1
|
Hong Z, Huang X, Xia L, Liang T, Bai X. Reciprocal regulation of MMP-28 and EGFR is required for sustaining proliferative signaling in PDAC. J Exp Clin Cancer Res 2025; 44:68. [PMID: 39994761 PMCID: PMC11849219 DOI: 10.1186/s13046-025-03323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUD Sustaining proliferation signaling is the top hallmarks of cancer, driving continuous tumor growth and resistance to drug treatments. Blocking proliferation signaling has shown limited benefit in clinical treatment of pancreatic ductal adenocarcinoma, highlighting the urgent need to deeply understand proliferation signaling and develop new therapeutic strategies. METHODS By leveraging clinical data and data from the TCGA and GDSC datasets, we investigated the association between MMP-28 expression and the sensitivity to EGFR inhibitors as well as the prognosis of PDAC. Transcriptomic and biological experiments explore the regulatory role of MMP-28 on the EGFR signaling pathway. Additionally, in vitro and in vivo studies are employed to evaluate MMP-28 as a biomarker for sensitivity to EGFR inhibitors. RESULTS We found that MMP-28, a metalloproteinase, was significantly associated with the sensitivity to EGFR inhibitors. Furthermore, MMP-28 could promote PDAC growth and metastasis. Mechanistically, MMP-28 facilitated the maturation and release of the TGF-α precursor, thus promoting EGFR activation. In return, EGFR upregulated MMP-28 through AP-1-mediated transcription, forming a positive feedback loop that provided sustaining proliferation signaling for PDAC. Subsequently, MMP-28 was identified to predict the response to EGFR inhibitors and recognize responsive patients. CONCLUSIONS Our findings revealed the role of MMP-28 and EGFR in generation of sustaining proliferation signaling and provided a new therapy strategy for PDAC.
Collapse
Affiliation(s)
- Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang University Cancer Center, Hangzhou, 310063, China.
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, 310003, China.
| | - Linghao Xia
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Zhejiang Province, Hangzhou, 31003, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, China.
- Zhejiang University Cancer Center, Hangzhou, 310063, China.
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, 310003, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Zhejiang Province, Hangzhou, 31003, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, China.
- Zhejiang University Cancer Center, Hangzhou, 310063, China.
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Diab M. New Therapeutic Targets in RAS Wild-type Pancreatic Cancer. Curr Treat Options Oncol 2024; 25:1556-1562. [PMID: 39546212 DOI: 10.1007/s11864-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 11/17/2024]
Abstract
OPINION STATEMENT The landscape of treatment of advanced PDAC is witnessing significant changes. This is in part due to the advent of molecular profiling, which has highlighted molecularly-distinct subsets of pts, especially those with KRAS wild-type disease. We now know that these pts harbor genomic alterations that not only serve as molecular drivers but also pose as therapeutically relevant markers. In the absence of strong evidence to support the use of targeted therapy in the front-line setting, we continue to offer chemotherapy for treatment-naïve pts. However, an argument can be made for the front-line use of targeted therapy in pts who are not fit for chemotherapy or who are not interested in it. The challenge is ensuring that molecular profiling is done in a timely fashion to prevent significant delays in therapy. In our practice, we offer molecular testing to all pts with a new diagnosis of advanced PDAC. We prefer the utility of targeted therapy in the second line and beyond for pts who have an actionable target, over the use of further chemotherapy, as targeted therapy appears to confer deep and durable responses and longer survival. For pts with MSI-H or MMRd disease, the use of immunotherapy is indicated, although it has to be noted that MSI-H/MMRd PDAC performed worse that other MSI-H/MMRd cancers treated with immunotherapy. Therefore, in the presence of MSI-H/MMRd and an additional actionable target, we prefer treating with targeted therapy and reserving immunotherapy for later lines. Pt preference has to be taken into consideration at all times though.
Collapse
Affiliation(s)
- Maria Diab
- Clinical Assistant Professor, Michigan State University/Henry Ford Health Sciences, 2800 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
3
|
Mucciolo G, Araos Henríquez J, Jihad M, Pinto Teles S, Manansala JS, Li W, Ashworth S, Lloyd EG, Cheng PSW, Luo W, Anand A, Sawle A, Piskorz A, Biffi G. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer. Cancer Cell 2024; 42:101-118.e11. [PMID: 38157863 DOI: 10.1016/j.ccell.2023.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. Cancer-associated fibroblasts (CAFs) are recognized potential therapeutic targets, but poor understanding of these heterogeneous cell populations has limited the development of effective treatment strategies. We previously identified transforming growth factor beta (TGF-β) as a main driver of myofibroblastic CAFs (myCAFs). Here, we show that epidermal growth factor receptor/Erb-B2 receptor (EGFR/ERBB2) signaling is induced by TGF-β in myCAFs through an autocrine process mediated by amphiregulin. Inhibition of this EGFR/ERBB2-signaling network in PDAC organoid-derived cultures and mouse models differentially impacts distinct CAF subtypes, providing insights into mechanisms underpinning their heterogeneity. Remarkably, EGFR-activated myCAFs promote PDAC metastasis in mice, unmasking functional significance in myCAF heterogeneity. Finally, analyses of other cancer datasets suggest that these processes might operate in other malignancies. These data provide functional relevance to myCAF heterogeneity and identify a candidate target for preventing tumor invasion in PDAC.
Collapse
Affiliation(s)
- Gianluca Mucciolo
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Joaquín Araos Henríquez
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Muntadher Jihad
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Sara Pinto Teles
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Judhell S Manansala
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Wenlong Li
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Sally Ashworth
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Eloise G Lloyd
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Priscilla S W Cheng
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Weike Luo
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Akanksha Anand
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Ashley Sawle
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Anna Piskorz
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, Cambridge CB2 0RE, UK.
| |
Collapse
|
4
|
Kikuchi Y, Shimada H, Hatanaka Y, Kinoshita I, Ikarashi D, Nakatsura T, Kitano S, Naito Y, Tanaka T, Yamashita K, Oshima Y, Nanami T. Clinical practice guidelines for molecular tumor markers, 2nd edition review part 1. Int J Clin Oncol 2024; 29:1-19. [PMID: 38019341 DOI: 10.1007/s10147-023-02430-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023]
Abstract
With advances in gene and protein analysis technologies, many target molecules that may be useful in cancer diagnosis have been reported. Therefore, the "Tumor Marker Study Group" was established in 1981 with the aim of "discovering clinically" useful molecules. Later, the name was changed to "Japanese Society for Molecular Tumor Marker Research" in 2000 in response to the remarkable progress in gene-related research. Currently, the world of cancer treatment is shifting from the era of representative tumor markers of each cancer type used for tumor diagnosis and treatment evaluation to the study of companion markers for molecular-targeted therapeutics that target cancer cells. Therefore, the first edition of the Molecular Tumor Marker Guidelines, which summarizes tumor markers and companion markers in each cancer type, was published in 2016. After publication of the first edition, the gene panel testing using next-generation sequencing became available in Japan in June 2019 for insured patients. In addition, immune checkpoint inhibitors have been indicated for a wide range of cancer types. Therefore, the 2nd edition of the Molecular Tumor Marker Guidelines was published in September 2021 to address the need to revise the guidelines. Here, we present an English version of the review (Part 1) of the Molecular Tumor Marker Guidelines, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan.
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Ichiro Kinoshita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Hokkaido, Japan
| | - Daiki Ikarashi
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigehisa Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Chiba, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Tokyo, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Tokyo, Japan
| | - Yoko Oshima
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| | - Tatsuki Nanami
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| |
Collapse
|
5
|
Zhen DB, Safyan RA, Konick EQ, Nguyen R, Prichard CC, Chiorean EG. The role of molecular testing in pancreatic cancer. Therap Adv Gastroenterol 2023; 16:17562848231171456. [PMID: 37197396 PMCID: PMC10184226 DOI: 10.1177/17562848231171456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is highly aggressive and has few treatment options. To personalize therapy, it is critical to delineate molecular subtypes and understand inter- and intra-tumoral heterogeneity. Germline testing for hereditary genetic abnormalities is recommended for all patients with PDA and somatic molecular testing is recommended for all patients with locally advanced or metastatic disease. KRAS mutations are present in 90% of PDA, while 10% are KRAS wild type and are potentially targetable with epidermal growth factor receptor blockade. KRASG12C inhibitors have shown activity in G12C-mutated cancers, and novel G12D and pan-RAS inhibitors are in clinical trials. DNA damage repair abnormalities, germline or somatic, occur in 5-10% of patients and are likely to benefit from DNA damaging agents and maintenance therapy with poly-ADP ribose polymerase inhibitors. Fewer than 1% of PDA harbor microsatellite instability high status and are susceptible to immune checkpoint blockade. Albeit very rare, occurring in <1% of patients with KRAS wild-type PDAs, BRAF V600E mutations, RET and NTRK fusions are targetable with cancer agnostic Food and Drug Administration-approved therapies. Genetic, epigenetic, and tumor microenvironment targets continue to be identified at an unprecedented pace, enabling PDA patients to be matched to targeted and immune therapeutics, including antibody-drug conjugates, and genetically engineered chimeric antigen receptor or T-cell receptor - T-cell therapies. In this review, we highlight clinically relevant molecular alterations and focus on targeted strategies that can improve patient outcomes through precision medicine.
Collapse
Affiliation(s)
- David B. Zhen
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rachael A. Safyan
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric Q. Konick
- University of Washington, School of Medicine Seattle, WA, USA
| | - Ryan Nguyen
- University of Washington, School of Medicine Seattle, WA, USA
| | | | - E. Gabriela Chiorean
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, 825 Eastlake Avenue East, LG-465, Seattle, WA 98109, USA Fred Hutchinson
| |
Collapse
|
6
|
Turpin A, Neuzillet C, Colle E, Dusetti N, Nicolle R, Cros J, de Mestier L, Bachet JB, Hammel P. Therapeutic advances in metastatic pancreatic cancer: a focus on targeted therapies. Ther Adv Med Oncol 2022; 14:17588359221118019. [PMID: 36090800 PMCID: PMC9459481 DOI: 10.1177/17588359221118019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Mortality from pancreatic ductal adenocarcinoma (PDAC) is increasing worldwide and effective new treatments are urgently needed. The current treatment of metastatic PDAC in fit patients is based on two chemotherapy combinations (FOLFIRINOX and gemcitabine plus nab-paclitaxel) which were validated more than 8 years ago. Although almost all treatments targeting specific molecular alterations have failed so far when administered to unselected patients, encouraging results were observed in the small subpopulations of patients with germline BRCA 1/2 mutations, and somatic gene fusions (neurotrophic tyrosine receptor kinase, Neuregulin 1, which are enriched in KRAS wild-type PDAC), KRAS G12C mutations, or microsatellite instability. While targeted tumor metabolism therapies and immunotherapy have been disappointing, they are still under investigation in combination with other drugs. Optimizing pharmacokinetics and adapting available chemotherapies based on molecular signatures are other promising avenues of research. This review evaluates the current expectations and limits of available treatments and analyses the existing trials. A permanent search for actionable vulnerabilities in PDAC tumor cells and microenvironments will probably result in a more personalized therapeutic approach, keeping in mind that supportive care must also play a major role if real clinical efficacy is to be achieved in these patients.
