1
|
Lecchini-Visintini A, Zwanenburg JJM, Wen Q, Nicholls JK, Desmidt T, Catheline S, Minhas JS, Robba C, Dvoriashyna M, Vallet A, Bamber J, Kurt M, Chung EML, Holdsworth S, Payne SJ. The pulsing brain: state of the art and an interdisciplinary perspective. Interface Focus 2025; 15:20240058. [PMID: 40191028 PMCID: PMC11969196 DOI: 10.1098/rsfs.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Understanding the pulsing dynamics of tissue and fluids in the intracranial environment is an evolving research theme aimed at gaining new insights into brain physiology and disease progression. This article provides an overview of related research in magnetic resonance imaging, ultrasound medical diagnostics and mathematical modelling of biological tissues and fluids. It highlights recent developments, illustrates current research goals and emphasizes the importance of collaboration between these fields.
Collapse
Affiliation(s)
| | - Jacobus J. M. Zwanenburg
- Translational Neuroimaging Group, Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jennifer K. Nicholls
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | | | - Jatinder S. Minhas
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnosis, University of Genoa, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Mariia Dvoriashyna
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, UK
| | - Alexandra Vallet
- Ecole nationale supérieure des Mines de Saint-Étienne, INSERM U 1059 Sainbiose, Saint-Étienne, France
| | - Jeffrey Bamber
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Mehmet Kurt
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Emma M. L. Chung
- School of Life Course and Population Sciences, King's College London, London, UK
| | - Samantha Holdsworth
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Stephen J. Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Mislati R, Uccello TP, Lin Z, Iliza KT, Toussaint KC, Gerber SA, Doyley MM. Shear wave elastography can stratify rectal cancer response to short-course radiation therapy. Sci Rep 2023; 13:16149. [PMID: 37752156 PMCID: PMC10522682 DOI: 10.1038/s41598-023-43383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
Rectal cancer is a deadly disease typically treated using neoadjuvant chemoradiotherapy followed by total mesorectal excision surgery. To reduce the occurrence of mesorectal excision surgery for patients whose tumors regress from the neoadjuvant therapy alone, conventional imaging, such as computed tomography (CT) or magnetic resonance imaging (MRI), is used to assess tumor response to neoadjuvant therapy before surgery. In this work, we hypothesize that shear wave elastography offers valuable insights into tumor response to short-course radiation therapy (SCRT)-information that could help distinguish radiation-responsive from radiation-non-responsive tumors and shed light on changes in the tumor microenvironment that may affect radiation response. To test this hypothesis, we performed elastographic imaging on murine rectal tumors (n = 32) on days 6, 10, 12, 16, 18, 20, 23, and 25 post-tumor cell injection. The study revealed that radiation-responsive and non-radiation-responsive tumors had different mechanical properties. Specifically, radiation-non-responsive tumors showed significantly higher shear wave speed SWS (p < 0.01) than radiation-responsive tumors 11 days after SCRT. Furthermore, there was a significant difference in shear wave attenuation (SWA) (p < 0.01) in radiation-non-responsive tumors 16 days after SCRT compared to SWA measured just one day after SCRT. These results demonstrate the potential of shear wave elastography to provide valuable insights into tumor response to SCRT and aid in exploring the underlying biology that drives tumors' responses to radiation.
Collapse
Affiliation(s)
- Reem Mislati
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Taylor P Uccello
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Zixi Lin
- School of Engineering, Brown University, Providence, RI, USA
| | - Katia T Iliza
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | | - Scott A Gerber
- Department of Surgery, University of Rochester, Rochester, NY, USA
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
3
|
Abstract
ABSTRACT The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity is conducive to cell unjamming and metastatic spread. This reductionist view of tumorigenesis and malignant transformation provides a generalized framework for understanding the physical principles of tumor aggressiveness and harnessing them as novel in vivo imaging markers. Magnetic resonance elastography is an emerging imaging technology for depicting the viscoelastic properties of biological soft tissues and clinically characterizing tumors in terms of their biomechanical properties. This review article presents recent technical developments, basic results, and clinical applications of magnetic resonance elastography in patients with malignant tumors.
Collapse
Affiliation(s)
- Jing Guo
- From the Department of Radiology
| | | | | | | |
Collapse
|
4
|
Civale J, Parasaram V, Bamber JC, Harris EJ. High frequency ultrasound vibrational shear wave elastography for preclinical research. Phys Med Biol 2022; 67:245005. [PMID: 36410042 PMCID: PMC9728510 DOI: 10.1088/1361-6560/aca4b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Preclinical evaluation of novel therapies using models of cancer is an important tool in cancer research, where imaging can provide non-invasive tools to characterise the internal structure and function of tumours. The short propagation paths when imaging tumours and organs in small animals allow the use of high frequencies for both ultrasound and shear waves, providing the opportunity for high-resolution shear wave elastography and hence its use for studying the heterogeneity of tissue elasticity, where heterogeneity may be a predictor of tissue response. Here we demonstrate vibrational shear wave elastography (VSWE) using a mechanical actuator to produce high frequency (up to 1000 Hz) shear waves in preclinical tumours, an alternative to the majority of preclinical ultrasound SWE studies where an acoustic radiation force impulse is required to create a relatively low-frequency broad-band shear-wave pulse. We implement VSWE with a high frequency (17.8 MHz) probe running a focused line-by-line ultrasound imaging sequence which as expected was found to offer improved detection of 1000 Hz shear waves over an ultrafast planar wave imaging sequence in a homogenous tissue-mimicking phantom. We test the VSWE in anex vivotumour xenograft, demonstrating the ability to detect shear waves up to 10 mm from the contactor position at 1000 Hz. By reducing the kernel size used for shear wave speed estimation to 1 mm we are able to produce shear wave speed images with spatial resolution of this order. Finally, we present VSWE data from xenograft tumoursin vivo, demonstrating the feasibility of the technique in mice under isoflurane sedation. Mean shear wave speeds in the tumours are in good agreements with those reported by previous authors. Characterising the frequency dependence of shear wave speed demonstrates the potential to quantify the viscoelastic properties of tumoursin vivo.
