1
|
Zhang R, Wang Z, Wang H, Li L, Dong L, Ding L, Li Q, Zhu L, Zhang T, Zhu Y, Ding K. CTHRC1 is associated with BRAF(V600E) mutation and correlates with prognosis, immune cell infiltration, and drug resistance in colon cancer, thyroid cancer, and melanoma. BIOMOLECULES & BIOMEDICINE 2024; 25:42-61. [PMID: 39052013 PMCID: PMC11647256 DOI: 10.17305/bb.2024.10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Colon cancer, thyroid cancer, and melanoma are common malignant tumors that seriously threaten human health globally. The B-Raf proto-oncogene, serine/threonine kinase (BRAF)(V600E) mutation is an important driver gene mutation in these cancer types. In this study, we identified that collagen triple helix repeat containing 1 (CTHRC1) expression was associated with the BRAF(V600E) mutation in colon cancer, thyroid cancer, and melanoma. Based on database analysis and clinical tissue studies, CTHRC1 was verified to correlate with poor prognosis and worse clinicopathological features in colon cancer and thyroid cancer patients, but not in patients with melanoma. Several signaling pathways, immune cell infiltration, and immunotherapy markers were associated with CTHRC1 expression. Additionally, a high level of CTHRC1 was correlated with decreased sensitivity to antitumor drugs (vemurafenib, PLX-4720, dabrafenib, and SB-590885) targeting the BRAF(V600E) mutation. This study provides evidence of a significant correlation between CTHRC1 and the BRAF(V600E) mutation, suggesting its potential utility as a diagnostic and prognostic biomarker in human colon cancer, thyroid cancer, and melanoma.
Collapse
Affiliation(s)
- Rumeng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhihao Wang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Li
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Dong
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Linyan Zhu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tiantian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Lee HM, Saw AK, Morris VK, Napolitano S, Bristow C, Srinivasan S, Peoples M, Sorokin A, Kanikarla P, Schulz J, Singh AK, Terranova C, Coker O, Jain A, Kopetz S, Rai K. Epigenome Reprogramming Through H3K27 and H3K4 Trimethylation as a Resistance Mechanism to DNA Methylation Inhibition in BRAFV600E-Mutated Colorectal Cancer. Clin Cancer Res 2024; 30:5166-5179. [PMID: 39269307 PMCID: PMC11829253 DOI: 10.1158/1078-0432.ccr-24-1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE BRAFV600E-mutated colorectal cancer exhibits a strong correlation with DNA hypermethylation, suggesting that this subgroup of tumors presents unique epigenomic phenotypes. Nonetheless, 5-azacitidine, which inhibits DNA methyltransferase activity, is not efficacious in BRAFV600E colorectal cancer in vivo. EXPERIMENTAL DESIGN We randomized and treated mice implanted with patient-derived tumor xenografts harboring BRAFV600E mutation with control, 5-azacitidine, vemurafenib (BRAF inhibitor), or the combination. Comprehensive epigenomic profiling was conducted on control and 5-azacitidine-treated tumor samples, including DNA methylation, histone modifications, chromatin accessibility, and gene expression. Combinations of epigenetic agents were explored in preclinical BRAFV600E colorectal cancer models. RESULTS A profound reduction of DNA methylation levels upon 5-azacitidine treatment was confirmed, however, transcriptional repression was not relieved. This study unbiasedly explored the adaptive engagement of other epigenomic modifications upon 5-azacitidine treatment. A loss of histone acetylation and a gain of histone methylations, including H3K27 and H3K4 trimethylation, were observed around these hypomethylated regions, suggesting the involvement of polycomb repressive complex (PRC) activity around the genome with loss of DNA methylation, therefore maintaining the repression of key tumor-suppressor genes. Combined inhibition of PRC activity through EZH2 inhibition with 5-azacitidine treatment additively improved efficacies in BRAFV600E colorectal cancer cells. CONCLUSIONS In conclusion, DNA hypomethylation by 5-azacitidine exhibits a close association with H3K27me3 and PRC activity in BRAFV600E colorectal cancer, and simultaneous blockade of DNA methyltransferase and EZH2 holds promise as a potential therapeutic strategy for patients with BRAFV600E-mutated colorectal cancer.