Collapse
Affiliation(s)
- Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020,
Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to
Therapies, University Lille, CHU Lille, Lille, France
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie
Institute, Versailles Saint-Quentin University, Paris-Saclay University,
Saint-Cloud, France
| | - Elise Colle
- Department of Digestive and Medical Oncology,
Hospital Paul Brousse (AP-HP), Villejuif, University of Paris Saclay,
France
| | - Nelson Dusetti
- Cancer Research Center of Marseille, CRCM,
Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille,
France
| | - Rémy Nicolle
- Centre de Recherche sur l’Inflammation, INSERM,
U1149, CNRS, ERL 8252, Université de Paris Cité, Paris, France
| | - Jérôme Cros
- Department of Pathology, University of Paris
Cité, Hospital Beaujon (AP-HP), Clichy, France
| | - Louis de Mestier
- Department of Gastroenterology and
Pancreatology, University of Paris Cité, Hospital Beaujon (AP-HP), Clichy,
France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology and Digestive
Oncology, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC University,
Paris, France
| | - Pascal Hammel
- Department of Digestive and Medical Oncology,
Hôpital Paul Brousse (AP-HP), 12 Avenue Paul Vaillant-Couturier, Villejuif
94800, University of Paris Saclay, France
| |
Collapse
|
7
|
Rudloff U. Emerging kinase inhibitors for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Emerg Drugs 2022; 27:345-368. [PMID: 36250721 PMCID: PMC9793333 DOI: 10.1080/14728214.2022.2134346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the deadliest solid organ cancers. In the absence of specific warning symptoms pancreatic cancer is diagnosed notoriously late. Current systemic chemotherapy regimens extend survival by a mere few months. With the advances in genetic, proteomic, and immunological profiling there is strong rationale to test kinase inhibitors to improve outcome. AREAS COVERED This review article provides a comprehensive summary of approved treatments and past, present, and future developments of kinase inhibitors in pancreatic cancer. Emerging roles of protein kinase inhibitors are discussed in the context of the unique stroma, the lack of high-prevalence therapeutic targets and rapid emergence of acquired resistance, novel immuno-oncology kinase targets, and recent medicinal chemistry advances. EXPERT OPINION Due to the to-date frequent failure of protein kinase inhibitors indiscriminately administered to unselected pancreatic cancer patients, there is a shift toward the development of these agents in molecularly defined subgroups which are more likely to respond. The development of accurate biomarkers to select patients who are the best candidates based on a detailed understanding of mechanism of action, pro-survival roles, and mediation of resistance of targeted kinases will be critical for the future development of protein kinase inhibitors in this disease.
Collapse
Affiliation(s)
- Udo Rudloff
- Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Vaquero J, Pavy A, Gonzalez-Sanchez E, Meredith M, Arbelaiz A, Fouassier L. Genetic alterations shaping tumor response to anti-EGFR therapies. Drug Resist Updat 2022; 64:100863. [DOI: 10.1016/j.drup.2022.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Xu ZH, Wang WQ, Liu L, Lou WH. A special subtype: Revealing the potential intervention and great value of KRAS wildtype pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188751. [PMID: 35732240 DOI: 10.1016/j.bbcan.2022.188751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and has devastating consequences on affected families and society. Its dismal prognosis is attributed to poor specificity of symptoms during early stages. It is widely believed that PDAC patients with the wildtype (WT) KRAS gene benefit more from currently available treatments than those with KRAS mutations. The oncogenic genetic changes alternations generally found in KRAS wildtype PDAC are related to either the KRAS pathway or microsatellite instability/mismatch repair deficiency (MSI/dMMR), which enable the application of tailored treatments based on each patient's genetic characteristics. This review focuses on targeted therapies against alternative tumour mechanisms in KRAS WT PDAC.
Collapse
Affiliation(s)
- Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wen-Hui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer 2022; 22:131-142. [PMID: 34789870 DOI: 10.1038/s41568-021-00418-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), already among the deadliest epithelial malignancies, is rising in both incidence and contribution to overall cancer deaths. Decades of research have improved our understanding of PDAC carcinogenesis, including characterizing germline predisposition, the cell of origin, precursor lesions, the sequence of genetic alterations, including simple and structural alterations, transcriptional changes and subtypes, tumour heterogeneity, metastatic progression and the tumour microenvironment. These fundamental advances inform contemporary translational efforts in primary prevention, screening and early detection, multidisciplinary management and survivorship, as prospective clinical trials begin to adopt molecular-based selection criteria to guide targeted therapies. Genomic and transcriptomic data on PDAC were also included in the international pan-cancer analysis of approximately 2,600 cancers, a milestone in cancer research that allows further insight through comparison with other tumour types. Thus, this is an ideal time to review our current knowledge of PDAC evolution and heterogeneity, gained from the study of preclinical models and patient biospecimens, and to propose a model of PDAC evolution that takes into consideration findings from varied sources, with a particular focus on the genomics of human PDAC.
Collapse
Affiliation(s)
- Ashton A Connor
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Steven Gallinger
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, ON, Canada.
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, ON, Canada.
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
11
|
Lundy J, Harris M, Zalcberg J, Zimet A, Goldstein D, Gebski V, Borsaru A, Desmond C, Swan M, Jenkins BJ, Croagh D. EUS-FNA Biopsies to Guide Precision Medicine in Pancreatic Cancer: Results of a Pilot Study to Identify KRAS Wild-Type Tumours for Targeted Therapy. Front Oncol 2021; 11:770022. [PMID: 34956889 PMCID: PMC8696205 DOI: 10.3389/fonc.2021.770022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death and lacks effective treatment options. Diagnostic endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) biopsies represent an appealing source of material for molecular analysis to inform targeted therapy, as they are often the only available tissue for patients presenting with PDAC irrespective of disease stage. However, EUS-FNA biopsies are typically not used to screen for precision medicine studies due to concerns about low tissue yield and quality. Epidermal growth factor receptor (EGFR) inhibition has shown promise in clinical trials of unselected patients with advanced pancreatic cancer, but has not been prospectively tested in KRAS wild-type patients. Here, we examine the clinical utility of EUS-FNA biopsies for molecular screening of KRAS wild-type PDAC patients for targeted anti-EGFR therapy to assess the feasibility of this approach. Patients and Methods Fresh frozen EUS-FNA or surgical biopsies from PDAC patient tumours were used to screen for KRAS mutations. Eligible patients with recurrent, locally advanced, or metastatic KRAS wild-type status who had received at least one prior line of chemotherapy were enrolled in a pilot study (ACTRN12617000540314) and treated with panitumumab at 6mg/kg intravenously every 2 weeks until progression or unacceptable toxicity. The primary endpoint was 4-month progression-free survival (PFS). Results 275 patient biopsies were screened for KRAS mutations, which were detected in 88.3% of patient samples. 8 eligible KRAS wild-type patients were enrolled onto the interventional study between November 2017 and December 2020 and treated with panitumumab. 4-month PFS was 14.3% with no objective tumour responses observed. The only grade 3/4 treatment related toxicity observed was hypomagnesaemia. Conclusions This study demonstrates proof-of-principle feasibility to molecularly screen patients with pancreatic cancer for targeted therapies, and confirms diagnostic EUS-FNA biopsies as a reliable source of tumour material for molecular analysis. Single agent panitumumab was safe and tolerable but led to no objective tumour responses in this population.
Collapse
Affiliation(s)
- Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Marion Harris
- Department of Oncology, Faculty of Medicine, Nursing and Health Sciences and School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - John Zalcberg
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia.,Public Health and Preventative Medicine, Monash University, Melbourne, VIC, Australia
| | - Allan Zimet
- Department of Medical Oncology, Epworth Hospital, Melbourne, VIC, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.,Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Val Gebski
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Adina Borsaru
- Diagnostic Imaging, Monash Health, Melbourne, VIC, Australia
| | | | - Michael Swan
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Daniel Croagh
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,Department of Surgery, Epworth Healthcare, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J Gastroenterol 2021; 27:6527-6550. [PMID: 34754151 PMCID: PMC8554400 DOI: 10.3748/wjg.v27.i39.6527] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the United States. Although chemotherapeutic regimens such as gemcitabine+ nab-paclitaxel and FOLFIRINOX (FOLinic acid, 5-Fluroruracil, IRINotecan, and Oxaliplatin) significantly improve patient survival, the prevalence of therapy resistance remains a major roadblock in the success of these agents. This review discusses the molecular mechanisms that play a crucial role in PDAC therapy resistance and how a better understanding of these mechanisms has shaped clinical trials for pancreatic cancer chemotherapy. Specifically, we have discussed the metabolic alterations and DNA repair mechanisms observed in PDAC and current approaches in targeting these mechanisms. Our discussion also includes the lessons learned following the failure of immunotherapy in PDAC and current approaches underway to improve tumor's immunological response.
Collapse
Affiliation(s)
- Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
13
|
Abstract
For several decades, cytotoxic chemotherapy was the mainstay of treatment for pancreatic ductal adenocarcinoma (PDAC). Advances in molecular profiling have identified predictive genomic alterations in PDAC-the germline and somatic genome are now routinely interrogated in patients with PDAC because of their therapeutic relevance. The composite role of the epithelial cell compartment and the tumor microenvironment in defining PDAC biology needs further elucidation to deconvolute the spatiotemporal heterogeneity appreciated in this disease. Novel clinical trial approaches leveraging signal seeking, adaptive statistical designs, and master protocols using several candidate drugs that target relevant therapeutic targets are are essential to unlocking the potential of precision medicine in PDAC.