Collapse
Affiliation(s)
- J Civale
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - V Parasaram
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - JC Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - EJ Harris
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
5
|
Parasaram V, Civale J, Bamber JC, Robinson SP, Jamin Y, Harris E. Preclinical Three-Dimensional Vibrational Shear Wave Elastography for Mapping of Tumour Biomechanical Properties In Vivo. Cancers (Basel) 2022; 14:4832. [PMID: 36230755 PMCID: PMC9564290 DOI: 10.3390/cancers14194832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Preclinical investigation of the biomechanical properties of tissues and their treatment-induced changes are essential to support drug-discovery, clinical translation of biomarkers of treatment response, and studies of mechanobiology. Here we describe the first use of preclinical 3D elastography to map the shear wave speed (cs), which is related to tissue stiffness, in vivo and demonstrate the ability of our novel 3D vibrational shear wave elastography (3D-VSWE) system to detect tumour response to a therapeutic challenge. We investigate the use of one or two vibrational sources at vibrational frequencies of 700, 1000 and 1200 Hz. The within-subject coefficients of variation of our system were found to be excellent for 700 and 1000 Hz and 5.4 and 6.2%, respectively. The relative change in cs measured with our 3D-VSWE upon treatment with an anti-vascular therapy ZD6126 in two tumour xenografts reflected changes in tumour necrosis. U-87 MG drug vs vehicle: Δcs = −24.7 ± 2.5 % vs 7.5 ± 7.1%, (p = 0.002) and MDA-MB-231 drug vs vehicle: Δcs = −12.3 ± 2.7 % vs 4.5 ± 4.7%, (p = 0.02). Our system enables rapid (<5 min were required for a scan length of 15 mm and three vibrational frequencies) 3D mapping of quantitative tumour viscoelastic properties in vivo, allowing exploration of regional heterogeneity within tumours and speedy recovery of animals from anaesthesia so that longitudinal studies (e.g., during tumour growth or following treatment) may be conducted frequently.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma Harris
- Division of Radiotherapy and Imaging, Centre for Cancer Imaging, Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
6
|
Yang B, Zhou J, Wang F, Hu XW, Shi Y. Pyrazoline derivatives as tubulin polymerization inhibitors with one hit for Vascular Endothelial Growth Factor Receptor 2 inhibition. Bioorg Chem 2021; 114:105134. [PMID: 34246970 DOI: 10.1016/j.bioorg.2021.105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023]
Abstract
In this work, to check the effect of the transposition of the rings in typical patterns, a series of pyrazoline derivatives 3a-3t bearing the characteristic 3,4,5-trimethoxy phenyl and thiophene moieties were synthesized and evaluated as tubulin polymerization inhibitors. Basically, as the concise output of our design, a majority of the synthesized compounds showed potency in inhibiting the tubulin polymerization. The top hit, 3q, exhibited potent anti-proliferation activity on cancer cell lines. It was comparable on tubulin-polymerization inhibition with the positive control Colchicine but lower toxic. The VEGFR2 inhibitory potency was introduced occasionally. The flow cytometry assay confirmed the apoptotic procedure and the confocal imaging revealed the tubulin-microtubule dynamics pattern. The anti-cancer mechanism of 3q was similar to Colchicine but not exactly the same on forming multi-polar spindles. The docking simulation visualized the possible binding patterns of 3q into tubulin and VEGFR2, respectively. The results inferred that further investigations on the transposition of the rings might lead to the improvement of tubulin polymerization inhibitory activity and the steadily introduction of the VEGFR2 inhibition.
Collapse
Affiliation(s)
- Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jiahua Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Fa Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Wei Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Yujun Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
7
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
8
|
Plaikner M, Kremser C, Viveiros A, Zoller H, Henninger B. [Magnetic resonance elastography of the liver : Worth knowing for clinical routine]. Radiologe 2020; 60:966-978. [PMID: 32399783 DOI: 10.1007/s00117-020-00690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is a noninvasive, quantitative, MRI-based method to evaluate liver stiffness. Beside biopsy and ultrasound elastography, this imaging method plays in many places a significant role in the detection and additive characterization of chronic liver disease. OBJECTIVES, MATERIALS AND METHODS Based on the literature, a brief review of the underlying method and the commercially available products is given. Furthermore, the practical procedure, the analysis, and the interpretation of clinically relevant questions are illustrated and a comparison with ultrasound elastography is provided. RESULTS This relative "young" MRI method allows extensive evaluation of mechanical properties of the liver and is an important diagnostic tool especially in follow-up examinations. The MRE of the liver is with a maximum technical failure rate of 5.8% a robust technique with high accuracy and an excellent re-test reliability as well as intra- and interobserver reproducibility. There is a high diagnostic certainty within the framework of most important clinical indications, the quantification of fibrosis, and with a very good correlation with the "gold standard" biopsy. CONCLUSION Based on its rising clinical relevance and the broad usage, MRE of the liver is increasingly used in many centers and in routine liver protocols. Therefore, basic knowledge of this method is essential for every radiologist.
Collapse
Affiliation(s)
- Michaela Plaikner
- Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich.
| | - Christian Kremser
- Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - André Viveiros
- Innere Medizin I, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Heinz Zoller
- Innere Medizin I, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Benjamin Henninger
- Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| |
Collapse
|
9
|
Park SJ, Yoon JH, Lee DH, Lim WH, Lee JM. Tumor Stiffness Measurements on MR Elastography for Single Nodular Hepatocellular Carcinomas Can Predict Tumor Recurrence After Hepatic Resection. J Magn Reson Imaging 2020; 53:587-596. [PMID: 32914909 DOI: 10.1002/jmri.27359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tumor stiffness (TS), measured by magnetic resonance elastography (MRE), could be associated with tumor mechanical properties and tumor grade. PURPOSE To determine whether TS obtained using MRE is associated with survival in patients with single nodular hepatocellular carcinoma (HCC) after hepatic resection (HR). STUDY TYPE Retrospective. POPULATION In all, 95 patients with pathologically confirmed HCCs. FIELD STRENGTH/SEQUENCE 1.5T/3D spin-echo echo-planar imaging MRE. ASSESSMENT TS values of the whole tumor (TS-WT) and of a solid portion of the tumor (TS-SP) after excluding the necrotic area were measured on stiffness maps. Known imaging prognostic factors of HCC were also analyzed. After surgery, pathologic findings were evaluated from resected pathology specimens. STATISTICAL TESTS Fisher's exact test and the Mann-Whitney U-test were performed to determine the significance of differences according to the tumor grade. Overall survival (OS) / recurrence-free survival (RFS) analyses were performed using Kaplan-Meier analyses and Cox multivariable models. RESULTS The average TS-WT was 2.14 ± 0.74 kPa, and the average TS-SP was 2.51 ± 1.07 kPa. The cumulative incidence of RFS was 73.1%, 63.1%, and 57.3% at 1, 3, and 5 years, respectively. The TS-WT, TS-SP, and tumor size (≥5 cm) were significant prognostic factors for RFS (P < 0.001; P < 0.001; P = 0.017, respectively). The estimated overall 1-, 3-, and 5-year survival rates were 95.7%, 86.9%, and 80.8%, respectively. The alpha-fetoprotein changes, platelets, tumor size (≥5 cm), and vascular invasion in pathology were significant predictive factors for overall survival (all P < 0.05). Tumor necrosis, TS-WT, TS-SP, and vascular invasion in pathology were significantly correlated with poorly differentiated HCC (all P < 0.05). DATA CONCLUSION The TS-WT, TW-SP, and tumor size (≥5 cm) were significant predictive factors of RFS after HR in patients with HCC. Level of Evidence Technical Efficacy Stage 5 J. MAGN. RESON. IMAGING 2021;53:587-596.
Collapse
Affiliation(s)
- Sae-Jin Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Woo Hyeon Lim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
10
|
Vogl TJ, Martin SS, Johnson AA, Haas Y. Evaluation of MR elastography as a response parameter for transarterial chemoembolization of colorectal liver metastases. Eur Radiol 2020; 30:3900-3907. [PMID: 32086582 PMCID: PMC7305258 DOI: 10.1007/s00330-020-06706-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate magnetic resonance elastography (MRE) as a response parameter in patients who received transarterial chemoembolization (TACE) for the treatment of colorectal liver metastases. MATERIALS AND METHODS Forty-two patients (29 male patients; mean age, 61.5 years; range, 41-84 years) with repeated TACE therapy of colorectal liver metastases underwent on average 2 repetitive magnetic resonance imaging (MRI) and MRE exams in 4- to 6-week intervals using a 1.5-T scanner. MRE-based liver stiffness measurements were performed in normal liver parenchyma and in metastatic lesions. Moreover, the size of the liver metastases was assessed during treatment and compared with the results of the MRE analysis. RESULTS Liver metastases showed a significantly higher degree of stiffness compared with the normal liver parenchyma (p < 0.001). However, only a weak correlation was found between the lesion size and stiffness (r = - 0.32, p = 0.1). MRE analysis revealed an increase in stiffness of the colorectal liver metastases from 4.4 to 7.1 kPa after three cycles of TACE (p < 0.001). Also, the mean size of the metastases decreased from 17.0 to 11.3 cm2 (p < 0.001). Finally, the entire liver stiffness increased from 2.9 to 3.1 kPa over the three cycles of TACE therapy. CONCLUSION In conclusion, MRE showed a significant change in stiffness and size of liver metastases. Therefore, MRE may provide an added value for an evaluation of treatment response in patients with colorectal liver metastases undergoing TACE. KEY POINTS • MRE showed an increase in stiffness of the colorectal liver metastases during TACE therapy. • Liver metastases showed a significantly higher degree of stiffness compared with the normal liver parenchyma. • However, only a weak correlation was found between the lesion size and stiffness.
