists which have shown promising results and have entered clinical trials. These molecules have also been found to induce autophagy and show cytoprotective effects in cellular models. AREAS COVERED This review provides insight into the current understanding of σ-1R functions related to autophagy and their role in alleviating AD. EXPERT OPINION We propose a mechanism through which the activation of σ-1R and autophagy could alter amyloid precursor protein processing to inhibit amyloid-β production by reconstituting cholesterol and gangliosides in the lipid raft to offer neuroprotection against AD. Future AD treatment could involve the combined targeting of the σ-1R and autophagy activation. We suggest that future studies investigate the link between autophagy the σ-1R and AD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Modulatory Effects of Autophagy on APP Processing as a Potential Treatment Target for Alzheimer's Disease. Biomedicines 2020; 9:biomedicines9010005. [PMID: 33374126 PMCID: PMC7824196 DOI: 10.3390/biomedicines9010005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the formation of intracellular aggregate composed of heavily phosphorylated tau protein and extracellular deposit of amyloid-β (Aβ) plaques derived from proteolysis cleavage of amyloid precursor protein (APP). Autophagy refers to the lysosomal-mediated degradation of cytoplasmic constituents, which plays a critical role in maintaining cellular homeostasis. Importantly, recent studies reported that dysregulation of autophagy is associated in the pathogenesis of AD, and therefore, autophagy modulation has gained attention as a promising approach to treat AD pathogenesis. In AD, both the maturation of autolysosomes and its retrograde transports have been obstructed, which causes the accumulation of autophagic vacuoles and eventually leads to degenerating and dystrophic neurites function. However, the mechanism of autophagy modulation in APP processing and its pathogenesis have not yet been fully elucidated in AD. In the early stage of AD, APP processing and Aβ accumulation-mediated autophagy facilitate the removal of toxic protein aggregates via mTOR-dependent and -independent pathways. In addition, a number of autophagy-related genes (Atg) and APP are thought to influence the development of AD, providing a bidirectional link between autophagy and AD pathology. In this review, we summarized the current observations related to autophagy regulation and APP processing in AD, focusing on their modulation associated with the AD progression. Moreover, we emphasizes the application of small molecules and natural compounds to modulate autophagy for the removal and clearance of APP and Aβ deposits in the pathological condition of AD.
Collapse
|
13
|
Wang H, Peng G, Wang B, Yin H, Fang X, He F, Zhao D, Liu Q, Shi L. IL-1R -/- alleviates cognitive deficits through microglial M2 polarization in AD mice. Brain Res Bull 2020; 157:10-17. [PMID: 32004659 DOI: 10.1016/j.brainresbull.2019.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023]
Abstract
The neuroinflammatory response is considered a crucial event in the pathology of Alzheimer's disease (AD). Neurotoxic amyloid β (Aβ) oligomers activate neuronal glial cells, leading to the elevated generation of a large variety of inflammatory factors. Therefore, the regulation of interleukin-1 receptor (IL-1R) activity is believed to be a potential target for AD therapy. However, previous evidence of the role of IL-1R in AD-related neuroinflammation is ambiguous. To reveal the exact role of IL-1R in AD and related inflammatory reactions, we generated IL-1R-/- AD mice. Based on the Morris water maze results, 4-month-old IL-1R-/- AD mice showed better learning and memory ability than that of AD mice. However, IL-1R-/- had little influence on amyloid precursor protein proteolysis, while IL-1R-/- increased ADAM17 expression level. Surprisingly, IL-1R-/- even enhanced glial activation. IL-1R-/- indeed attenuated inflammatory cytokine secretion, especially that of cytokins associated with M1 polarization, while it led to increased levels of some cytokins associated with M2 polarization. Finally, we found that IL-1R-/- reduced the phagocytic ability of microglia. Taken together, these results suggest that IL-1R deficiency may alleviate cognitive deficits in AD mice in a manner that is partially dependent on ADAM17 regulation and microglia M2 repolarization.