Collapse
Affiliation(s)
- Ben George
- Division of Hematology and Oncology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226, USA.
| |
Collapse
|
14
|
Gu Y, Ji Y, Jiang H, Qiu G. Clinical Effect of Driver Mutations of KRAS, CDKN2A/P16, TP53, and SMAD4 in Pancreatic Cancer: A Meta-Analysis. Genet Test Mol Biomarkers 2021; 24:777-788. [PMID: 33347393 DOI: 10.1089/gtmb.2020.0078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: To evaluate the prognostic value of driver mutations in the KRAS, CDKN2A/P16, TP53, and SMAD4 genes in pancreatic cancer to aid in the design of therapeutic strategies. Search Strategy: A systematic search was conducted using PubMed, MEDLINE, Springer, and Cochrane library to identify eligible studies published between January 1990 and June 2018 that reported an association between driver mutations in these genes and survival data. Inclusion Criteria: Articles which passed the primary screen were further scrutinized for the presence of all the following items: (1) cohort studies or case-control studies, evaluating the relationship between driver mutations and cancer; (2) cancer diagnoses clearly proved; and (3) hazard ratios (HR) and 95% confidence intervals (CIs) were characterized by sufficient information. Data Extraction and Analysis: Selection of included articles, data extraction, and methodological quality assessments were, respectively, conducted by two authors. Results: The meta-analysis was composed of 17 studies on the P53, 8 on SMAD4, 7 on CDKN2A/P16, and 2 on KRAS, containing 3373 samples. Our pooled results demonstrated that the patients with overexpression of the P53 (HR = 1.249, 95% CI = 1.003-1.554, p = 0.047), SMAD4 (HR = 1.397, 95% CI = 1.015-1.922, p = 0.040), CDKN2A/P16 (HR = 0.916, 95% CI = 0.583-1.439, p = 0.704), and KRAS (HR = 1.68, 95% CI = 1.27-2.22, p < 0.001) mutations all had poorer overall survival. Conclusion: This systematic review and meta-analysis supports the use of driver mutations in the P53, SMAD4, and KRAS genes as prognostic markers for pancreatic cancer.
Collapse
Affiliation(s)
- Yujun Gu
- Department of Ultrasound Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou City, China
| | - Yayun Ji
- Department of Interventional Ultrasound, Xianyang Central Hospital, Xianyang City, China
| | - Hui Jiang
- Medical Imaging Department, Zhaoqing Medical College, Zhaoqing City, China
| | - Ganbin Qiu
- Medical Imaging Department, Zhaoqing Medical College, Zhaoqing City, China
| |
Collapse
|
15
|
Karlsen EA, Kahler S, Tefay J, Joseph SR, Simpson F. Epidermal Growth Factor Receptor Expression and Resistance Patterns to Targeted Therapy in Non-Small Cell Lung Cancer: A Review. Cells 2021; 10:1206. [PMID: 34069119 PMCID: PMC8156654 DOI: 10.3390/cells10051206] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022] Open
Abstract
Globally, lung cancer is the leading cause of cancer-related death. The majority of non-small cell lung cancer (NSCLC) tumours express epidermal growth factor receptor (EGFR), which allows for precise and targeted therapy in these patients. The dysregulation of EGFR in solid epithelial cancers has two distinct mechanisms: either a kinase-activating mutation in EGFR (EGFR-mutant) and/or an overexpression of wild-type EGFR (wt-EGFR). The underlying mechanism of EGFR dysregulation influences the efficacy of anti-EGFR therapy as well as the nature of resistance patterns and secondary mutations. This review will critically analyse the mechanisms of EGFR expression in NSCLC, its relevance to currently approved targeted treatment options, and the complex nature of secondary mutations and intrinsic and acquired resistance patterns in NSCLC.
Collapse
Affiliation(s)
- Emma-Anne Karlsen
- Simpson Laboratory, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane 4102, Australia; (S.R.J.); (F.S.)
- Department of General Surgery, Mater Hospital Brisbane, South Brisbane 4101, Australia
- Faculty of Medicine, The University of Queensland, St Lucia 4067, Australia; (S.K.); (J.T.)
| | - Sam Kahler
- Faculty of Medicine, The University of Queensland, St Lucia 4067, Australia; (S.K.); (J.T.)
| | - Joan Tefay
- Faculty of Medicine, The University of Queensland, St Lucia 4067, Australia; (S.K.); (J.T.)
- Department of General Surgery, Redland Hospital, Cleveland 4163, Australia
| | - Shannon R. Joseph
- Simpson Laboratory, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane 4102, Australia; (S.R.J.); (F.S.)
| | - Fiona Simpson
- Simpson Laboratory, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane 4102, Australia; (S.R.J.); (F.S.)
| |
Collapse
|
16
|
Hoyer K, Hablesreiter R, Inoue Y, Yoshida K, Briest F, Christen F, Kakiuchi N, Yoshizato T, Shiozawa Y, Shiraishi Y, Striefler JK, Bischoff S, Lohneis P, Putter H, Blau O, Keilholz U, Bullinger L, Pelzer U, Hummel M, Riess H, Ogawa S, Sinn M, Damm F. A genetically defined signature of responsiveness to erlotinib in early-stage pancreatic cancer patients: Results from the CONKO-005 trial. EBioMedicine 2021; 66:103327. [PMID: 33862582 PMCID: PMC8054140 DOI: 10.1016/j.ebiom.2021.103327] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Background high recurrence rates of up to 75% within 2 years in pancreatic ductal adenocarcinoma (PDAC) patients resected for cure indicate a high medical need for clinical prediction tools and patient specific treatment approaches. Addition of the EGFR inhibitor erlotinib to adjuvant chemotherapy failed to improve outcome but its efficacy in some patients warrants predictors of responsiveness. Patients and Methods we analysed tumour samples from 293 R0-resected patients from the randomized, multicentre phase III CONKO-005 trial (gemcitabine ± erlotinib) with targeted sequencing, copy number, and RNA expression analyses. Findings a total of 1086 mutations and 4157 copy-number aberrations (CNAs) with a mean of 17.9 /tumour were identified. Main pathways affected by genetic aberrations were the MAPK-pathway (99%), cell cycle control (92%), TGFβ signalling (77%), chromatin remodelling (71%), and the PI3K/AKT pathway (65%). Based on genetic signatures extracted with non-negative matrix factorization we could define five patient clusters, which differed in mutation patterns, gene expression profiles, and survival. In multivariable Cox regression analysis, SMAD4 aberrations were identified as a negative prognostic marker in the gemcitabine arm, an effect that was counteracted when treated with erlotinib (DFS: HR=1.59, p = 0.016, and OS: HR = 1.67, p = 0.014). Integration of differential gene expression analysis established SMAD4 alterations with low MAPK9 expression (n = 91) as a predictive biomarker for longer DFS (HR=0.49; test for interaction, p = 0.02) and OS (HR = 0.32; test for interaction, p = 0.001). Interpretation this study identified five biologically distinct patient clusters with different actionable lesions and unravelled a previously unappreciated association of SMAD4 alteration status with erlotinib effectiveness. Confirmatory studies and mechanistic experiments are warranted to challenge the hypothesis that SMAD4 status might guide addition of erlotinib treatment in early-stage PDAC patients.
Collapse
Affiliation(s)
- K Hoyer
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - R Hablesreiter
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - F Briest
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - F Christen
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - N Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Shiraishi
- Laboratory of DNA information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - J K Striefler
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - S Bischoff
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - P Lohneis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany; Institute of Pathology, University of Cologne, Cologne, Germany
| | - H Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - O Blau
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - U Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - L Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - U Pelzer
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - M Hummel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - H Riess
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - S Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan; Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - M Sinn
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F Damm
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
17
|
Liu X, Li Z, Wang Y. Advances in Targeted Therapy and Immunotherapy for Pancreatic Cancer. Adv Biol (Weinh) 2021; 5:e1900236. [PMID: 33729700 DOI: 10.1002/adbi.201900236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a highly aggressive malignancy with an overall 5-year survival rate of <6% due to therapeutic resistance and late-stage diagnosis. These statistics have not changed despite 50 years of research and therapeutic development. Pancreatic cancer is predicted to become the second leading cause of cancer mortality by the year 2030. Currently, the treatment options for pancreatic cancer are limited. This disease is usually diagnosed at a late stage, which prevents curative surgical resection. Chemotherapy is the most frequently used approach for pancreatic cancer treatment and has limited effects. In many other cancer types, targeted therapy and immunotherapy have made great progress and have been shown to be very promising prospects; these treatments also provide hope for pancreatic cancer. The need for research on targeted therapy and immunotherapy is pressing due to the poor prognosis of pancreatic cancer, and in recent years, there have been some breakthroughs for targeted therapy and immunotherapy in pancreatic cancer. This review summarizes the current preclinical and clinical studies of targeted therapy and immunotherapy for pancreatic cancer and ends by describing the challenges and outlook.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
18
|
Park R, Al-Jumayli M, Miller K, Saeed A, Saeed A. Exceptional response to Erlotinib monotherapy in EGFR Exon 19-deleted, KRAS wild-type, Chemo-refractory advanced pancreatic adenocarcinoma. Cancer Treat Res Commun 2021; 27:100342. [PMID: 33611092 DOI: 10.1016/j.ctarc.2021.100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/02/2023]
Abstract
Advanced pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor with an abysmal prognosis. Beyond the first-line setting, treatment for advanced PDAC is limited and suboptimal. Also, the efficacy of epidermal growth factor receptor (EGFR) targeted therapy alone in the chemo-refractory setting in PDAC tumors harboring druggable EGFR mutations is unclear. Here we describe the case of a patient with chemo-refractory advanced PDAC with an activating exon-19 EGFR mutation who had an exceptional response to erlotinib monotherapy.