Collapse
Affiliation(s)
- Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany.
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Addison A Johnson
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Yannick Haas
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
Deng X, Pi Y, Li Z, Xiong R, Liu J, Zhao J, Xie Z, Lei X, Tang G. FB-15 inhibits MGC-803 cells growth by regulating energy metabolism. Chem Biol Interact 2020; 327:109186. [PMID: 32590071 DOI: 10.1016/j.cbi.2020.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
In this study, we scrutinized the anticancer effects of FB-15 on human gastric carcinoma MGC-803 cells in vitro and vivo, and its preliminary effect on tubulin and HIF-1α. We confirmed that FB-15 not only inhibited the proliferation of a large number of cells in a concentration and time-dependent manner but also inhibited proliferation of a single cell to form clones. FB-15 manifested little cytotoxicity for normal stomach cells GES-1. The flow cytometry analysis displayed that FB-15 induced apoptosis MGC-803 cells and mainly arrested cells in the S phase in a concentration-dependent manner. The results of the wound healing assay indicated that FB-15 suppressed cell migration. Furthermore, the western blotting showed that FB-15 down-regulated the expression of β3-tubulin and HIF-1α, consistent with Immunohistochemical assay. The binding modes of FB-15 with tubulin were clarified by molecular docking. FB-15 significantly suppressed the growth of MGC-803 gastric cancer tumors. The inhibitory effect of FB-15 on tumor growth was superior to 5-Fu. Taken together, these results provided evidence for FB-15 to be used as an effective anticancer drug candidate for gastric cancer.
Collapse
Affiliation(s)
- Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Yiyuan Pi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China; Xiangnan University, Chenzhou City, Hunan Province, PR China
| | - Zhongli Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
12
|
Shang H, Wu B, Liang X, Sun Y, Han X, Zhang L, Wang Q, Cheng W. Evaluation of therapeutic effect of targeting nanobubbles conjugated with NET-1 siRNA by shear wave elastography: an in vivo study of hepatocellular carcinoma bearing mice model. Drug Deliv 2020; 26:944-951. [PMID: 31544556 PMCID: PMC6764407 DOI: 10.1080/10717544.2019.1667450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study aimed at investigating the tumor stiffness of hepatocellular carcinoma (HCC) bearing mice model in vivo to evaluate the therapeutic efficacy of targeting nanobubbles (TNBS) conjugated with NET-1 siRNA (NET-1 siRNA-TNBS). Also tested whether shear wave elastography (SWE) could demonstrate the pathological tumor changes and used to monitor therapeutic efficacy as a noninvasive method. The HCC bearing mice model was established by injecting human HCC cell line (HepG2). The mice were then divided into three groups randomly, and were treated with TNBS conjugated with NET-1 siRNA, TNBS conjugated with negative control gene, and saline as control. US-SWE was performed for three times. SWE values of all the tumors in three groups were increased with tumor growth. Emax was correlated with tumor size (p < .05). NET-1 gene (treatment group) significantly delayed the growth of tumor size compared to other two groups (p < .0001), showing a significantly increased Emax (p < .05). Immunohistochemical results showed that the NET-1 protein expression was significantly lower than the negative control and blank groups. In conclusion, TNBS conjugated with NET-1 siRNA inhibited tumor growth and prolonged the life of experimental animals. SWE provided a noninvasive and real time imaging method to detect the changes in tumor development.
Collapse
Affiliation(s)
- Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital , Harbin , China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital , Harbin , China
| | - Xitian Liang
- Department of Ultrasound, Harbin Medical University Cancer Hospital , Harbin , China
| | - Yixin Sun
- Department of Ultrasound, Harbin Medical University Cancer Hospital , Harbin , China
| | - Xue Han
- Department of Ultrasound, Harbin Medical University Cancer Hospital , Harbin , China
| | - Lei Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital , Harbin , China
| | - Qiucheng Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital , Harbin , China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital , Harbin , China
| |
Collapse
|
13
|
Liu R, Deng X, Peng Y, Feng W, Xiong R, Zou Y, Lei X, Zheng X, Xie Z, Tang G. Synthesis and biological evaluation of novel 5,6,7-trimethoxy flavonoid salicylate derivatives as potential anti-tumor agents. Bioorg Chem 2020; 96:103652. [PMID: 32059154 DOI: 10.1016/j.bioorg.2020.103652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/27/2022]
Abstract
5,6,7-Trimethoxy flavonoid salicylate derivatives were designed by the joining of three important pharmacophores (TMP, flavonoid, and SA) according to the combination principle. A series of novel trimethoxy flavonoid salicylate derivatives were synthesized and their in vitro anti-tumor activities were evaluated. Among these derivatives, compound 7f exhibited excellent antiproliferative activity against HGC-27 cells and MGC-803 cells with IC50 values of 10.26 ± 6.94 μM and 17.17 ± 3.03 μM, respectively. Subsequently, the effects on cell colony formation (clonogenic survival assay), cell migration (wound healing assay), cell cycle distribution (PI staining assay), cell apoptosis (Hoechst 33258 staining assay and annexin V-FITC/PI dual staining assay), lactate level (lactate measurement), microtubules disarrangement (immunofluorescence staining analysis) and docking posture (molecular docking simulation) were determined. Further western blot analysis confirmed that compound 7f could effectively down-regulate the expression of glycolysis-related proteins HIF-1α, PFKM and PKM2 and tumor angiogenesis-related proteins VEGF. Overall, these studies suggested that compound 7f, as the representative compound of those, might be a promising candidate for the treatment of gastric cancer and deserved the further studies.