Collapse
Affiliation(s)
- Hey Min Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ajay Kumar Saw
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Van K. Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefania Napolitano
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Bristow
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanjana Srinivasan
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Micheal Peoples
- TRACTION platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preeti Kanikarla
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oluwadara Coker
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Ying J, Yang Y, Zhang X, Dong Z, Chen B. Stearoylation cycle regulates the cell surface distribution of the PCP protein Vangl2. Proc Natl Acad Sci U S A 2024; 121:e2400569121. [PMID: 38985771 PMCID: PMC11260150 DOI: 10.1073/pnas.2400569121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Defects in planar cell polarity (PCP) have been implicated in diverse human pathologies. Vangl2 is one of the core PCP components crucial for PCP signaling. Dysregulation of Vangl2 has been associated with severe neural tube defects and cancers. However, how Vangl2 protein is regulated at the posttranslational level has not been well understood. Using chemical reporters of fatty acylation and biochemical validation, here we present that Vangl2 subcellular localization is regulated by a reversible S-stearoylation cycle. The dynamic process is mainly regulated by acyltransferase ZDHHC9 and deacylase acyl-protein thioesterase 1 (APT1). The stearoylation-deficient mutant of Vangl2 shows decreased plasma membrane localization, resulting in disruption of PCP establishment during cell migration. Genetically or pharmacologically inhibiting ZDHHC9 phenocopies the effects of the stearoylation loss of Vangl2. In addition, loss of Vangl2 stearoylation enhances the activation of oncogenic Yes-associated protein 1 (YAP), serine-threonine kinase AKT, and extracellular signal-regulated protein kinase (ERK) signaling and promotes breast cancer cell growth and HRas G12V mutant (HRasV12)-induced oncogenic transformation. Our results reveal a regulation mechanism of Vangl2, and provide mechanistic insight into how fatty acid metabolism and protein fatty acylation regulate PCP signaling and tumorigenesis by core PCP protein lipidation.
Collapse
Affiliation(s)
- Jiafu Ying
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
| | - Yinghong Yang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
| | - Xuanpu Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Baoen Chen
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang311215, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310000, China
| |
Collapse
|
4
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
5
|
Li Y, Cai H, Wei J, Zhu L, Yao Y, Xie M, Song L, Zhang C, Huang X, Wang L. Dihydroartemisinin Attenuates Hypoxic Pulmonary Hypertension via the Downregulation of miR-335 Targeting Vangl2. DNA Cell Biol 2022; 41:750-767. [PMID: 35862468 DOI: 10.1089/dna.2021.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dihydroartemisinin (DHA) is a traditional antimalarial drug. DHA plays a crucial role in preventing pulmonary hypertension (PH); however, its regulatory function on microRNAs (miRNAs) in PH remains unclear. This study aimed to investigate whether DHA exerts its protective functions by regulating miR-335 in PH. Hypoxia-induced PH models were induced both in vitro and in vivo. Mice were treated with various concentrations of DHA, and pulmonary arterial smooth muscle cells (PASMCs) were treated with DHA, miR-335 inhibitor, miR-335 mimic, or Van Gogh-like 2 (Vangl2) plasmid. The expression of miR-335 and Vangl2, pulmonary arterial remodeling index; right ventricular hypertrophy index; and proliferation and migration indexes were measured. DHA improved pulmonary vascular remodeling and alleviated PH in vivo. miRNA sequencing and real-time PCR results further show that the increase in hypoxia-induced miR-335 was avoided by DHA administration, and miR-335 increased the hypoxia-induced PASMC proliferation and migration. MiRNA databases and dual-luciferase reporter assay show that miR-335 directly targets Vangl2, and Vangl2 decreased the hypoxia-induced PASMC proliferation and migration. The miR-335 inhibitor failed to inhibit hypoxia-induced proliferation and migration upregulation in Vangl2 knockdown PASMCs, and the effect of DHA can be blocked by miR-335 upregulation. In hypoxic PH, MiR-335 is increased, whereas Vangl2 is decreased. MiR-335 can significantly promote the hypoxia-induced proliferation and migration of PASMCs by targeting the Vangl2 gene. DHA effectively reverses the hypoxia-induced upregulation of miR-335 expression, avoiding the miR-335-mediated downregulation of Vangl2 and thereby promoting the expression of Vangl2 to prevent PH.