Collapse
Affiliation(s)
- Robin Park
- MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA, United States
| | - Mohammed Al-Jumayli
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, Kansas, United States
| | - Kirk Miller
- Department of Radiology, Kansas University Medical Center, Kansas City, Kansas, United States
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, Kansas University Medical Center, Kansas City, Kansas, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, Kansas, United States.
| |
Collapse
|
19
|
Afatinib plus gemcitabine versus gemcitabine alone as first-line treatment of metastatic pancreatic cancer: The randomised, open-label phase II ACCEPT study of the Arbeitsgemeinschaft Internistische Onkologie with an integrated analysis of the 'burden of therapy' method. Eur J Cancer 2021; 146:95-106. [PMID: 33588150 DOI: 10.1016/j.ejca.2020.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Targeting the epidermal growth factor receptor pathway remains controversial in pancreatic cancer. Afatinib is an oral irreversible ErbB family blocker approved in non-small-cell lung cancer. This open-label, multicenter, randomised phase II trial evaluated gemcitabine plus afatinib (Gem/afatinib) versus gemcitabine (Gem) alone as first-line treatment for metastatic pancreatic cancer. PATIENTS AND METHODS Patients were randomised in a 2:1 ratio to either Gem (1000 mg/m2 weekly for three weeks followed by one week of rest, repeated every four weeks) and afatinib (40 mg orally once daily) or Gem alone. Overall survival (OS) was the primary study end-point. The novel BOTh©™ methodology was implemented to derive a quantitative estimate for the 'Burden of Therapy/Toxicity' (BOTh) for each patient on every day during the clinical study. RESULTS One hundred nineteen patients from 25 centres were randomised, 79 patients for Gem/afatinib and 40 for Gem. Median OS was 7.3 months in the Gem/afatinib arm versus 7.4 months in the Gem-alone arm (hazard ratio [HR]: 1.06, p = 0.80). Median progression-free survival was identical in both arms (3.9 months versus 3.9 months, HR: 0.85, p = 0.43). Adverse events were more frequent in the Gem/afatinib arm, especially diarrhoea (71% vs. 13%) and skin rash (65% vs. 5%). The BOTh©™ analysis revealed a significantly higher burden of toxicity in the combination arm (p = 0.0005). CONCLUSION The addition of afatinib to Gem did not improve treatment efficacy and was more toxic. The BOTh©™ methodology allowed a detailed insight into the course of treatment-related adverse events over the study period. The trial was registered at clinicaltrials.gov (NCT01728818) and Eudra-CT (2011-004063-77).
Collapse
|
20
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Stoica AF, Chang CH, Pauklin S. Molecular Therapeutics of Pancreatic Ductal Adenocarcinoma: Targeted Pathways and the Role of Cancer Stem Cells. Trends Pharmacol Sci 2020; 41:977-993. [PMID: 33092892 DOI: 10.1016/j.tips.2020.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late detection and highly metastatic characteristics. PDAC cells vary in their tumorigenic capabilities with the presence of a subset of PDAC cells known as pancreatic cancer stem cells (CSCs), which are more resistant to currently used therapeutics. Here, we describe the role of CSCs and tumour stroma in developing therapeutic strategies for PDAC and suggest that developmental plasticity could be considered a hallmark of cancers. We provide an overview of the molecular targets in PDAC treatments, including targeted therapies of cellular processes such as proliferation, evasion of growth suppressors, activating metastasis, and metabolic effects. Since PDAC is an inflammation-driven cancer, we also revisit therapeutic strategies targeting inflammation and immunotherapy. Lastly, we suggest that targeting epigenetic mechanisms opens therapeutic routes for heterogeneous cancer cell populations, including CSCs.
Collapse
Affiliation(s)
- Andrei-Florian Stoica
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
22
|
Abstract
The Bateson–Dobzhansky–Muller (BDM) model describes negative epistatic interactions that occur between genes with a different evolutionary history to account for hybrid incompatibility and is a central theory explaining genetic mechanisms underlying speciation. Since the early 1900 s when the BDM model was forwarded examples of BDM incompatibility have been described in only a few nonvertebrate cases. This study reports the only vertebrate system, with clearly defined interacting loci, that supports the BDM model. In addition, this study also poses that tumorigenesis serves as a novel mechanism that accounts for postzygotic isolation. Mixing genomes of different species by hybridization can disrupt species-specific genetic interactions that were adapted and fixed within each species population. Such disruption can predispose the hybrids to abnormalities and disease that decrease the overall fitness of the hybrids and is therefore named as hybrid incompatibility. Interspecies hybridization between southern platyfish and green swordtails leads to lethal melanocyte tumorigenesis. This occurs in hybrids with tumor incidence following progeny ratio that is consistent with two-locus interaction, suggesting melanoma development is a result of negative epistasis. Such observations make Xiphophorus one of the only two vertebrate hybrid incompatibility examples in which interacting genes have been identified. One of the two interacting loci has been characterized as a mutant epidermal growth factor receptor. However, the other locus has not been identified despite over five decades of active research. Here we report the localization of the melanoma regulatory locus to a single gene, rab3d, which shows all expected features of the long-sought oncogene interacting locus. Our findings provide insights into the role of egfr regulation in regard to cancer etiology. Finally, they provide a molecular explainable example of hybrid incompatibility.
Collapse
|
23
|
Ciecielski KJ, Berninger A, Algül H. Precision Therapy of Pancreatic Cancer: From Bench to Bedside. Visc Med 2020; 36:373-380. [PMID: 33178734 PMCID: PMC7590788 DOI: 10.1159/000509232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), with a mortality rate of 94% and a 5-year-survival rate of only 8%, is one of the deadliest cancer entities worldwide, and early diagnostic methods as well as effective therapies are urgently needed. SUMMARY This review summarizes current clinical procedure and recent developments of oncological therapy in the palliative setting of metastatic PDAC. It further gives examples of successful, as well as failed, targeted therapy approaches and finally discusses promising ongoing research into the decade-old question of the "undruggability" of KRAS. KEY MESSAGES Bench-driven concepts change the clinical landscape from "one size fits all" towards precision medicine. With growing insight into the molecular mechanisms of pancreatic cancer the era of targeted therapy in PDAC is gaining a new momentum.
Collapse
Affiliation(s)
| | | | - Hana Algül
- Comprehensive Cancer Center Munich (CCCM), Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
24
|
Sharma N, Bhushan A, He J, Kaushal G, Bhardwaj V. Metabolic plasticity imparts erlotinib-resistance in pancreatic cancer by upregulating glucose-6-phosphate dehydrogenase. Cancer Metab 2020; 8:19. [PMID: 32974013 PMCID: PMC7507640 DOI: 10.1186/s40170-020-00226-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant forms of cancer. Lack of effective treatment options and drug resistance contributes to the low survival among PDAC patients. In this study, we investigated the metabolic alterations in pancreatic cancer cells that do not respond to the EGFR inhibitor erlotinib. We selected erlotinib-resistant pancreatic cancer cells from MiaPaCa2 and AsPC1 cell lines. Metabolic profiling of erlotinib-resistant cells revealed a significant downregulation of glycolytic activity and reduced level of glycolytic metabolites compared to the sensitive cells. The resistant cells displayed elevated expression of the pentose phosphate pathway (PPP) enzymes involved in ROS regulation and nucleotide biosynthesis. The enhanced PPP elevated cellular NADPH/NADP+ ratio and protected the cells from reactive oxygen species (ROS)-induced damage. Inhibition of PPP using 6-aminonicotinamide (6AN) elevated ROS levels, induced G1 cell cycle arrest, and sensitized resistant cells to erlotinib. Genetic studies identified elevated PPP enzyme glucose-6-phosphate dehydrogenase (G6PD) as an important contributor to erlotinib resistance. Mechanistically, our data showed that upregulation of inhibitor of differentiation (ID1) regulates G6PD expression in resistant cells thus contributing to altered metabolic phenotype and reduced response to erlotinib. Together, our results highlight an underlying role of tumor metabolism in PDAC drug response and identify G6PD as a target to overcome drug resistance.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| | - Alok Bhushan
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Gagan Kaushal
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
25
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at an advanced stage, with systemic therapy being the mainstay of treatment. Survival continues to be limited, typically less than 1 year. The PDAC microenvironment is characterized by a paucity of malignant epithelial cells, abundant stroma with predominantly immunosuppressive T cells and myelosuppressive-type macrophages (M2), and hypovascularity. The current treatment options for metastatic PDAC are modified (m)FOLFIRINOX /FOLFIRINOX or nab-paclitaxel and gemcitabine in patients with good performance status (PS) (ECOG 0-1/KPS 70-100%) and gemcitabine with or without a second agent for those with ECOG PS 2-3. New therapies are emerging, and the current guidelines endorse both germline and somatic testing in PDAC to evaluate actionable findings. Important themes related to new therapeutic approaches include DNA damage repair strategies, immunotherapy, targeting the stroma, and cancer-cell metabolism. Targeted therapy alone (outside small genomically defined subsets) or in combination with standard cytotoxic therapy, thus far, has proven disappointing in PDAC; however, novel therapies are evolving with increased integration of genomic profiling along with a better understanding of the tumor microenvironment and immunology. A small but important sub-group of patients have some of these agents available in the clinics for use. Olaparib was recently approved by the US Food and Drug Administration for maintenance therapy in germline BRCA1/2 mutated PDAC following demonstration of survival benefit in a phase 3 trial. Pembrolizumab is approved for patients with defects in mismatch repair/microsatellite instability. PDAC with wild-type KRAS represents a unique subgroup who have enrichment of potentially targetable oncogenic drivers. Small-molecule inhibitors including ERBB inhibitors (e.g., afatinib, MCLA-128), TRK inhibitors (e.g., larotrectinib, entrectinib), ALK/ROS inhibitor (e.g., crizotinib), and BRAF/MEK inhibitors are in development. In a small subset of patients with the KRASG12C mutation, a KRASG12C inhibitor, AMG510, and other agents are being investigated. Major efforts are underway to effectively target the tumor microenvironment and to integrate immunotherapy into the treatment of PDAC, and although thus far the impact has been modest to ineffective, nonetheless, there is optimism that some of the challenges will be overcome.
Collapse
Affiliation(s)
- Ritu Raj Singh
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's and Mount Sinai West, New York, NY, 10019, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Zhang G, Wang Q, Yang M, Yao X, Qi X, An Y, Dong H, Zhang L, Zhu W, Li Y, Guo X. OSpaad: An online tool to perform survival analysis by integrating gene expression profiling and long-term follow-up data of 1319 pancreatic carcinoma patients. Mol Carcinog 2020; 59:304-310. [PMID: 31912599 DOI: 10.1002/mc.23154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/16/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic carcinoma (PC) is a type of highly lethal malignant tumor that has unfavorable outcomes. One major challenge in improving clinical outcomes is to identify novel biomarkers for prognosis. In this study, we developed an online consensus survival tool for pancreatic adenocarcinoma (OSpaad), which allows researchers and clinicians to analyze the prognostic value of selected genes in PC. OSpaad contains 1319 unique PC cases that have both gene expression data and correspondent clinical data from seven individual cohorts and provides four survival terms including overall survival, disease-specific survival, disease-free interval, progression-free interval for prognosis evaluation. To meet the different research needs, OSpaad allows users to limit survival analysis in subgroups by selecting different terms of clinical confounding factors such as TNM stage, sex, smoking time, lymph invasion, and race. Moreover, we showed that 97% (116 out of 120) previously reported prognostic biomarkers, including ERBB2, TP53, EGFR and so forth, were validated and confirmed their prognostic significance in OSpaad, demonstrating the well performance of survival analysis in OSpaad. OSpaad is a user-friendly online tool with a straightforward interface allowing clinicians and basic research scientists with even a limited bioinformatics background to easily screen and evaluate the prognostic value of genes in a large PC cohort. This online tool can be accessed at http://bioinfo.henu.edu.cn/PAAD/PAADList.jsp.