Collapse
Affiliation(s)
- Renbo Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Yijiao Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Wanshi Feng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Yang Zou
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
14
|
Bunevicius A, Schregel K, Sinkus R, Golby A, Patz S. REVIEW: MR elastography of brain tumors. Neuroimage Clin 2019; 25:102109. [PMID: 31809993 PMCID: PMC6909210 DOI: 10.1016/j.nicl.2019.102109] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
MR elastography allows non-invasive quantification of the shear modulus of tissue, i.e. tissue stiffness and viscosity, information that offers the potential to guide presurgical planning for brain tumor resection. Here, we review brain tumor MRE studies with particular attention to clinical applications. Studies that investigated MRE in patients with intracranial tumors, both malignant and benign as well as primary and metastatic, were queried from the Pubmed/Medline database in August 2018. Reported tumor and normal appearing white matter stiffness values were extracted and compared as a function of tumor histopathological diagnosis and MRE vibration frequencies. Because different studies used different elastography hardware, pulse sequences, reconstruction inversion algorithms, and different symmetry assumptions about the mechanical properties of tissue, effort was directed to ensure that similar quantities were used when making inter-study comparisons. In addition, because different methodologies and processing pipelines will necessarily bias the results, when pooling data from different studies, whenever possible, tumor values were compared with the same subject's contralateral normal appearing white matter to minimize any study-dependent bias. The literature search yielded 10 studies with a total of 184 primary and metastatic brain tumor patients. The group mean tumor stiffness, as measured with MRE, correlated with intra-operatively assessed stiffness of meningiomas and pituitary adenomas. Pooled data analysis showed significant overlap between shear modulus values across brain tumor types. When adjusting for the same patient normal appearing white matter shear modulus values, meningiomas were the stiffest tumor-type. MRE is increasingly being examined for potential in brain tumor imaging and might have value for surgical planning. However, significant overlap of shear modulus values between a number of different tumor types limits applicability of MRE for diagnostic purposes. Thus, further rigorous studies are needed to determine specific clinical applications of MRE for surgical planning, disease monitoring and molecular stratification of brain tumors.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States; Harvard Medical School, Boston, MA, United States.
| | - Katharina Schregel
- Institute of Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | - Ralph Sinkus
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States; Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Samuel Patz
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
15
|
Li J, Zormpas-Petridis K, Boult JKR, Reeves EL, Heindl A, Vinci M, Lopes F, Cummings C, Springer CJ, Chesler L, Jones C, Bamber JC, Yuan Y, Sinkus R, Jamin Y, Robinson SP. Investigating the Contribution of Collagen to the Tumor Biomechanical Phenotype with Noninvasive Magnetic Resonance Elastography. Cancer Res 2019; 79:5874-5883. [PMID: 31604713 DOI: 10.1158/0008-5472.can-19-1595] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Increased stiffness in the extracellular matrix (ECM) contributes to tumor progression and metastasis. Therefore, stromal modulating therapies and accompanying biomarkers are being developed to target ECM stiffness. Magnetic resonance (MR) elastography can noninvasively and quantitatively map the viscoelastic properties of tumors in vivo and thus has clear clinical applications. Herein, we used MR elastography, coupled with computational histopathology, to interrogate the contribution of collagen to the tumor biomechanical phenotype and to evaluate its sensitivity to collagenase-induced stromal modulation. Elasticity (G d) and viscosity (G l) were significantly greater for orthotopic BT-474 (G d = 5.9 ± 0.2 kPa, G l = 4.7 ± 0.2 kPa, n = 7) and luc-MDA-MB-231-LM2-4 (G d = 7.9 ± 0.4 kPa, G l = 6.0 ± 0.2 kPa, n = 6) breast cancer xenografts, and luc-PANC1 (G d = 6.9 ± 0.3 kPa, G l = 6.2 ± 0.2 kPa, n = 7) pancreatic cancer xenografts, compared with tumors associated with the nervous system, including GTML/Trp53KI/KI medulloblastoma (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), orthotopic luc-D-212-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), luc-RG2 (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5), and luc-U-87-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 8) glioblastoma xenografts, intracranially propagated luc-MDA-MB-231-LM2-4 (G d = 3.7 ± 0.2 kPa, G l = 2.2 ± 0.1 kPa, n = 7) breast cancer xenografts, and Th-MYCN neuroblastomas (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5). Positive correlations between both elasticity (r = 0.72, P < 0.0001) and viscosity (r = 0.78, P < 0.0001) were determined with collagen fraction, but not with cellular or vascular density. Treatment with collagenase significantly reduced G d (P = 0.002) and G l (P = 0.0006) in orthotopic breast tumors. Texture analysis of extracted images of picrosirius red staining revealed significant negative correlations of entropy with G d (r = -0.69, P < 0.0001) and G l (r = -0.76, P < 0.0001), and positive correlations of fractal dimension with G d (r = 0.75, P < 0.0001) and G l (r = 0.78, P < 0.0001). MR elastography can thus provide sensitive imaging biomarkers of tumor collagen deposition and its therapeutic modulation. SIGNIFICANCE: MR elastography enables noninvasive detection of tumor stiffness and will aid in the development of ECM-targeting therapies.
Collapse
Affiliation(s)
- Jin Li
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | | | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Emma L Reeves
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Andreas Heindl
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Maria Vinci
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Filipa Lopes
- Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Craig Cummings
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Caroline J Springer
- Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Jeffrey C Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Ralph Sinkus
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
16
|
Hormuth DA, Sorace AG, Virostko J, Abramson RG, Bhujwalla ZM, Enriquez-Navas P, Gillies R, Hazle JD, Mason RP, Quarles CC, Weis JA, Whisenant JG, Xu J, Yankeelov TE. Translating preclinical MRI methods to clinical oncology. J Magn Reson Imaging 2019; 50:1377-1392. [PMID: 30925001 PMCID: PMC6766430 DOI: 10.1002/jmri.26731] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
The complexity of modern in vivo magnetic resonance imaging (MRI) methods in oncology has dramatically changed in the last 10 years. The field has long since moved passed its (unparalleled) ability to form images with exquisite soft-tissue contrast and morphology, allowing for the enhanced identification of primary tumors and metastatic disease. Currently, it is not uncommon to acquire images related to blood flow, cellularity, and macromolecular content in the clinical setting. The acquisition of images related to metabolism, hypoxia, pH, and tissue stiffness are also becoming common. All of these techniques have had some component of their invention, development, refinement, validation, and initial applications in the preclinical setting using in vivo animal models of cancer. In this review, we discuss the genesis of quantitative MRI methods that have been successfully translated from preclinical research and developed into clinical applications. These include methods that interrogate perfusion, diffusion, pH, hypoxia, macromolecular content, and tissue mechanical properties for improving detection, staging, and response monitoring of cancer. For each of these techniques, we summarize the 1) underlying biological mechanism(s); 2) preclinical applications; 3) available repeatability and reproducibility data; 4) clinical applications; and 5) limitations of the technique. We conclude with a discussion of lessons learned from translating MRI methods from the preclinical to clinical setting, and a presentation of four fundamental problems in cancer imaging that, if solved, would result in a profound improvement in the lives of oncology patients. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1377-1392.