Collapse
Affiliation(s)
- Yaozhe Li
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haijian Cai
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinqiu Wei
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Zhu
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhu Yao
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengyao Xie
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lanlan Song
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Xu Z, Xiang W, Chen W, Sun Y, Qin F, Wei J, Yuan L, Zheng L, Li S. Circ-IGF1R inhibits cell invasion and migration in non-small cell lung cancer. Thorac Cancer 2020; 11:875-887. [PMID: 32107851 PMCID: PMC7113055 DOI: 10.1111/1759-7714.13329] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA) is a novel molecular marker and target candidate that is closely associated with tumor invasion and migration. The mechanism of action of hsa_circ_0005035 (circ-IGF1R) in non-small cell lung cancer remains unclear. In this study, we aimed to study the mechanism of action of circ-IGF1R in lung cancer. METHODS We screened circ-IGF1R, one of the most notable differential expressions, from the Gene Expression Omnibus database, GSE104854, for further research. The expression level of circ-IGF1R was examined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in five different lung cancer cell lines and 50 pairs of lung cancer and adjacent tissues. Wound-healing and Transwell assays were used for verifying the biological function of circ-IGF1R. The effect of overexpressing circ-IGF1R on the transcriptome of whole lung cancer cells was explored in lung cancer cell lines using RNA-seq. RESULTS The expression level of circ-IGF1R was notably lower in lung cancer tissues and lung cancer cell lines than in the adjacent normal tissues and cells (P < 0.0001). In addition, the expression level of circ-IGF1R was associated with larger tumors (T2/T3/T4) and lymph node metastasis (N1/ N2/N3) (P < 0.05). The overexpression of circ-IGF1R significantly inhibited the invasion and migration of the lung cancer cells. The potential network of circ-IGF1R-miR-1270-VANGL2 was preliminarily determined, and the expression patterns of miR-1270 and VANGL2 were verified in lung cancer cell lines. CONCLUSION Circ-IGF1R may inhibit lung cancer invasion and migration through a potential network of circ-IGF1R-miR-1270-VANGL2.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei Xiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjie Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangbo Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liping Zheng
- Department of Anesthesia Catheter Room, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Yang Y, Zhang M, Jin C, Ding Y, Yang M, Wang R, Zhou Y, Zhou Y, Li T, Wang K, Hu R. Absent in melanoma 2 suppresses epithelial-mesenchymal transition via Akt and inflammasome pathways in human colorectal cancer cells. J Cell Biochem 2019; 120:17744-17756. [PMID: 31210372 DOI: 10.1002/jcb.29040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/09/2022]
Abstract
Absent in melanoma 2 (AIM2) is a critical component in natural immunity system and is closely related to cancer initiation and development. It has been shown that AIM2 inhibited colorectal cancer (CRC) development and cell proliferation. It remains unresolved how AIM2 acts on CRC metastasis. In this study, we assessed migration, invasion ability, and epithelial-mesenchymal transition (EMT) program upon AIM2 overexpression or knockdown in human CRC cells. Transwell assay demonstrated that upregulation of AIM2 reduced cell migration and invasion. Epithelial marker E-cadherin was augmented and mesenchymal markers vimentin, as well as Snail, were examined decreased by Western blot, real-time polymerase chain reaction, and immunofluorescence. Correspondingly, knockdown of AIM2 led to a reverse consequence. In addition, AIM2 regulated Akt phosphorylation and effects of AIM2 on cell invasion and EMT were recovered after administration of Akt inhibitor, suggesting that AIM2 suppressed EMT dependent on Akt pathway. In addition, caspase-1 inhibitor exposure indicated that AIM2 abrogated EMT through the inflammasome pathway as well. In summary, AIM2 suppressed EMT via Akt and inflammasome pathways in human CRC cells.