Collapse
Affiliation(s)
- Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mengsi Yang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xitong Yao
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinlei Qi
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, California
| | - Yongqiang Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Abstract
In only few years, circulating tumor DNA (ctDNA) in breast cancer has moved from purely fundamental research to nearby daily use for treatment selection and drug-resistance assessment. Indeed, technical advances and widespread use of next-generation sequencing or digital PCR allowed for detection of very low amount of tumor DNA in bloodstream. The use of ctDNA as liquid biopsy able either to monitor tumor burden under treatment or to overcome tumor heterogeneity and identify potential targetable drivers. Time has come to define how ctDNA can be implemented for early or metastatic breast cancer management. Data from retrospective analyses of prospective trials have recently highlighted the potential advantages but also the limitations of ctDNA, in particular for patients under endocrine therapy.
Collapse
Affiliation(s)
- Florian Clatot
- Department of Medical Oncology, Centre Henri Becquerel, 1 rue d'Amiens, 76038, Rouen Cedex 1, France.
- Normandie Univ, UNIROUEN, Inserm U1245, IRON Group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France.
| |
Collapse
|
28
|
Hufnagl C, Leisch M, Weiss L, Melchardt T, Moik M, Asslaber D, Roland G, Steininger P, Meissnitzer T, Neureiter D, Greil R, Egle A. Evaluation of circulating cell-free DNA as a molecular monitoring tool in patients with metastatic cancer. Oncol Lett 2019; 19:1551-1558. [PMID: 31966080 DOI: 10.3892/ol.2019.11192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023] Open
Abstract
The clinical decisions made when treating patients with metastatic cancer require knowledge of the current tumor extent and response to therapy. For the majority of solid tumors, a response assessment, which is based on imaging, is used to guide these decisions. However, measuring serum protein biomarkers (i.e. tumor markers) may be of additional use. Furthermore, tumor markers exhibit variable specificity and sensitivity and cannot therefore be solely relied upon when making decisions regarding cancer treatment. Therefore, there is a clinical requirement for the identification of specific, sensitive and quantitative biomarkers. In recent years, circulating cell-free DNA (cfDNA) and mutation-specific circulating cell-free tumor DNA (cftDNA) have been identified as novel potential biomarkers. In the current study, cfDNA and cftDNA were compared using imaging-based staging and current tumor markers in 15 patients with metastatic colorectal, pancreatic or breast cancer. These patients were treated at the Third Medical Department of Paracelsus Medical University Salzburg (Austria). The results of the current study demonstrated a statistically significant correlation between the concentration changes of cfDNA and cftDNA and response to treatment, which was assessed by imaging. A correlation was not indicated with current clinically used tumor markers, including carcinoembryonic antigen, carcinoma antigen 15-3 and carcinoma antigen 19-9. The present study also indicated a correlation between cfDNA and cftDNA and the tumor volume of metastatic lesions, which was not observed with the current clinically used tumor markers. In conclusion, cfDNA and cftDNA exhibit the potential to become novel biomarkers for the response assessment following cancer treatment, and may serve as a tool for the estimation of tumor volume. The current study further supports the increasingly important role of cfDNA and cftDNA as new monitoring tools for use during cancer therapy.
Collapse
Affiliation(s)
- Clemens Hufnagl
- Institute of Pathology, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria
| | - Michael Leisch
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Lukas Weiss
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Thomas Melchardt
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Martin Moik
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Daniela Asslaber
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Geisberger Roland
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Philipp Steininger
- Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria
| | - Thomas Meissnitzer
- Institute of Radiology, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria
| | - Richard Greil
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| | - Alexander Egle
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria.,Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, A-5020 Salzburg, Austria.,Cancer Cluster Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
29
|
Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, Angulo JC, López JI. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036293. [PMID: 31501265 DOI: 10.1101/cshperspect.a036293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN is a major tumor-suppressor protein whose expression and biological activity are frequently diminished in sporadic or inherited cancers. PTEN gene deletion or loss-of-function mutations favor tumor cell growth and are commonly found in clinical practice. In addition, diminished PTEN protein expression is also frequently observed in tumor samples from cancer patients in the absence of PTEN gene alterations. This makes PTEN protein levels a potential biomarker parameter in clinical oncology, which can guide therapeutic decisions. The specific detection of PTEN protein can be achieved by using highly defined anti-PTEN monoclonal antibodies (mAbs), characterized with precision in terms of sensitivity for the detection technique, specificity for PTEN binding, and constraints of epitope recognition. This is especially relevant taking into consideration that PTEN is highly targeted by mutations and posttranslational modifications, and different PTEN protein isoforms exist. The precise characterization of anti-PTEN mAb reactivity is an important step in the validation of these reagents as diagnostic and prognostic tools in clinical oncology, including their routine use in analytical immunohistochemistry (IHC). Here, we review the current status on the use of well-defined anti-PTEN mAbs for PTEN immunodetection in the clinical context and discuss their potential usefulness and limitations for a more precise cancer diagnosis and patient benefit.
Collapse
Affiliation(s)
- Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo N-0310, Norway
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid 28904, Spain.,Clinical Department, European University of Madrid, Laureate Universities, Madrid 28904, Spain
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain.,University of the Basque Country, Leioa 48940, Spain
| |
Collapse
|
30
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
31
|
Thomas R, Weihua Z. Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Front Oncol 2019; 9:800. [PMID: 31508364 PMCID: PMC6716122 DOI: 10.3389/fonc.2019.00800] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of most potent oncogenes that are commonly altered in cancers. As a receptor tyrosine kinase, EGFR's kinase activity has been serving as the primary target for developing cancer therapeutics, namely the EGFR inhibitors including small molecules targeting its ATP binding pocket and monoclonal antibodies targeting its ligand binding domains. EGFR inhibitors have produced impressive therapeutic benefits to responsive types of cancers. However, acquired and innate resistances have precluded current anti-EGFR agents from offering sustainable benefits to initially responsive cancers and benefits to EGFR-positive cancers that are innately resistant. Recent years have witnessed a realization that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. This new knowledge has offered a different angle of understanding of EGFR in cancer and opened a new avenue of targeting EGFR for cancer therapy. There are already many excellent reviews on the role of EGFR with a focus on its kinase-dependent functions and mechanisms of resistance to EGFR targeted therapies. The present opinion aims to initiate a fresh discussion about the function of EGFR in cancer cells by laying out some unanswered questions pertaining to EGFR in cancer cells, by rethinking the unmet therapeutic challenges from a view of EGFR's KID function, and by proposing novel approaches to target the KID functions of EGFR for cancer treatment.
Collapse
Affiliation(s)
- Rintu Thomas
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Zhang Weihua
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
32
|
Conway JRW, Herrmann D, Evans TRJ, Morton JP, Timpson P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut 2019; 68:742-758. [PMID: 30396902 PMCID: PMC6580874 DOI: 10.1136/gutjnl-2018-316822] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly solid tumours. This is due to a generally late-stage diagnosis of a primarily treatment-refractory disease. Several large-scale sequencing and mass spectrometry approaches have identified key drivers of this disease and in doing so highlighted the vast heterogeneity of lower frequency mutations that make clinical trials of targeted agents in unselected patients increasingly futile. There is a clear need for improved biomarkers to guide effective targeted therapies, with biomarker-driven clinical trials for personalised medicine becoming increasingly common in several cancers. Interestingly, many of the aberrant signalling pathways in PDAC rely on downstream signal transduction through the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways, which has led to the development of several approaches to target these key regulators, primarily as combination therapies. The following review discusses the trend of PDAC therapy towards molecular subtyping for biomarker-driven personalised therapies, highlighting the key pathways under investigation and their relationship to the PI3K pathway.
Collapse
Affiliation(s)
- James RW Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - TR Jeffry Evans
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P Morton
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Tong M, Wang J, Zhang H, Xing H, Wang Y, Fang Y, Pan H, Li D. Efficacy and safety of gemcitabine plus anti-angiogenesis therapy for advanced pancreatic cancer: a systematic review and meta-analysis of clinical randomized phase III trials. J Cancer 2019; 10:968-978. [PMID: 30854103 PMCID: PMC6400798 DOI: 10.7150/jca.26672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/28/2018] [Indexed: 01/12/2023] Open
Abstract
Purpose: Pancreatic cancer is a common digestive neoplasm with a high fatality rate. We performed this systematic review and meta-analysis of clinical randomized phase III trials to explore the efficacy and safety of gemcitabine plus anti-angiogenesis therapy versus gemcitabine monotherapy for locally advanced or metastatic pancreatic cancer. Methods: We searched PubMed, Embase and the Cochrane Library to identify eligible studies. Data were collected for the period from January 1, 2000 to August 20, 2018. Hazard ratios (HRs) and odds ratios (ORs) were used as main evaluation parameters. Results: A total of eight eligible studies with 3,586 individuals were included in the present meta-analysis. The results showed that the combination of gemcitabine plus anti-angiogenesis therapy had a significant effect on progression-free survival (HR = 0.92, 95% CI: 0.86 - 1.00, P = 0.04), but led to no significant difference in the overall survival (HR = 0.96, 95% CI: 0.88 - 1.05, P = 0.38). In terms of safety, gemcitabine plus anti-angiogenesis therapy did not increase the rate of grade 3-4 common adverse effects except for hypertension. Conclusions: Although gemcitabine plus anti-angiogenesis therapy might prolong the progression-free survival in locally advanced or metastatic pancreatic cancer, these successful results did not translate into a significant improvement in the overall survival or change in the clinical guidelines.