Collapse
Affiliation(s)
- David A. Hormuth
- Institute for Computational Engineering and Sciences,Livestrong Cancer Institutes, The University of Texas at Austin
| | - Anna G. Sorace
- Department of Biomedical Engineering, The University of Texas at Austin,Department of Diagnostic Medicine, The University of Texas at Austin,Department of Oncology, The University of Texas at Austin,Livestrong Cancer Institutes, The University of Texas at Austin
| | - John Virostko
- Department of Diagnostic Medicine, The University of Texas at Austin,Department of Oncology, The University of Texas at Austin,Livestrong Cancer Institutes, The University of Texas at Austin
| | - Richard G. Abramson
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | | | - Pedro Enriquez-Navas
- Departments of Cancer Imaging and Metabolism, Cancer Physiology, The Moffitt Cancer Center
| | - Robert Gillies
- Departments of Cancer Imaging and Metabolism, Cancer Physiology, The Moffitt Cancer Center
| | - John D. Hazle
- Imaging Physics, The University of Texas M.D. Anderson Cancer Center
| | - Ralph P. Mason
- Department of Radiology, The University of Texas Southwestern Medical Center
| | - C. Chad Quarles
- Department of NeuroImaging Research, The Barrow Neurological Institute
| | - Jared A. Weis
- Department of Biomedical Engineering Wake Forest School of Medicine
| | | | - Junzhong Xu
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center,Institute of Imaging Science, Vanderbilt University Medical Center
| | - Thomas E. Yankeelov
- Institute for Computational Engineering and Sciences,Department of Biomedical Engineering, The University of Texas at Austin,Department of Diagnostic Medicine, The University of Texas at Austin,Department of Oncology, The University of Texas at Austin,Livestrong Cancer Institutes, The University of Texas at Austin
| |
Collapse
|
17
|
Pepin K, Grimm R, Kargar S, Howe BM, Fritchie K, Frick M, Wenger D, Okuno S, Ehman R, McGee K, James S, Laack N, Herman M, Pafundi D. Soft Tissue Sarcoma Stiffness and Perfusion Evaluation by MRE and DCE-MRI for Radiation Therapy Response Assessment: A Technical Feasibility Study. Biomed Phys Eng Express 2019; 5:10.1088/2057-1976/ab2175. [PMID: 32110433 PMCID: PMC7045581 DOI: 10.1088/2057-1976/ab2175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soft tissue sarcomas are a rare and heterogeneous group of malignancies that present significant diagnostic and therapeutic challenges. Patient stratification based on tumor aggressiveness and early therapeutic response based on quantitative imaging may improve prediction of treatment response and the evaluation of new treatment strategies in clinical trials. The purpose of this pilot study was to determine the technical feasibility of magnetic resonance elastography (MRE) and dynamic contrast-enhanced (DCE) MRI for the evaluation of sarcoma stiffness and perfusion in 9 patients with histologically confirmed sarcoma. Additionally, we assessed the feasibility of utilizing MRE and DCE-MRI for the early evaluation of response to radiation therapy in 4 patients to determine the utility of further evaluation in a larger cohort study. Tumor size, stiffness, and perfusion parameters all decreased from baseline at the time of the pre-surgery or follow-up MRI, and results were compared to pathology or conventional imaging. MRE and DCE-MRI may be useful for the quantitative evaluation of tumor stiffness and perfusion, and therapy response assessment in soft tissue sarcomas.
Collapse
Affiliation(s)
- Kay Pepin
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Roger Grimm
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Soudabeh Kargar
- Mayo Clinic Graduate School of Biomedical Sciences, 200 1 Street SW, Rochester, MN 55905
| | - B Matthew Howe
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Karen Fritchie
- Department of Pathology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Matthew Frick
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Doris Wenger
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Scott Okuno
- Department of Oncology, Mayo Clinic, 200 1 St SW, Rochester MN, 55905
| | - Richard Ehman
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Kiaran McGee
- Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Sarah James
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Michael Herman
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| | - Deanna Pafundi
- Department of Radiation Oncology, Mayo Clinic, 200 1 Street SW, Rochester, MN 55905
| |
Collapse
|
18
|
Valente KP, Thind SS, Akbari M, Suleman A, Brolo AG. Collagen Type I-Gelatin Methacryloyl Composites: Mimicking the Tumor Microenvironment. ACS Biomater Sci Eng 2019; 5:2887-2898. [PMID: 33405592 DOI: 10.1021/acsbiomaterials.9b00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutic drugs can penetrate tissues by diffusion and advection. In a healthy tissue, the interstitial fluid is composed of an influx of nutrients and oxygen from blood vessels. In the case of cancerous tissue, the interstitial fluid is poorly drained because of the lack of lymphatic vasculature, resulting in an increase in interstitial pressure. Furthermore, cancer cells invade healthy tissue by pressing and pushing the surrounding environment, creating an increase in pressure inside the tumor area. This results in a large differential pressure between the tumor and the healthy tissue, leading to an increase in extracellular matrix (ECM) stiffness. Because of high interstitial pressure in addition to matrix stiffening, penetration and distribution of systemic therapies are limited to diffusion, decreasing the efficacy of cancer treatment. This work reports on the development of a microfluidic system that mimics in vitro healthy and cancerous microenvironments using collagen I and gelatin methacryloyl (GelMA) composite hydrogels. The microfluidic device developed here contains a simplistic design with a central chamber and two lateral channels. In the central chamber, hydrogel composites were used to mimic the ECM, whereas lateral channels simulated capillary vessels. The transport of fluorescein sodium salt and fluorescently labeled gold nanoparticles from capillary-mimicking channels through the ECM-mimicking hydrogel was explored by tracking fluorescence. By tuning the hydrogel composition and concentration, the impact of the tumor microenvironment properties on the transport of those species was evaluated. In addition, breast cancer MCF-7 cells were embedded in the hydrogel composites, displaying the formation of 3D clusters with high viability and, consequently, the development of an in vitro tumor model.
Collapse
|
19
|
Pagé G, Tardieu M, Besret L, Blot L, Lopes J, Sinkus R, Van Beers BE, Garteiser P. Assessing Tumor Mechanics by MR Elastography at Different Strain Levels. J Magn Reson Imaging 2019; 50:1982-1989. [DOI: 10.1002/jmri.26787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gwenaël Pagé
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
| | - Marion Tardieu
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
| | | | | | | | - Ralph Sinkus
- Laboratory of Vascular Translational ScienceUMR1148, INSERM‐University Paris Diderot Paris France
- Imaging Sciences and Biomedical EngineeringKing's College London London UK
| | - Bernard E. Van Beers
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
- Department of RadiologyBeaujon University Hospital Paris Nord Clichy France
| | - Philippe Garteiser
- Laboratory of Imaging BiomarkersUMR1149, INSERM‐University Paris Diderot Paris France
| |
Collapse
|
20
|
Abstract
The first clinical application of magnetic resonance elastography (MRE) was in the evaluation of chronic liver disease (CLD) for detection and staging of liver fibrosis. In the past 10 years, MRE has been incorporated seamlessly into a standard magnetic resonance imaging (MRI) liver protocol worldwide. Liver MRE is a robust technique for evaluation of liver stiffness and is currently the most accurate noninvasive imaging technology for evaluation of liver fibrosis. Newer MRE sequences including spin-echo MRE and 3 dimensional MRE have helped in reducing the technical limitations of clinical liver MRE that is performed with 2D gradient recalled echo (GRE) MRE. Advances in MRE technology have led to understanding of newer mechanical parameters such as dispersion, attenuation, and viscoelasticity that may be useful in evaluating pathological processes in CLD and may prove useful in their management.This review article will describe the changes in CLD that cause an increase in stiffness followed by principle and technique of liver MRE. In the later part of the review, we will briefly discuss the advances in liver MRE.