Collapse
Affiliation(s)
- Huanhuan Wang
- School of Medicine; Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.
| | - Guoping Peng
- Department of Neurology, The 1stAffiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Wang
- College of Life Science, Hangzhou Normal University, Hangzhou, China; Department of Clinical Laboratory, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hongping Yin
- School of Medicine; Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xingyue Fang
- The 1stAffiliated Hospital, Hainan Medical School, Haikou, China
| | - Fangping He
- Department of Neurology, The 1stAffiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dongjiu Zhao
- School of Medicine; Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qibing Liu
- College of Science, Hainan Medical School, Haikou, China
| | - Liyun Shi
- Department of Immunology, Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
14
|
Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research Progress on Alzheimer's Disease and Resveratrol. Neurochem Res 2020; 45:989-1006. [PMID: 32162143 DOI: 10.1007/s11064-020-03007-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a common irreversible neurodegenerative disease characterized by amyloid-β plaques, neurofibrillary tangles, and changes in tau phosphorylation, is accompanied by memory loss and symptoms of cognitive dysfunction. Increases in disease incidence due to the ageing of the population have placed a great burden on society. To date, the mechanism of AD and the identities of adequate drugs for AD prevention and treatment have eluded the medical community. It has been confirmed that phytochemicals have certain neuroprotective effects against AD. For example, some progress has been made in research on the use of resveratrol, a natural polyphenolic phytochemical, for the prevention and treatment of AD in recent years. Elucidation of the pathogenesis of AD will create a solid foundation for drug treatment. In addition, research on resveratrol, including its mechanism of action, the roles of signalling pathways and its therapeutic targets, will provide new ideas for AD treatment, which is of great significance. In this review, we discuss the possible relationships between AD and the following factors: synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), silent information regulator 1 (SIRT1), and estrogens. We also discuss the findings of previous studies regarding these relationships in the context of AD treatment and further summarize research progress related to resveratrol treatment.
Collapse
Affiliation(s)
- Yan Yan
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huihuang Yang
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuxun Xie
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuanlin Ding
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Danli Kong
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Haibing Yu
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
15
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
16
|
Zhong L, Liu H, Zhang W, Liu X, Jiang B, Fei H, Sun Z. Ellagic acid ameliorates learning and memory impairment in APP/PS1 transgenic mice via inhibition of β-amyloid production and tau hyperphosphorylation. Exp Ther Med 2018; 16:4951-4958. [PMID: 30542451 PMCID: PMC6257515 DOI: 10.3892/etm.2018.6860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/23/2018] [Indexed: 01/20/2023] Open
Abstract
β-amyloid (Aβ) aggregation and tau hyperphosphorylation are considered to be the primary pathological hallmarks of Alzheimer's disease (AD). Targeted inhibition of these pathological processes may provide effective treatments for AD. Accumulating evidence has demonstrated that ellagic acid (EA) exerts neuroprotective effects in several diseases. The present study investigated the effects of EA on AD-associated learning and memory deficits on APP/PS1 double transgenic mice and the underlying mechanisms. APP/PS1 mice or wild-type C57BL/6 mice were intragastrically administered EA (50 mg/kg/day) or vehicle for 60 consecutive days. The learning and memory abilities of mice were investigated using the Morris water maze test. Hippocampal regions were examined for the presence of amyloid plaques, neuronal apoptosis and tau phosphorylation. Expression levels of APP, Aβ, RAC-αserine/threonine-protein kinase and glycogen synthase kinase (GSK)3β in the hippocampus were determined by western blot analysis and ELISA. The results demonstrated that EA treatment ameliorated spatial learning and memory impairment in APP/PS1 mice and significantly reduced neuronal apoptosis and Aβ deposition in the hippocampus (P<0.05 and P<0.01). In addition, EA significantly inhibited the hyperphosphorylation of tau and significantly decreased the activity of glycogen synthase kinase (GSK)3β (P<0.01), which is involved in tau phosphorylation. Overall, these findings indicated that the beneficial effects of EA on AD-associated cognitive impairments may be attributed to the inhibition of Aβ production and tau hyperphosphorylation, and its beneficial action may be mediated in part, by the RAC-α serine/threonine-protein kinase/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Lili Zhong
- Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China.,Postdoctoral Program, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Hong Liu
- Postdoctoral Program, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China.,Department of Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Weijia Zhang
- Second Department of Orthopedic Surgery, Harbin First Hospital, Harbin, Heilongjiang 150010, P.R. China
| | - Xu Liu
- Experimental Center, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Bo Jiang
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Hongxin Fei
- Department of Pathology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhongren Sun
- Key Laboratory of Acupuncture Clinical Neurobiology (Encephalopathy), Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
17
|
Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, Huang J, Xu B, Long D, Li J, Li Q, Xu L, Xuan A. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 2018; 69:351-363. [PMID: 29253574 DOI: 10.1016/j.bbi.2017.12.009] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Alzheimer'sdisease(AD) is characterized by deposition of amyloid-β (Aβ)plaques, neurofibrillary tangles, andneuronal loss, accompaniedbyneuroinflammation. Neuroinflammatoryprocesses are thought to contribute toAD pathophysiology. Metformin has been reported to have anti-inflammatory efficacy. However, whether metformin is responsible for the anti-neuroinflammationand neuroprotection on APPswe/PS1ΔE9 (APP/PS1) mice remains unclear. Here we showed that metformin attenuated spatial memory deficit, neuron loss in the hippocampus and enhanced neurogenesis in APP/PS1 mice. In addition, metformin administration decreased amyloid-β (Aβ)plaque load and chronic inflammation (activated microglia and astrocytes as well as pro-inflammatory mediators) in the hippocampus and cortex. Further study demonstrated that treatment with metformin enhanced cerebral AMPK activation. Meanwhile, metformin notably suppressed the activation of P65 NF-κB, mTOR and S6K, reduced Bace1 protein expression. Our data suggest that metformin can exert functional recovery of memory deficits and neuroprotective effect on APP/PS1 mice via triggering neurogenesis and anti-inflammation mediated by regulating AMPK/mTOR/S6K/Bace1 and AMPK/P65 NF-κB signaling pathways in the hippocampus, which may contribute to improvement in neurological deficits.
Collapse
Affiliation(s)
- Zhenri Ou
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xuejian Kong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiangdong Sun
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaosong He
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Le Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhuo Gong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jingyi Huang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Biao Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Dahong Long
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianhua Li
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Qingqing Li
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Liping Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
18
|
Ting HC, Chang CY, Lu KY, Chuang HM, Tsai SF, Huang MH, Liu CA, Lin SZ, Harn HJ. Targeting Cellular Stress Mechanisms and Metabolic Homeostasis by Chinese Herbal Drugs for Neuroprotection. Molecules 2018; 23:E259. [PMID: 29382106 PMCID: PMC6017457 DOI: 10.3390/molecules23020259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve the brain, memory, and nervous system. To apply ancient knowledge to modern science, some major natural therapeutic compounds in herbs were extracted and evaluated in recent decades. Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect against neurodegenerative diseases, we summarize studies that discovered neuroprotection by herbal compounds and compound-related mechanisms in neurodegenerative disease models. Those compounds discussed herein show neuroprotection through different mechanisms, such as cytokine regulation, autophagy, endoplasmic reticulum (ER) stress, glucose metabolism, and synaptic function. The interleukin (IL)-1β and tumor necrosis factor (TNF)-α signaling pathways are inhibited by some compounds, thus attenuating the inflammatory response and protecting neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against neuronal death by affecting glucose metabolism and synaptic function. Since the progression of neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection differ, therapeutic strategies may need to involve multiple compounds and consider the type and stage of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hsiao-Chien Ting