Collapse
Affiliation(s)
- Mengting Tong
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016.,Second Department of Medical Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, 116#, Huang He Road, Saybagh District, Urumqi, Xinjiang, China, 830000
| | - Jing Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| | - Hongliang Zhang
- Second Department of Medical Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, 116#, Huang He Road, Saybagh District, Urumqi, Xinjiang, China, 830000
| | - Haibo Xing
- Intensive Care Department, Xiasha Campus, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, 368#, Xiasha Road, Jianggan District, Hangzhou, Zhejiang, China, 310000
| | - Yanling Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3#, Eastern Qingchun Road, Jianggan District, Hangzhou, Zhejiang, China, 310016
| |
Collapse
|
34
|
Barati Bagherabad M, Afzaljavan F, ShahidSales S, Hassanian SM, Avan A. Targeted therapies in pancreatic cancer: Promises and failures. J Cell Biochem 2018; 120:2726-2741. [PMID: 28703890 DOI: 10.1002/jcb.26284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incidence rate nearly equal to its mortality rate. The poor prognosis of the disease can be explained by the absence of effective biomarkers for screening and early detection, together with the aggressive behavior and resistance to the currently available chemotherapy. The therapeutic failure can also be attributed to the inter-/intratumor genetic heterogeneity and the abundance of tumor stroma that occupies the majority of the tumor mass. Gemcitabine is used in the treatment of PDAC; however, the response rate is less than 12%. A recent phase III trial revealed that the combination of oxaliplatin, irinotecan, fluorouracil, and leucovorin could be an option for the treatment of metastatic PDAC patients with good performance status, although these approaches can result in high toxicity level. Further investigations are required to develop innovative anticancer agents that either improve gemcitabine activity, within novel combinatorial approaches or acts with a better efficacy than gemcitabine. The aim of the current review is to give an overview of preclinical and clinical studies targeting key dysregulated signaling pathways in PDAC.
Collapse
Affiliation(s)
- Matineh Barati Bagherabad
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodabeh ShahidSales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Molecular Medicine group, Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Parkin A, Man J, Chou A, Nagrial AM, Samra J, Gill AJ, Timpson P, Pajic M. The Evolving Understanding of the Molecular and Therapeutic Landscape of Pancreatic Ductal Adenocarcinoma. Diseases 2018; 6:diseases6040103. [PMID: 30428574 PMCID: PMC6313363 DOI: 10.3390/diseases6040103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths, characterised by poor survival, marked molecular heterogeneity and high intrinsic and acquired chemoresistance. Only 10⁻20% of pancreatic cancer patients present with surgically resectable disease and even then, 80% die within 5 years. Our increasing understanding of the genomic heterogeneity of cancer suggests that the failure of definitive clinical trials to demonstrate efficacy in the majority of cases is likely due to the low proportion of responsive molecular subtypes. As a consequence, novel treatment strategies to approach this disease are urgently needed. Significant developments in the field of precision oncology have led to increasing molecular stratification of cancers into subtypes, where individual cancers are selected for optimal therapy depending on their molecular or genomic fingerprint. This review provides an overview of the current status of clinically used and emerging treatment strategies, and discusses the advances in and the potential for the implementation of precision medicine in this highly lethal malignancy, for which there are currently no curative systemic therapies.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Jennifer Man
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Angela Chou
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- University of Sydney, Sydney, NSW 2006, Australia.
| | - Adnan M Nagrial
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia.
| | - Jaswinder Samra
- Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia.
| | - Anthony J Gill
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- University of Sydney, Sydney, NSW 2006, Australia.
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia.
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia.
| | - Paul Timpson
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| | - Marina Pajic
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| |
Collapse
|
36
|
Heining C, Horak P, Uhrig S, Codo PL, Klink B, Hutter B, Fröhlich M, Bonekamp D, Richter D, Steiger K, Penzel R, Endris V, Ehrenberg KR, Frank S, Kleinheinz K, Toprak UH, Schlesner M, Mandal R, Schulz L, Lambertz H, Fetscher S, Bitzer M, Malek NP, Horger M, Giese NA, Strobel O, Hackert T, Springfeld C, Feuerbach L, Bergmann F, Schröck E, von Kalle C, Weichert W, Scholl C, Ball CR, Stenzinger A, Brors B, Fröhling S, Glimm H. NRG1 Fusions in KRAS Wild-Type Pancreatic Cancer. Cancer Discov 2018; 8:1087-1095. [PMID: 29802158 DOI: 10.1158/2159-8290.cd-18-0036] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/24/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022]
Abstract
We used whole-genome and transcriptome sequencing to identify clinically actionable genomic alterations in young adults with pancreatic ductal adenocarcinoma (PDAC). Molecular characterization of 17 patients with PDAC enrolled in a precision oncology program revealed gene fusions amenable to pharmacologic inhibition by small-molecule tyrosine kinase inhibitors in all patients with KRAS wild-type (KRASWT) tumors (4 of 17). These alterations included recurrent NRG1 rearrangements predicted to drive PDAC development through aberrant ERBB receptor-mediated signaling, and pharmacologic ERBB inhibition resulted in clinical improvement and remission of liver metastases in 2 patients with NRG1-rearranged tumors that had proved resistant to standard treatment. Our findings demonstrate that systematic screening of KRASWT tumors for oncogenic fusion genes will substantially improve the therapeutic prospects for a sizeable fraction of patients with PDAC.Significance: Advanced PDAC is a malignancy with few treatment options that lacks molecular mechanism-based therapies. Our study uncovers recurrent gene rearrangements such as NRG1 fusions as disease-driving events in KRASwt tumors, thereby providing novel insights into oncogenic signaling and new therapeutic options in this entity. Cancer Discov; 8(9); 1087-95. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.
Collapse
Affiliation(s)
- Christoph Heining
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany.,University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Peter Horak
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Sebastian Uhrig
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Paula L Codo
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Barbara Klink
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Barbara Hutter
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Martina Fröhlich
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | | | - Daniela Richter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University Munich, Munich, Germany.,DKTK, Munich, Germany
| | - Roland Penzel
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Endris
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Karl Roland Ehrenberg
- Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Department of Medical Oncology, NCT, Heidelberg, Germany
| | - Stephanie Frank
- Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Kortine Kleinheinz
- Division of Theoretical Bioinformatics, DKFZ, Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Umut H Toprak
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Theoretical Bioinformatics, DKFZ, Heidelberg, Germany.,Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany
| | | | - Ranadip Mandal
- Division of Applied Functional Genomics, DKFZ, Heidelberg, Germany
| | - Lothar Schulz
- Department of Oncology, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Germany
| | - Helmut Lambertz
- Department of Oncology, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Germany
| | | | - Michael Bitzer
- Department of Gastroenterology, Hepatology and Infectious Diseases, Tübingen University Hospital, Tübingen, Germany.,DKTK, Tübingen, Germany
| | - Nisar P Malek
- Department of Gastroenterology, Hepatology and Infectious Diseases, Tübingen University Hospital, Tübingen, Germany.,DKTK, Tübingen, Germany
| | - Marius Horger
- DKTK, Tübingen, Germany.,Department of Radiology, Tübingen University Hospital, Tübingen, Germany
| | - Nathalia A Giese
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Strobel
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Lars Feuerbach
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Evelin Schröck
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany.,DKTK, Munich, Germany
| | - Claudia Scholl
- DKTK, Heidelberg, Germany.,Division of Applied Functional Genomics, DKFZ, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Albrecht Stenzinger
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Brors
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany. .,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany.,Department of Medical Oncology, NCT, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany. .,University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| |
Collapse
|
37
|
Krantz BA, O'Reilly EM. Biomarker-Based Therapy in Pancreatic Ductal Adenocarcinoma: An Emerging Reality? Clin Cancer Res 2018; 24:2241-2250. [PMID: 29269376 PMCID: PMC5955785 DOI: 10.1158/1078-0432.ccr-16-3169] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Over the last decade, many of the major solid organ cancers have seen improvements in survival due to development of novel therapeutics and corresponding biomarkers that predict treatment efficacy or resistance. In contrast, favorable outcomes remain challenging in pancreatic ductal adenocarcinoma (PDAC), in part related to the lack of validated biomarkers for patient and treatment selection and thus optimal clinical decision-making. Increasingly, however, therapeutic development for PDAC is accompanied by bioassays to evaluate response and to study mechanism of actions with a corresponding increase in the number of trials in mid to late stage with integrated biomarkers. In addition, blood-based biomarkers that provide a measure of disease activity and allow for minimally invasive tumor analyses are emerging, including circulating tumor DNA, exosomes, and circulating tumor cells. In this article, we review potential biomarkers for currently approved therapies as well as emerging biomarkers for therapeutics under development. Clin Cancer Res; 24(10); 2241-50. ©2017 AACR.
Collapse
Affiliation(s)
- Benjamin A Krantz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
- Departement of Medicine, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
| |
Collapse
|
38
|
Reviewing the Utility of EUS FNA to Advance Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2018; 10:cancers10020035. [PMID: 29382047 PMCID: PMC5836067 DOI: 10.3390/cancers10020035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Advanced pancreatic cancer (PC) is an aggressive malignancy with few effective therapeutic options. While the evolution of precision medicine in recent decades has changed the treatment landscape in many cancers, at present no targeted therapies are used in the routine management of PC. Only a minority of patients with PC present with surgically resectable disease, and in the remainder obtaining high quality biopsy material for both diagnosis and molecular testing can prove challenging. Endoscopic ultrasound-guided fine needle aspiration (EUS FNA) is a widely used diagnostic procedure in PC, and allows tumour sampling in patients with both early and late stage disease. This review will provide an update on the role of EUS FNA as a diagnostic tool, as well as a source of genetic material which can be used both for molecular analysis and for the creation of valuable preclinical disease models. We will also consider relevant clinical applications of EUS FNA in the management of PC, and the path towards bringing precision medicine closer to the clinic in this challenging disease.
Collapse
|
39
|
Ruess DA, Görgülü K, Wörmann SM, Algül H. Pharmacotherapeutic Management of Pancreatic Ductal Adenocarcinoma: Current and Emerging Concepts. Drugs Aging 2017; 34:331-357. [PMID: 28349415 DOI: 10.1007/s40266-017-0453-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma is a devastating malignancy, which is the result of late diagnosis, aggressive disease, and a lack of effective treatment options. Thus, pancreatic ductal adenocarcinoma is projected to become the second leading cause of cancer-related death by 2030. This review summarizes recent developments of oncological therapy in the palliative setting of metastatic pancreatic ductal adenocarcinoma. It further compiles novel targets and therapeutic approaches as well as promising treatment combinations, which are presently in preclinical evaluation, covering several aspects of the hallmarks of cancer. Finally, challenges to the implementation of an individualized therapy approach in the context of precision medicine are discussed.