Collapse
|
21
|
Deng X, Li Z, Xiong R, Liu J, Liu R, Peng J, Chen Y, Lei X, Cao X, Zheng X, Xie Z, Tang G. FS-7 inhibits MGC-803 cells growth in vitro and in vivo via down-regulating glycolysis. Biomed Pharmacother 2019; 109:1659-1669. [DOI: 10.1016/j.biopha.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
|
22
|
Bertalan G, Guo J, Tzschätzsch H, Klein C, Barnhill E, Sack I, Braun J. Fast tomoelastography of the mouse brain by multifrequency single‐shot MR elastography. Magn Reson Med 2018; 81:2676-2687. [DOI: 10.1002/mrm.27586] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Bertalan
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Jing Guo
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Heiko Tzschätzsch
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Charlotte Klein
- Department of Neurology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Eric Barnhill
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Ingolf Sack
- Department of Radiology Charité–Universitätsmedizin Berlin, Campus Charité MitteBerlin Germany
| | - Jürgen Braun
- Institute of Medical Informatics Charité–Universitätsmedizin Berlin, Campus Benjamin FranklinBerlin Germany
| |
Collapse
|
23
|
|
24
|
Feng Y, Zhu M, Qiu S, Shen P, Ma S, Zhao X, Hu CH, Guo L. A multi-purpose electromagnetic actuator for magnetic resonance elastography. Magn Reson Imaging 2018; 51:29-34. [DOI: 10.1016/j.mri.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/15/2018] [Indexed: 01/17/2023]
|
25
|
Ippolito D, Inchingolo R, Grazioli L, Drago SG, Nardella M, Gatti M, Faletti R. Recent advances in non-invasive magnetic resonance imaging assessment of hepatocellular carcinoma. World J Gastroenterol 2018; 24:2413-2426. [PMID: 29930464 PMCID: PMC6010944 DOI: 10.3748/wjg.v24.i23.2413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance (MR) imaging of the liver is an important tool for the detection and characterization of focal liver lesions and for assessment of diffuse liver disease, having several intrinsic characteristics, represented by high soft tissue contrast, avoidance of ionizing radiation or iodinated contrast media, and more recently, by application of several functional imaging techniques (i.e., diffusion-weighted sequences, hepatobiliary contrast agents, perfusion imaging, magnetic resonance (MR)-elastography, and radiomics analysis). MR functional imaging techniques are extensively used both in routine practice and in the field of clinical and pre-clinical research because, through a qualitative rather than quantitative approach, they can offer valuable information about tumor tissue and tissue architecture, cellular biomarkers related to the hepatocellular functions, or tissue vascularization profiles related to tumor and tissue biology. This kind of approach offers in vivo physiological parameters, capable of evaluating physiological and pathological modifications of tissues, by the analysis of quantitative data that could be used in tumor detection, characterization, treatment selection, and follow-up, in addition to those obtained from standard morphological imaging. In this review we provide an overview of recent advanced techniques in MR for the diagnosis and staging of hepatocellular carcinoma, and their role in the assessment of response treatment evaluation.
Collapse
Affiliation(s)
- Davide Ippolito
- School of Medicine, University of Milano-Bicocca, Milan 20126, Italy
- Department of Diagnostic Radiology, HS Gerardo Monza, Monza (MB) 20900, Italy
| | - Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Luigi Grazioli
- Department of Radiology, University of Brescia “Spedali Civili”, Brescia 25123, Italy
| | - Silvia Girolama Drago
- School of Medicine, University of Milano-Bicocca, Milan 20126, Italy
- Department of Diagnostic Radiology, HS Gerardo Monza, Monza (MB) 20900, Italy
| | - Michele Nardella
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| |
Collapse
|
26
|
Riegler J, Labyed Y, Rosenzweig S, Javinal V, Castiglioni A, Dominguez CX, Long JE, Li Q, Sandoval W, Junttila MR, Turley SJ, Schartner J, Carano RAD. Tumor Elastography and Its Association with Collagen and the Tumor Microenvironment. Clin Cancer Res 2018; 24:4455-4467. [PMID: 29798909 DOI: 10.1158/1078-0432.ccr-17-3262] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/21/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The tumor microenvironment presents with altered extracellular matrix (ECM) and stroma composition, which may affect treatment efficacy and contribute to tissue stiffness. Ultrasound (US) elastography can visualize and quantify tissue stiffness noninvasively. However, the contributions of ECM and stromal components to stiffness are poorly understood. We therefore set out to quantify ECM and stroma density and their relation to tumor stiffness.Experimental Design: A modified clinical ultrasound system was used to measure tumor stiffness and perfusion during tumor growth in preclinical tumor models. In vivo measurements were compared with collagen mass spectroscopy and automatic analysis of matrix and stromal markers derived from immunofluorescence images.Results: US elastography estimates of tumor stiffness were positively correlated with tumor volume in collagen and myofibroblast-rich tumors, while no correlations were found for tumors with low collagen and myofibroblast content. US elastography measurements were strongly correlated with ex vivo mechanical testing and mass spectroscopy-based measurements of total collagen and immature collagen crosslinks. Registration of ultrasound and confocal microscopy data showed strong correlations between blood vessel density and T-cell density in syngeneic tumors, while no correlations were found for genetic tumor models. In contrast to collagen density, which was positively correlated with stiffness, no significant correlations were observed for hyaluronic acid density. Finally, localized delivery of collagenase led to a significant reduction in tumor stiffness without changes in perfusion 24 hours after treatment.Conclusions: US elastography can be used as a potential biomarker to assess changes in the tumor microenvironment, particularly changes affecting the ECM. Clin Cancer Res; 24(18); 4455-67. ©2018 AACR.
Collapse
Affiliation(s)
- Johannes Riegler
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California
| | - Yassin Labyed
- Siemens Medical Solutions USA, Inc. Mountain View, California
| | | | - Vincent Javinal
- Department of In Vivo Pharmacology, Genentech, Inc, South San Francisco, California
| | | | - Claudia X Dominguez
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, California
| | - Jason E Long
- Department of Translational Oncology, Genentech, Inc, South San Francisco, California
| | - Qingling Li
- Department of Microchemistry, and Proteomics and Lipidomics, Genentech, Inc, South San Francisco, California
| | - Wendy Sandoval
- Department of Microchemistry, and Proteomics and Lipidomics, Genentech, Inc, South San Francisco, California
| | - Melissa R Junttila
- Department of Translational Oncology, Genentech, Inc, South San Francisco, California
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, California
| | - Jill Schartner
- Department of In Vivo Pharmacology, Genentech, Inc, South San Francisco, California
| | - Richard A D Carano
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California.
| |
Collapse
|
27
|
Gordic S, Ayache JB, Kennedy P, Besa C, Wagner M, Bane O, Ehman RL, Kim E, Taouli B. Value of tumor stiffness measured with MR elastography for assessment of response of hepatocellular carcinoma to locoregional therapy. Abdom Radiol (NY) 2017; 42:1685-1694. [PMID: 28154910 PMCID: PMC5590631 DOI: 10.1007/s00261-017-1066-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE The aim of the study was to correlate tumor stiffness (TS) measured with MR elastography (MRE) with degree of tumor enhancement and necrosis on contrast-enhanced T1-weighted imaging (CE-T1WI) in hepatocellular carcinomas (HCC) treated with Yttrium-90 radioembolization (RE) or transarterial chemoembolization plus radiofrequency ablation (TACE/RFA). MATERIAL AND METHODS This retrospective study was IRB-approved and the requirement for informed consent was waived. 52 patients (M/F 38/14, mean age 67 years) with HCC who underwent RE (n = 22) or TACE/RFA (n = 30) and 11 controls (M/F 6/5, mean age 64 years) with newly diagnosed untreated HCC were included. The MRI protocol included a 2D MRE sequence. TS and LS (liver stiffness) were measured on stiffness maps. Degree of tumor necrosis was assessed on subtraction images by two observers, and tumor enhancement ratios (ER) were calculated on CE-T1WI by one observer. RESULTS 63 HCCs (mean size 3.2 ± 1.6 cm) were evaluated. TS was significantly lower in treated vs. untreated tumors (3.9 ± 1.8 vs. 6.9 ± 3.4 kPa, p = 0.006) and also compared to LS (5.3 ± 2.2 kPa, p = 0.002). There were significant correlations between TS and each of enhancement ratios (r = 0.514, p = 0.0001), and percentage of necrosis (r = -0.540, p = 0.0001). The observed correlations were stronger in patients treated with RE (TS vs. ER, r = 0.636, TS vs. necrosis, r = -0.711, both p = 0.0001). Percentage of necrosis and T1-signal in native T1WI were significant independent predictors of TS (p = 0.0001 and 0.001, respectively). CONCLUSION TS measured with MRE shows a significant correlation with tumor enhancement and necrosis, especially in HCCs treated with RE.