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
| | - Chia-Yu Chang
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Kang-Yun Lu
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Hong-Meng Chuang
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Agricultural Biotechnology Center, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Sheng-Feng Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Mao-Hsuan Huang
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Ching-Ann Liu
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Pathology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
19
|
Wen YR, Yang JH, Wang X, Yao ZB. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease. Neural Regen Res 2018; 13:709-716. [PMID: 29722325 PMCID: PMC5950683 DOI: 10.4103/1673-5374.230299] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Impaired amyloid-β clearance from the brain is a core pathological event in Alzheimer's disease. The therapeutic effect of current pharmacotherapies is unsatisfactory, and some treatments cause severe side effects. The meningeal lymphatic vessels might be a new route for amyloid-β clearance. This study investigated whether promoting dural lymphangiogenesis facilitated the clearance of amyloid-β from the brain.First, human lymphatic endothelial cells were treated with 100 ng/mL recombinant human vascular endothelial growth factor-C (rhVEGF-C) protein. Light microscopy verified that rhVEGF-C, a specific ligand for vascular endothelial growth factor receptor-3 (VEGFR-3), significantly promoted tube formation of human lymphatic endothelial cells in vitro. In an in vivo study, 200 μg/mL rhVEGF-C was injected into the cisterna magna of APP/PS1 transgenic mice, once every 2 days, four times in total. Immunofluorescence staining demonstrated high levels of dural lymphangiogenesis in Alzheimer's disease mice. One week after rhVEGF-C administration, enzyme-linked immunosorbent assay results showed that levels of soluble amyloid-β were decreased in cerebrospinal fluid and brain. The Morris water maze test demonstrated that spatial cognition was restored. These results indicate that the upregulation of dural lymphangiogenesis facilities amyloid-β clearance from the brain of APP/PS1 mice, suggesting the potential of the VEGF-C/VEGFR-3 signaling pathway as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Ya-Ru Wen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jun-Hua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Bin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Choi RY, Ham JR, Yeo J, Hur JS, Park SK, Kim MJ, Lee MK. Anti-Obesity Property of Lichen Thamnolia vermicularis Extract in 3T3-L1 Cells and Diet-Induced Obese Mice. Prev Nutr Food Sci 2017; 22:285-292. [PMID: 29333380 PMCID: PMC5758091 DOI: 10.3746/pnf.2017.22.4.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Thamnolia vermicularis (TV) is an edible lichen that is prevalent in the alpine zone of East Asia. This study evaluated the feasibility of using TV acetone extracts as a functional food based on experiments using cell line and obese mice. The cellular triglyceride levels and Oil red O staining of 3T3-L1 cells indicated that TV extracts (5 and 10 μg/mL) dose-dependently suppressed adipocyte differentiation and lipid accumulation compared with the control. The TV extract (0.4%, w/w) in a high-fat diet (HFD) was supplemented to C57BL/6N mice for 12 weeks, and TV extract supplement significantly reduced visceral fat mass and body weight compared with HFD feeding alone. The TV extract also induced significant decreases in serum and hepatic lipids, whereas it increased the serum high-density lipoproteins-cholesterol/total cholesterol ratio and fecal lipids levels. Moreover, the TV extract led to significantly lower homeostasis model assessment of insulin resistance in diet-induced obese mice. Taken together, these results suggest that the TV extract may have anti-obesity effects, including lipid-lowering, and it is a natural resource with the potential for use in obesity management.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922,
Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922,
Korea
| | - Jiyoung Yeo
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922,
Korea
| | - Jae-Seoun Hur
- Department of Environmental Education, Sunchon National University, Jeonnam 57922,
Korea
| | - Seok-Kyu Park
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922,
Korea
| | - Myung-Joo Kim
- Department of Bakery & Barista, Suseong College, Daegu 42078,
Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922,
Korea
| |
Collapse
|