Collapse
Affiliation(s)
- Yunjia Yang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Minda Zhang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Chenyu Jin
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Yang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Tao Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Keke Wang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
The planar cell polarity protein VANG-1/Vangl negatively regulates Wnt/β-catenin signaling through a Dvl dependent mechanism. PLoS Genet 2018; 14:e1007840. [PMID: 30532125 PMCID: PMC6307821 DOI: 10.1371/journal.pgen.1007840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/27/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
Van Gogh-like (Vangl) and Prickle (Pk) are core components of the non-canonical Wnt planar cell polarity pathway that controls epithelial polarity and cell migration. Studies in vertebrate model systems have suggested that Vangl and Pk may also inhibit signaling through the canonical Wnt/β-catenin pathway, but the functional significance of this potential cross-talk is unclear. In the nematode C. elegans, the Q neuroblasts and their descendants migrate in opposite directions along the anteroposterior body axis. The direction of these migrations is specified by Wnt signaling, with activation of canonical Wnt signaling driving posterior migration, and non-canonical Wnt signaling anterior migration. Here, we show that the Vangl ortholog VANG-1 influences the Wnt signaling response of the Q neuroblasts by negatively regulating canonical Wnt signaling. This inhibitory activity depends on a carboxy-terminal PDZ binding motif in VANG-1 and the Dishevelled ortholog MIG-5, but is independent of the Pk ortholog PRKL-1. Moreover, using Vangl1 and Vangl2 double mutant cells, we show that a similar mechanism acts in mammalian cells. We conclude that cross-talk between VANG-1/Vangl and the canonical Wnt pathway is an evolutionarily conserved mechanism that ensures robust specification of Wnt signaling responses. Wnt proteins are signaling molecules with a wide range of functions in embryonic development and the maintenance of adult tissues. Wnt proteins can trigger several different signaling pathways that are grouped in β-catenin dependent (canonical) and independent (non-canonical) signaling mechanisms. Here, we have investigated cross-talk between these different Wnt signaling pathways. We show that VANG-1/Vangl, a component of the non-canonical planar cell polarity pathway, negatively regulates canonical Wnt signaling. We propose that this cross-talk mechanism ensures that Wnt stimulated cells always activate the proper downstream signaling response.
Collapse
|
9
|
Jessen TN, Jessen JR. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix. Exp Cell Res 2017; 361:265-276. [PMID: 29097183 DOI: 10.1016/j.yexcr.2017.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM.
Collapse
Affiliation(s)
- Tammy N Jessen
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132, USA.
| |
Collapse
|
10
|
Pan T, Xu J, Zhu Y. Self-renewal molecular mechanisms of colorectal cancer stem cells. Int J Mol Med 2016; 39:9-20. [PMID: 27909729 PMCID: PMC5179189 DOI: 10.3892/ijmm.2016.2815] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jinghong Xu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
11
|
Wnt9A Induction Linked to Suppression of Human Colorectal Cancer Cell Proliferation. Int J Mol Sci 2016; 17:495. [PMID: 27049382 PMCID: PMC4848951 DOI: 10.3390/ijms17040495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 02/08/2023] Open
Abstract
Most studies of Wnt signaling in malignant tissues have focused on the canonical Wnt pathway (CWP) due to its role in stimulating cellular proliferation. The role of the non-canonical Wnt pathway (NCWP) in tissues with dysregulated Wnt signaling is not fully understood. Understanding NCWP’s role is important since these opposing pathways act in concert to maintain homeostasis in healthy tissues. Our preliminary studies demonstrated that LiCl inhibited proliferation of primary cells derived from colorectal cancer (CRC). Since LiCl stimulates cell proliferation in normal tissues and NCWP suppresses it, the present study was designed to investigate the impact of NCWP components in LiCl-mediated effects. LiCl-mediated inhibition of CRC cell proliferation (p < 0.001) and increased apoptosis (p < 0.01) coincided with 23-fold increase (p < 0.025) in the expression of the NCWP ligand, Wnt9A. LiCl also suppressed β-catenin mRNA (p < 0.03), total β-catenin protein (p < 0.025) and the active form of β-catenin. LiCl-mediated inhibition of CRC cell proliferation was partially reversed by IWP-2, and Wnt9A antibody. Recombinant Wnt9A protein emulated LiCl effects by suppressing β-catenin protein (p < 0.001), inhibiting proliferation (p < 0.001) and increasing apoptosis (p < 0.03). This is the first study to demonstrate induction of a NCWP ligand, Wnt9A as part of a mechanism for LiCl-mediated suppression of CRC cell proliferation.