Collapse
Affiliation(s)
- Sonja Gordic
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY, 10029-6574, USA
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Jad Bou Ayache
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Kennedy
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY, 10029-6574, USA
| | - Cecilia Besa
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY, 10029-6574, USA
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY, 10029-6574, USA
| | - Octavia Bane
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY, 10029-6574, USA
| | | | - Edward Kim
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY, 10029-6574, USA.
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Elyas E, Papaevangelou E, Alles EJ, Erler JT, Cox TR, Robinson SP, Bamber JC. Correlation of Ultrasound Shear Wave Elastography with Pathological Analysis in a Xenografic Tumour Model. Sci Rep 2017; 7:165. [PMID: 28279018 PMCID: PMC5427848 DOI: 10.1038/s41598-017-00144-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
The objective of this study was to evaluate the potential value of ultrasound (US) shear wave elastography (SWE) in assessing the relative change in elastic modulus in colorectal adenocarcinoma xenograft models in vivo and investigate any correlation with histological analysis. We sought to test whether non-invasive evaluation of tissue stiffness is indicative of pathological tumour changes and can be used to monitor therapeutic efficacy. US-SWE was performed in tumour xenografts in 15 NCr nude immunodeficient mice, which were treated with either the cytotoxic drug, Irinotecan, or saline as control. Ten tumours were imaged 48 hours post-treatment and five tumours were imaged for up to five times after treatment. All tumours were harvested for histological analysis and comparison with elasticity measurements. Elastic (Young's) modulus prior to treatment was correlated with tumour volume (r = 0.37, p = 0.008). Irinotecan administration caused significant delay in the tumour growth (p = 0.02) when compared to control, but no significant difference in elastic modulus was detected. Histological analysis revealed a significant correlation between tumour necrosis and elastic modulus (r = -0.73, p = 0.026). SWE measurement provided complimentary information to other imaging modalities and could indicate potential changes in the mechanical properties of tumours, which in turn could be related to the stages of tumour development.
Collapse
Affiliation(s)
- Eli Elyas
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK.
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK.
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden.
| | - Efthymia Papaevangelou
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Guys Hospital, King's College London, London, UK
| | - Erwin J Alles
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, Guys Hospital, King's College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Janine T Erler
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Simon P Robinson
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK
| | - Jeffrey C Bamber
- CRUK and EPSRC Imaging Centre, Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, UK
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| |
Collapse
|
29
|
Tourell MC, Shokoohmand A, Landgraf M, Holzapfel NP, Poh PSP, Loessner D, Momot KI. The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts. Sci Rep 2017; 7:42905. [PMID: 28220831 PMCID: PMC5318900 DOI: 10.1038/srep42905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution (“maximum ADC”) exhibited a strong correlation with the tumour size (r2 = 0.90) and with the inverse of the elastic modulus (r2 = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours’ ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour’s response to treatment.
Collapse
Affiliation(s)
- Monique C Tourell
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| | - Ali Shokoohmand
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia.,Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Marietta Landgraf
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| | - Nina P Holzapfel
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| | - Patrina S P Poh
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniela Loessner
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| | - Konstantin I Momot
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| |
Collapse
|
30
|
Abramson RG, Arlinghaus LR, Dula AN, Quarles CC, Stokes AM, Weis JA, Whisenant JG, Chekmenev EY, Zhukov I, Williams JM, Yankeelov TE. MR Imaging Biomarkers in Oncology Clinical Trials. Magn Reson Imaging Clin N Am 2016; 24:11-29. [PMID: 26613873 DOI: 10.1016/j.mric.2015.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The authors discuss eight areas of quantitative MR imaging that are currently used (RECIST, DCE-MR imaging, DSC-MR imaging, diffusion MR imaging) in clinical trials or emerging (CEST, elastography, hyperpolarized MR imaging, multiparameter MR imaging) as promising techniques in diagnosing cancer and assessing or predicting response of cancer to therapy. Illustrative applications of the techniques in the clinical setting are summarized before describing the current limitations of the methods.
Collapse
Affiliation(s)
- Richard G Abramson
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Lori R Arlinghaus
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Adrienne N Dula
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - C Chad Quarles
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Biomedical Engineering, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Cancer Biology, Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Ashley M Stokes
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Jared A Weis
- Department of Biomedical Engineering, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Jennifer G Whisenant
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Eduard Y Chekmenev
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Biomedical Engineering, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Biochemistry, Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Igor Zhukov
- National Research Nuclear University MEPhI, Kashirskoye highway, 31, Moscow 115409, Russia
| | - Jason M Williams
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Thomas E Yankeelov
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Biomedical Engineering, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Cancer Biology, Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Physics, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA.
| |
Collapse
|
31
|
Feng Y, Clayton EH, Okamoto RJ, Engelbach J, Bayly PV, Garbow JR. A longitudinal magnetic resonance elastography study of murine brain tumors following radiation therapy. Phys Med Biol 2016; 61:6121-31. [PMID: 27461395 DOI: 10.1088/0031-9155/61/16/6121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9-19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.
Collapse
Affiliation(s)
- Y Feng
- School of Mechanical and Electronic Engineering, Soochow University, Suzhou, Jiangsu, People's Republic of China. Robotics and Microsystems Center, Soochow University, Suzhou, Jiangsu, People's Republic of China. School of Computer Science and Engineering, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
O'Shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol 2016; 61:R90-137. [PMID: 27002558 DOI: 10.1088/0031-9155/61/8/r90] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.
Collapse
Affiliation(s)
- Tuathan O'Shea
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, London SM2 5NG, UK
| | | | | | | | | | | |
Collapse
|
33
|
O'Connor JPB, Boult JKR, Jamin Y, Babur M, Finegan KG, Williams KJ, Little RA, Jackson A, Parker GJM, Reynolds AR, Waterton JC, Robinson SP. Oxygen-Enhanced MRI Accurately Identifies, Quantifies, and Maps Tumor Hypoxia in Preclinical Cancer Models. Cancer Res 2016; 76:787-95. [PMID: 26659574 PMCID: PMC4757751 DOI: 10.1158/0008-5472.can-15-2062] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/09/2015] [Indexed: 01/10/2023]
Abstract
There is a clinical need for noninvasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning, and therapy monitoring. Oxygen-enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed "Oxy-R fraction") would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here, we demonstrate that OE-MRI signals are accurate, precise, and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia noninvasively and is immediately translatable to the clinic.