Collapse
Affiliation(s)
- Dietrich A Ruess
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Kivanc Görgülü
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sonja M Wörmann
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
40
|
Baechmann S, Ormanns S, Haas M, Kruger S, Remold A, Modest DP, Kirchner T, Jung A, Werner J, Heinemann V, Boeck S. Switch in KRAS mutational status during an unusual course of disease in a patient with advanced pancreatic adenocarcinoma: implications for translational research. BMC Cancer 2017; 17:374. [PMID: 28549417 PMCID: PMC5445280 DOI: 10.1186/s12885-017-3376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/19/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Despite the introduction of novel effective treatment regimens like gemcitabine plus nab-paclitaxel and FOLFIRINOX, pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive epithelial tumors. Among the genetic alterations frequently found in PDAC, mutations in the KRAS gene might play a prognostic role regarding overall survival and may also have the potential to predict the efficacy of anti-EGFR treatment. CASE PRESENTATION We report the clinical case of a 69 year old Caucasian female that was diagnosed with histologically confirmed locally advanced PDAC with lymph node involvement in August 2010. At the time of first diagnosis, tumor tissue obtained from an open regional lymph node biopsy showed a poorly differentiated adenocarcinoma with a wild type sequence within exon 2 (codon 12/13) of the KRAS gene. The patient initially received single-agent gemcitabine and a subsequent 5-FU-based chemoradiotherapy with a sequential maintenance chemotherapy with oral capecitabine resulting in a long term disease control. Local disease progression occurred in May 2014 and the patient underwent pancreaticoduodenectomy in September 2014. A novel KRAS gene mutation (c.35G > T, p.G12 V) in exon 2 (codon 12) was detected within the surgical specimen. As of January 2016 the patient is still alive and without evidence of the underlying disease. CONCLUSIONS Specifically in the context of clinical trials and translational research in PDAC a re-assessment of molecular biomarkers, i. e. KRAS, at defined time points (e. g. relapse, disease progression, unusual clinical course) may be indicated in order to detect a potential switch in biomarker status during the course of disease.
Collapse
Affiliation(s)
- Sibylle Baechmann
- Institute of Pathology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Michael Haas
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stephan Kruger
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Anna Remold
- Institute of Pathology, Ludwig-Maximilians University of Munich, Munich, Germany
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Dominik Paul Modest
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians University of Munich, Munich, Germany
- DKTK, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Jung
- Institute of Pathology, Ludwig-Maximilians University of Munich, Munich, Germany
- DKTK, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral, Vascular and Transplantation Surgery, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Volker Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- DKTK, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
41
|
Haas M, Ormanns S, Baechmann S, Remold A, Kruger S, Westphalen CB, Siveke JT, Wenzel P, Schlitter AM, Esposito I, Quietzsch D, Clemens MR, Kettner E, Laubender RP, Jung A, Kirchner T, Boeck S, Heinemann V. Extended RAS analysis and correlation with overall survival in advanced pancreatic cancer. Br J Cancer 2017; 116:1462-1469. [PMID: 28449008 PMCID: PMC5520094 DOI: 10.1038/bjc.2017.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mutations in the KRAS gene can be detected in about 70-90% of pancreatic cancer (PC) cases. Whether these mutations have a prognostic or predictive value remains elusive. Furthermore, the clinical relevance of the extended RAS (KRAS+NRAS) mutational status is unclear in PC. METHODS We prospectively defined a PC patient population who received erlotinib-free chemotherapy regimens. A statistically significant difference between KRAS wild-type and KRAS mutated tumours in at least 160 patients in this population would support the assumption of a rather prognostic role of KRAS. RESULTS One hundred and seventy-eight tumour samples were collected from prospective clinical studies and successfully analysed for the extended RAS status: 37 tumours were KRAS wild-type (21%), whereas 141 (79%) carried a KRAS mutation; 132 of these mutations were found in KRAS exon 2 (74%), whereas only 9 mutations (5%) were detected in KRAS exon 3. Within KRAS exon 4 and NRAS exons 2-4, no mutations were apparent. There was no significant difference in overall survival for KRAS wild-type vs mutant patients (9.9 vs 8.3 months, P=0.70). CONCLUSIONS Together with the results of the AIO-PK-0104-trial, the present analysis supports the notion that KRAS mutation status is rather predictive than prognostic in advanced PC.
Collapse
Affiliation(s)
- Michael Haas
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-University of Munich, Germany and German Cancer Consortium (DKTK), Partner Site Munich, Thalkirchner Str. 36, Munich 80377, Germany
| | - Sibylle Baechmann
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, Munich 81377, Germany.,Institute of Pathology, Ludwig-Maximilians-University of Munich, Germany and German Cancer Consortium (DKTK), Partner Site Munich, Thalkirchner Str. 36, Munich 80377, Germany
| | - Anna Remold
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, Munich 81377, Germany.,Institute of Pathology, Ludwig-Maximilians-University of Munich, Germany and German Cancer Consortium (DKTK), Partner Site Munich, Thalkirchner Str. 36, Munich 80377, Germany
| | - Stephan Kruger
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Christoph B Westphalen
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Jens T Siveke
- 2nd Medical Department, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.,Division of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, University Hospital Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Patrick Wenzel
- 2nd Medical Department, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Anna Melissa Schlitter
- Institute of Pathology, Technical University of Munich, Trogerstr. 18, Munich 81675, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich Heine University of Duesseldorf, Moorenstr. 5, Duesseldorf 40225, Germany
| | - Detlef Quietzsch
- Department of Internal Medicine II, Klinikum Chemnitz gGmbH, Flemmingstr. 2, Chemnitz 09116, Germany
| | - Michael R Clemens
- Department of Hematology and Oncology, Mutterhaus der Boromaeerinnen, Feldstr. 16, Trier 54290, Germany
| | - Erika Kettner
- Department of Hematology and Oncology, Klinikum Magdeburg, Birkenallee 34, Magdeburg 39130, Germany
| | - Ruediger P Laubender
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Andreas Jung
- Institute of Pathology, Ludwig-Maximilians-University of Munich, Germany and German Cancer Consortium (DKTK), Partner Site Munich, Thalkirchner Str. 36, Munich 80377, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-University of Munich, Germany and German Cancer Consortium (DKTK), Partner Site Munich, Thalkirchner Str. 36, Munich 80377, Germany
| | - Stefan Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Volker Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, Munich 81377, Germany
| |
Collapse
|
42
|
Khan MAA, Azim S, Zubair H, Bhardwaj A, Patel GK, Khushman M, Singh S, Singh AP. Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. Int J Mol Sci 2017; 18:ijms18040779. [PMID: 28383487 PMCID: PMC5412363 DOI: 10.3390/ijms18040779] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies.
Collapse
Affiliation(s)
- Mohammad Aslam Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
43
|
Berry W, Algar E, Kumar B, Desmond C, Swan M, Jenkins BJ, Croagh D. Endoscopic ultrasound-guided fine-needle aspirate-derived preclinical pancreatic cancer models reveal panitumumab sensitivity in KRAS wild-type tumors. Int J Cancer 2017; 140:2331-2343. [PMID: 28198009 DOI: 10.1002/ijc.30648] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/11/2017] [Accepted: 02/07/2017] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer (PC) is largely refractory to existing therapies used in unselected patient trials, thus emphasizing the pressing need for new approaches for patient selection in personalized medicine. KRAS mutations occur in 90% of PC patients and confer resistance to epidermal growth factor receptor (EGFR) inhibitors (e.g., panitumumab), suggesting that KRAS wild-type PC patients may benefit from targeted panitumumab therapy. Here, we use tumor tissue procured by endoscopic ultrasound-guided fine-needle aspirate (EUS-FNA) to compare the in vivo sensitivity in patient-derived xenografts (PDXs) of KRAS wild-type and mutant PC tumors to panitumumab, and to profile the molecular signature of these tumors in patients with metastatic or localized disease. Specifically, RNASeq of EUS-FNA-derived tumor RNA from localized (n = 20) and metastatic (n = 20) PC cases revealed a comparable transcriptome profile. Screening the KRAS mutation status of tumor genomic DNA obtained from EUS-FNAs stratified PC patients into either KRAS wild-type or mutant cohorts, and the engraftment of representative KRAS wild-type and mutant EUS-FNA tumor samples into NOD/SCID mice revealed that the growth of KRAS wild-type, but not mutant, PDXs was selectively suppressed with panitumumab. Furthermore, in silico transcriptome interrogation of The Cancer Genome Atlas (TCGA)-derived KRAS wild-type (n = 38) and mutant (n = 132) PC tumors revealed 391 differentially expressed genes. Taken together, our study validates EUS-FNA for the application of a novel translational pipeline comprising KRAS mutation screening and PDXs, applicable to all PC patients, to evaluate personalized anti-EGFR therapy in patients with KRAS wild-type tumors.
Collapse
Affiliation(s)
- William Berry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Elizabeth Algar
- Genetics and Molecular Pathology Laboratory, Monash Health, Clayton, VIC, 3168, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia
| | - Beena Kumar
- Department of Anatomical Pathology, Monash Health, Clayton, VIC, 3168, Australia
| | - Christopher Desmond
- Department of Gastroenterology, Monash Health, Clayton, VIC, 3168, Australia
| | - Michael Swan
- Department of Gastroenterology, Monash Health, Clayton, VIC, 3168, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Daniel Croagh
- Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
44
|
Sukharamwala P, Hennessey D, Wood T, Singh S, Ryan C, Rosemurgy A. Molecular profiles in foregut oncology. Cancer Genet 2016; 209:537-553. [PMID: 27887938 DOI: 10.1016/j.cancergen.2016.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 09/30/2015] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
Abstract
Oncology is and will continue to evolve resulting from a better understanding of the biology and intrinsic genetic profile of each cancer. Tumor biomarkers and targeted therapies are the new face of precision medicine, so it is essential for all physicians caring for cancer patients to understand and assist patients in understanding the role and importance of such markers and strategies to target them. This review was initiated in an attempt to identify, characterize, and discuss literature supporting clinically relevant molecular markers and interventions. The efficacy of targeting specific markers will be examined with data from clinical trials focusing on treatments for esophageal, gastric, liver, gallbladder, biliary tract, and pancreatic cancers.