Collapse
|
12
|
Dyberg C, Papachristou P, Haug BH, Lagercrantz H, Kogner P, Ringstedt T, Wickström M, Johnsen JI. Planar cell polarity gene expression correlates with tumor cell viability and prognostic outcome in neuroblastoma. BMC Cancer 2016; 16:259. [PMID: 27036398 PMCID: PMC4818482 DOI: 10.1186/s12885-016-2293-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 03/23/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The non-canonical Wnt/Planar cell polarity (PCP) signaling pathway is a major player in cell migration during embryonal development and has recently been implicated in tumorigenesis. METHODS Transfections with cDNA plasmids or siRNA were used to increase and suppress Prickle1 and Vangl2 expression in neuroblastoma cells and in non-tumorigenic cells. Cell viability was measured by trypan blue exclusion and protein expression was determined with western blotting. Transcriptional activity was studied with luciferase reporter assay and mRNA expression with real-time RT-PCR. Immunofluorescence stainings were used to study the effects of Vangl2 overexpression in non-tumorigenic embryonic cells. Statistical significance was tested with t-test or one-way ANOVA. RESULTS Here we show that high expression of the PCP core genes Prickle1 and Vangl2 is associated with low-risk neuroblastoma, suppression of neuroblastoma cell growth and decreased Wnt/β-catenin signaling. Inhibition of Rho-associated kinases (ROCKs) that are important in mediating non-canonical Wnt signaling resulted in increased expression of Prickle1 and inhibition of β-catenin activity in neuroblastoma cells. In contrast, overexpression of Vangl2 in MYC immortalized neural stem cells induced accumulation of active β-catenin and decreased the neural differentiation marker Tuj1. Similarly, genetically modified mice with forced overexpression of Vangl2 in nestin-positive cells showed decreased Tuj1 differentiation marker during embryonal development. CONCLUSIONS Our experimental data demonstrate that high expression of Prickle1 and Vangl2 reduce the growth of neuroblastoma cells and indicate different roles of PCP proteins in tumorigenic cells compared to normal cells. These results suggest that the activity of the non-canonical Wnt/PCP signaling pathway is important for neuroblastoma development and that manipulation of the Wnt/PCP pathway provides a possible therapy for neuroblastoma.
Collapse
Affiliation(s)
- Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Astrid Lindgren Children's Hospital Q6:05, SE-171 76, Stockholm, Sweden.
| | - Panagiotis Papachristou
- Neonatal Research Unit, Department of Women's and Children's Health, Astrid Lindgren Children's hospital, Q2:07, Karolinska Institutet, SE-171 76, Stockholm, Sweden.,Academic Primary Health Care Center, TioHundra AB, Box 905, SE-761 29, Norrtälje, Sweden
| | - Bjørn Helge Haug
- Department of Pediatrics, University-Hospital of Northern-Norway (UNN), 9037, Tromsø, Norway
| | - Hugo Lagercrantz
- Neonatal Research Unit, Department of Women's and Children's Health, Astrid Lindgren Children's hospital, Q2:07, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Astrid Lindgren Children's Hospital Q6:05, SE-171 76, Stockholm, Sweden
| | - Thomas Ringstedt
- Neonatal Research Unit, Department of Women's and Children's Health, Astrid Lindgren Children's hospital, Q2:07, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Astrid Lindgren Children's Hospital Q6:05, SE-171 76, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Astrid Lindgren Children's Hospital Q6:05, SE-171 76, Stockholm, Sweden
| |
Collapse
|
13
|
Brown GT, Murray GI. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 2015; 237:273-81. [PMID: 26174849 DOI: 10.1002/path.4586] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 12/12/2022]
Abstract
The purpose of this review is to highlight the recent mechanistic developments elucidating the role of matrix metalloproteinases (MMPs) in tumour invasion and metastasis. The ability of tumour cells to invade, migrate, and subsequently metastasize is a fundamental characteristic of cancer. Tumour invasion and metastasis are increasingly being characterized by the dynamic relationship between cancer cells and their microenvironment and developing a greater understanding of these basic pathological mechanisms is crucial. While MMPs have been strongly implicated in these processes as a result of extensive circumstantial evidence--for example, increased expression of individual MMPs in tumours and association of specific MMPs with prognosis--the underpinning mechanisms are only now being elucidated. Recent studies are now providing a mechanistic basis, highlighting and reinforcing the catalytic and non-catalytic roles of specific MMPs as key players in tumour invasion and metastasis.