Collapse
Affiliation(s)
| | - Daniel Hennessey
- Florida Hospital Tampa, 3000 Medical Park Drive Suite 310, Tampa, FL 33613, USA
| | - Thomas Wood
- Florida Hospital Tampa, 3000 Medical Park Drive Suite 310, Tampa, FL 33613, USA
| | - Shelly Singh
- Florida Hospital Tampa, 3000 Medical Park Drive Suite 310, Tampa, FL 33613, USA
| | - Carrie Ryan
- Florida Hospital Tampa, 3000 Medical Park Drive Suite 310, Tampa, FL 33613, USA
| | - Alexander Rosemurgy
- Florida Hospital Tampa, 3000 Medical Park Drive Suite 310, Tampa, FL 33613, USA.
| |
Collapse
|
45
|
Zhang F, Wu M, Kwoh CK, Zheng J. Power-Law Modeling of Cancer Cell Fates Driven by Signaling Data to Reveal Drug Effects. PLoS One 2016; 11:e0165049. [PMID: 27764199 PMCID: PMC5072688 DOI: 10.1371/journal.pone.0165049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
Extracellular signals are captured and transmitted by signaling proteins inside a cell. An important type of cellular responses to the signals is the cell fate decision, e.g., apoptosis. However, the underlying mechanisms of cell fate regulation are still unclear, thus comprehensive and detailed kinetic models are not yet available. Alternatively, data-driven models are promising to bridge signaling data with the phenotypic measurements of cell fates. The traditional linear model for data-driven modeling of signaling pathways has its limitations because it assumes that the a cell fate is proportional to the activities of signaling proteins, which is unlikely in the complex biological systems. Therefore, we propose a power-law model to relate the activities of all the measured signaling proteins to the probabilities of cell fates. In our experiments, we compared our nonlinear power-law model with the linear model on three cancer datasets with phosphoproteomics and cell fate measurements, which demonstrated that the nonlinear model has superior performance on cell fates prediction. By in silico simulation of virtual protein knock-down, the proposed model is able to reveal drug effects which can complement traditional approaches such as binding affinity analysis. Moreover, our model is able to capture cell line specific information to distinguish one cell line from another in cell fate prediction. Our results show that the power-law data-driven model is able to perform better in cell fate prediction and provide more insights into the signaling pathways for cancer cell fates than the linear model.
Collapse
Affiliation(s)
- Fan Zhang
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Min Wu
- Data Analytic Department, Institute for Infocomm Research, Agency for Science, Technology and Research, 138632, Singapore, Singapore
| | - Chee Keong Kwoh
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Jie Zheng
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
- Complexity Institute, Nanyang Technological University, 637723, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, 138672, Singapore, Singapore
- * E-mail:
| |
Collapse
|
46
|
Vijayvergia N, Cohen SJ. Personalized medicine in sporadic pancreatic cancer without homologous recombination-deficiency: are we any closer? J Gastrointest Oncol 2016; 7:727-737. [PMID: 27747087 PMCID: PMC5056260 DOI: 10.21037/jgo.2016.08.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic adenocarcinoma is the fourth leading cause of cancer related death in the United States. Most patients are diagnosed at a late stage and despite recent advances in chemotherapeutic approaches, outcomes are poor. With the introduction of combination chemotherapy, novel biomarkers are clearly needed to identify subsets of patients likely to benefit from these therapies. Advances in our understanding of the molecular drivers of pancreatic cancer offer the hope of personalized therapy that may benefit our patients. In this review, we summarize the current knowledge about the biology of pancreatic cancer and its implication for treatment. We discuss recent advances in targeted therapies and the role of potential biomarkers in predicting response to established therapies. We also review novel therapeutic approaches that may be able to fulfill the promise of personalized therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Namrata Vijayvergia
- Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Steven J Cohen
- Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
47
|
Flores JPE, Diasio RB, Saif MW. Drug metabolism and pancreatic cancer. Ann Gastroenterol 2016; 30:54-61. [PMID: 28042238 PMCID: PMC5198247 DOI: 10.20524/aog.2016.0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains a fatal disease in the majority of patients. The era of personalized medicine is upon us: customizing therapy according to each patient's individual cancer. Potentially, therapy can be targeted at individuals who would most likely have a favorable response, making it more efficacious and cost effective. This is particularly relevant for pancreatic cancer, which currently portends a very poor prognosis. However, there is much to be done in this field, and more studies are needed to bring this concept to reality.
Collapse
Affiliation(s)
- John Paul E Flores
- Division of Hematology/Oncology and Experimental Therapeutics, Tufts Medical Center, Boston, MA (John Paul E. Flores, Muhammad Wasif Saif)
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN (Robert B. Diasio)
| | - Muhammad Wasif Saif
- Division of Hematology/Oncology and Experimental Therapeutics, Tufts Medical Center, Boston, MA (John Paul E. Flores, Muhammad Wasif Saif)
| |
Collapse
|
48
|
Nalbantoglu S, Abu-Asab M, Tan M, Zhang X, Cai L, Amri H. Study of Clinical Survival and Gene Expression in a Sample of Pancreatic Ductal Adenocarcinoma by Parsimony Phylogenetic Analysis. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:442-7. [PMID: 27428255 PMCID: PMC4968342 DOI: 10.1089/omi.2016.0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the rapidly growing forms of pancreatic cancer with a poor prognosis and less than 5% 5-year survival rate. In this study, we characterized the genetic signatures and signaling pathways related to survival from PDAC, using a parsimony phylogenetic algorithm. We applied the parsimony phylogenetic algorithm to analyze the publicly available whole-genome in silico array analysis of a gene expression data set in 25 early-stage human PDAC specimens. We explain here that the parsimony phylogenetics is an evolutionary analytical method that offers important promise to uncover clonal (driver) and nonclonal (passenger) aberrations in complex diseases. In our analysis, parsimony and statistical analyses did not identify significant correlations between survival times and gene expression values. Thus, the survival rankings did not appear to be significantly different between patients for any specific gene (p > 0.05). Also, we did not find correlation between gene expression data and tumor stage in the present data set. While the present analysis was unable to identify in this relatively small sample of patients a molecular signature associated with pancreatic cancer prognosis, we suggest that future research and analyses with the parsimony phylogenetic algorithm in larger patient samples are worthwhile, given the devastating nature of pancreatic cancer and its early diagnosis, and the need for novel data analytic approaches. The future research practices might want to place greater emphasis on phylogenetics as one of the analytical paradigms, as our findings presented here are on the cusp of this shift, especially in the current era of Big Data and innovation policies advocating for greater data sharing and reanalysis.
Collapse
Affiliation(s)
- Sinem Nalbantoglu
- Department of Biochemistry, Cellular and Molecular Biology, School of Medicine, Georgetown University, Washington, DC
| | - Mones Abu-Asab
- Laboratory of Immunology, Section of Immunopathology, National Eye Institute, Bethesda, Maryland
| | - Ming Tan
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | - Xuemin Zhang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | - Ling Cai
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | - Hakima Amri
- Department of Biochemistry, Cellular and Molecular Biology, School of Medicine, Georgetown University, Washington, DC
| |
Collapse
|
49
|
Crawley AS, O'Kennedy RJ. The need for effective pancreatic cancer detection and management: a biomarker-based strategy. Expert Rev Mol Diagn 2016; 15:1339-53. [PMID: 26394703 DOI: 10.1586/14737159.2015.1083862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer (Pa) is generally a very aggressive disease, with few effective approaches available for early diagnosis or therapy. These factors, combined with the aggressiveness and chemoresistance of Pa, results in a bleak outcome post-diagnosis. Cancer-related biomarkers have established capabilities for diagnosis, prognosis and screening and can be exploited to aid in earlier less-invasive diagnosis and optimization of targeted therapies. Pa has only one US FDA-approved biomarker, CA19-9, which has significant limitations. Hence, it is vital that novel biomarkers are identified and validated to diagnose, treat, control and monitor Pa. This review focuses on existing and potential Pa-associated markers and discusses how they may be applied in cohort for improved management of Pa.
Collapse
Affiliation(s)
- Aoife S Crawley
- a 1 School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Richard J O'Kennedy
- a 1 School of Biotechnology, Dublin City University, Dublin 9, Ireland.,b 2 Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
50
|
Li T, Zheng Y, Sun H, Zhuang R, Liu J, Liu T, Cai W. K-Ras mutation detection in liquid biopsy and tumor tissue as prognostic biomarker in patients with pancreatic cancer: a systematic review with meta-analysis. Med Oncol 2016; 33:61. [PMID: 27225938 DOI: 10.1007/s12032-016-0777-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/14/2016] [Indexed: 01/06/2023]
Abstract
K-Ras gene mutations have been found in most pancreatic cancers; however, conflicting data on the prognostic value of K-Ras mutations in pancreatic cancer have been published. We conducted a meta-analysis to assess its prognostic significance. Literature searches of PubMed, EMBASE, Cochrane Library, Web of Science and Google Scholar were performed through December 2015 to identify publications exploring the association of K-Ras mutation with overall survival. Forty eligible studies involving 3427 patients with pancreatic cancer were included in the present meta-analysis. Our analysis showed a hazard ratio (HR) of negative association with survival of 1.61 [95 % confidence interval (CI) 1.36-1.90; p < 0.01] in K-Ras mutant pancreatic cancer patients. In subgroup analyses, K-Ras mutations detected in tumor tissues and in liquid biopsies had HRs of 1.37 (95 % CI 1.20-1.57; p < 0.01) and 3.16 (95 % CI 2.1-4.71; p < 0.01), respectively. In addition, the HR was higher when K-Ras mutations were detected in fresh frozen samples (HR = 2.01, 95 % CI 1.28-3.16, p = 0.002) than in formalin-fixed, paraffin-embedded (FFPE) samples (HR = 1.29, 95 % CI 1.12-1.49, p < 0.01). Though K-Ras alterations are more frequent among non-East Asian individuals than East Asian individuals, there were no significant differences in HRs of survival between the two ethnic subgroups. In conclusion, this meta-analysis suggests that K-Ras mutations are associated with a worse overall survival in pancreatic cancer patients, especially when mutations are detected in liquid biopsies or fresh frozen tumor tissue samples.
Collapse
Affiliation(s)
- Tao Li
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuanting Zheng
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Sun
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Rongyuan Zhuang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Liu
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|