Collapse
Affiliation(s)
- Gordon T Brown
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Graeme I Murray
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
14
|
Zhang H, Chen X, Zhao Y, Gao R, Geng Y, Ding Y, Liu X, Wang Y, He J. The homologous genes Vangl1 and Vangl2 are required for embryo implantation in the uterus of mice during early pregnancy. Gene 2014; 555:140-9. [PMID: 25445275 DOI: 10.1016/j.gene.2014.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/16/2014] [Accepted: 10/30/2014] [Indexed: 12/18/2022]
Abstract
Vangl1 and Vangl2 are homologous genes belonging to the group of highly conserved planar cell polarity proteins. It has been shown that Vangl1 and Vangl2 are essential for embryonic development, cell adhesion, migration and polarity. We examined the expression of Vangl1 and Vangl2 in the uterus of mice during early pregnancy. They are upregulated in the endometrium of peri-implantation and reached the peak on D5. Vangl1 mRNA is widely distributed in the luminal epithelium, glandular epithelium and stromal cells in the endometrium, while its protein only appeared in the stromal cells. The localization of Vangl2 protein overlapped with its mRNA. In addition, expression of Vangl1 in the endometrium of pseudopregnant mice was lower than that of pregnant mice, whereas the level of Vangl2 was not significantly different, suggesting that expression of Vangl1 is induced by embryo. Further study showed that implantation would be suppressed after silencing expressions of Vangl1 and Vangl2 by uterine injection with antisense oligonucleotides. These findings suggest that Vangl1 and Vangl2 may play a key role in the embryo implantation of mice.
Collapse
Affiliation(s)
- Hailing Zhang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yi Zhao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| |
Collapse
|
15
|
Hatakeyama J, Wald JH, Printsev I, Ho HYH, Carraway KL. Vangl1 and Vangl2: planar cell polarity components with a developing role in cancer. Endocr Relat Cancer 2014; 21:R345-56. [PMID: 24981109 PMCID: PMC4332879 DOI: 10.1530/erc-14-0141] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancers commonly reactivate embryonic developmental pathways to promote the aggressive behavior of their cells, resulting in metastasis and poor patient outcome. While developmental pathways such as canonical Wnt signaling and epithelial-to-mesenchymal transition have received much attention, our understanding of the role of the planar cell polarity (PCP) pathway in tumor progression remains rudimentary. Protein components of PCP, including a subset that overlaps with the canonical Wnt pathway, partition in polarized epithelial cells along the planar axis and are required for the establishment and maintenance of lateral epithelial polarity. Significant insight into PCP regulation of developmental and cellular processes has come from analysis of the functions of the core PCP scaffolding proteins Vangl1 and Vangl2. In particular, studies on zebrafish and with Looptail (Lp) mice, which harbor point mutations in Vangl2 that alter its trafficking and localization, point to roles for the PCP pathway in maintaining cell polarization along both the apical-basal and planar axes as well as in collective cell motility and invasiveness. Recent findings have suggested that the Vangls can promote similar processes in tumor cells. Initial data-mining efforts suggest that VANGL1 and VANGL2 are dysregulated in human cancers, and estrogen receptor (ER)-positive breast cancer patients whose tumors exhibit elevated VANGL1 expression suffer from shortened overall survival. Overall, evidence is beginning to accumulate that the heightened cellular motility and invasiveness associated with PCP reactivation may contribute to the malignancy of some cancer subtypes.
Collapse
Affiliation(s)
- Jason Hatakeyama
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| | - Jessica H Wald
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| | - Ignat Printsev
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| | - Hsin-Yi Henry Ho
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular MedicineUC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, California 95817, USADepartment of Cell Biology and Human AnatomyUC Davis School of Medicine, Davis, California 95616, USA
| |
Collapse
|
16
|
Sebbagh M, Borg JP. Insight into planar cell polarity. Exp Cell Res 2014; 328:284-95. [PMID: 25236701 DOI: 10.1016/j.yexcr.2014.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 11/16/2022]
Abstract
Planar cell polarity or PCP refers to a uniform cellular organization within the plan, typically orthogonal to the apico-basal polarity axis. As such, PCP provides directional cues that control and coordinate the integration of cells in tissues to build a living organism. Although dysfunctions of this fundamental cellular process have been convincingly linked to the etiology of various pathologies such as cancer and developmental defects, the molecular mechanisms governing its establishment and maintenance remain poorly understood. Here, we review some aspects of invertebrate and vertebrate PCPs, highlighting similarities and differences, and discuss the prevalence of the non-canonical Wnt signaling as a central PCP pathway, as well as recent findings on the importance of cell contractility and cilia as promising avenues of investigation.
Collapse
Affiliation(s)
- Michael Sebbagh
- CRCM, "Equipe labellisée Ligue Contre le Cancer", Inserm, U1068, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009, France; Aix-Marseille University, F-13284 Marseille, France.
| | - Jean-Paul Borg
- CRCM, "Equipe labellisée Ligue Contre le Cancer", Inserm, U1068, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009, France; Aix-Marseille University, F-13284 Marseille, France.
| |
Collapse
|