Collapse
Affiliation(s)
- James P B O'Connor
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom. Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom. Department of Radiology, Christie NHS Foundation Trust, Manchester, United Kingdom. james.o'
| | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Muhammad Babur
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | - Katherine G Finegan
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | - Kaye J Williams
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom. Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | - Ross A Little
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Alan Jackson
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoff J M Parker
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew R Reynolds
- Tumour Biology Team, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - John C Waterton
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
34
|
Oh DY, Kim TM, Han SW, Shin DY, Lee YG, Lee KW, Kim JH, Kim TY, Jang IJ, Lee JS, Bang YJ. Phase I Study of CKD-516, a Novel Vascular Disrupting Agent, in Patients with Advanced Solid Tumors. Cancer Res Treat 2016; 48:28-36. [PMID: 25715767 PMCID: PMC4720091 DOI: 10.4143/crt.2014.258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/14/2014] [Indexed: 11/21/2022] Open
Abstract
PURPOSE CKD-516 is a newly developed vascular disrupting agent. This phase I dose-escalation study of CKD-516 was conducted to determine maximum-tolerated dose (MTD), safety, pharmacokinetics, and preliminary antitumor efficacy in patients with advanced solid tumors. MATERIALS AND METHODS Patients received CKD-516 intravenously on D1 and D8 every 3 weeks, in a standard 3+3 design. Safety was evaluated by National Cancer Institute Common Terminology Criteria for Adverse Events ver. 4.02 and response was assessed by Response Evaluation Criteria in Solid Tumor ver. 1.1. RESULTS Twenty-three patients were treated with CKD-516 at seven dosing levels: 1 mg/m(2)/day (n=3), 2 mg/m(2)/day (n=3), 3.3 mg/m(2)/day (n=3), 5 mg/m(2)/day (n=3), 7 mg/m(2)/day (n=3), 9 mg/m(2)/day (n=6), and 12 mg/m(2)/day (n=2). Mean age was 54 and 56.5% of patients were male. Two dose-limiting toxicities, which were both grade 3 hypertension, were observed in two patients at 12 mg/m(2)/day. The MTD was determined as 12 mg/m(2)/day. Most common adverse events were gastrointestinal adverse events (diarrhea, 34.8% [30.4% grade 1/2, 13.0% grade 3]; nausea, 21.7% [all grade 1/2]; vomiting, 21.7% [all grade 1/2]), myalgia (17.4%, all grade 1/2), and abdominal pain (21.7% [21.7% grade 1/2, 4.3% grade 3]). The pharmacokinetic study showed the dose-linearity of all dosing levels. Among 23 patients, six patients (26.1%) showed stable disease. Median progression-free survival was 39 days (95% confidence interval, 37 to 41 days). CONCLUSION This study demonstrates feasibility of CKD-516, novel vascular disrupting agent, in patients with advanced solid tumor. MTD of CKD-516 was defined as 12 mg/m(2)/day on D1 and D8 every 3 weeks.
Collapse
Affiliation(s)
- Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yun Gyoo Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Kangbuk Samsung Medical Center, Seoul, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Jong-Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Pepin KM, Ehman RL, McGee KP. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:32-48. [PMID: 26592944 PMCID: PMC4660259 DOI: 10.1016/j.pnmrs.2015.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/07/2023]
Abstract
Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy.
Collapse
|
36
|
Weis JA, Miga MI, Arlinghaus LR, Li X, Abramson V, Chakravarthy AB, Pendyala P, Yankeelov TE. Predicting the Response of Breast Cancer to Neoadjuvant Therapy Using a Mechanically Coupled Reaction-Diffusion Model. Cancer Res 2015; 75:4697-707. [PMID: 26333809 DOI: 10.1158/0008-5472.can-14-2945] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 07/29/2015] [Indexed: 12/21/2022]
Abstract
Although there are considerable data on the use of mathematical modeling to describe tumor growth and response to therapy, previous approaches are often not of the form that can be easily applied to clinical data to generate testable predictions in individual patients. Thus, there is a clear need to develop and apply clinically relevant oncologic models that are amenable to available patient data and yet retain the most salient features of response prediction. In this study we show how a biomechanical model of tumor growth can be initialized and constrained by serial patient-specific magnetic resonance imaging data, obtained at two time points early in the course of therapy (before initiation and following one cycle of therapy), to predict the response for individual patients with breast cancer undergoing neoadjuvant therapy. Using our mechanics coupled modeling approach, we are able to predict, after the first cycle of therapy, breast cancer patients that would eventually achieve a complete pathologic response and those who would not, with receiver operating characteristic area under the curve (AUC) of 0.87, sensitivity of 92%, and specificity of 84%. Our approach significantly outperformed the AUCs achieved by standard (i.e., not mechanically coupled) reaction-diffusion predictive modeling (0.75), simple analysis of the tumor cellularity estimated from imaging data (0.73), and the Response Evaluation Criteria in Solid Tumors (0.71). Thus, we show the potential for mathematical model prediction for use as a prognostic indicator of response to therapy. The work indicates the considerable promise of image-driven biophysical modeling for predictive frameworks within therapeutic applications.
Collapse
Affiliation(s)
- Jared A Weis
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee. Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee. Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| | - Michael I Miga
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee. Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee. Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee. Department of Neurosurgery, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Lori R Arlinghaus
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Xia Li
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Vandana Abramson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee. Department of Medicine, Division of Hematology/Oncology, Vanderbilt University, Nashville, Tennessee
| | - A Bapsi Chakravarthy
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee. Department of Radiation Oncology, Vanderbilt University, Nashville, Tennessee
| | - Praveen Pendyala
- Department of Radiation Oncology, Vanderbilt University, Nashville, Tennessee
| | - Thomas E Yankeelov
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee. Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee. Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee. Department of Physics, Vanderbilt University, Nashville, Tennessee. Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
37
|
Weis JA, Flint KM, Sanchez V, Yankeelov TE, Miga MI. Assessing the accuracy and reproducibility of modality independent elastography in a murine model of breast cancer. J Med Imaging (Bellingham) 2015; 2:036001. [PMID: 26158120 DOI: 10.1117/1.jmi.2.3.036001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 01/21/2023] Open
Abstract
Cancer progression has been linked to mechanics. Therefore, there has been recent interest in developing noninvasive imaging tools for cancer assessment that are sensitive to changes in tissue mechanical properties. We have developed one such method, modality independent elastography (MIE), that estimates the relative elastic properties of tissue by fitting anatomical image volumes acquired before and after the application of compression to biomechanical models. The aim of this study was to assess the accuracy and reproducibility of the method using phantoms and a murine breast cancer model. Magnetic resonance imaging data were acquired, and the MIE method was used to estimate relative volumetric stiffness. Accuracy was assessed using phantom data by comparing to gold-standard mechanical testing of elasticity ratios. Validation error was [Formula: see text]. Reproducibility analysis was performed on animal data, and within-subject coefficients of variation ranged from 2 to 13% at the bulk level and 32% at the voxel level. To our knowledge, this is the first study to assess the reproducibility of an elasticity imaging metric in a preclinical cancer model. Our results suggest that the MIE method can reproducibly generate accurate estimates of the relative mechanical stiffness and provide guidance on the degree of change needed in order to declare biological changes rather than experimental error in future therapeutic studies.
Collapse
Affiliation(s)
- Jared A Weis
- Vanderbilt University , Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, United States ; Vanderbilt University , Institute of Imaging Science, 1161 21st Avenue South, AA-1105 MCN, Nashville, Tennessee 37232-2310, United States ; Vanderbilt University , Radiology and Radiological Sciences, 1161 21st Avenue South, MCN CCC-1118, Nashville, Tennessee 37232-2675, United States
| | - Katelyn M Flint
- Vanderbilt University , Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, United States
| | - Violeta Sanchez
- Vanderbilt University , Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, 691 PRB, Nashville, Tennessee 37232-6838, United States
| | - Thomas E Yankeelov
- Vanderbilt University , Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, United States ; Vanderbilt University , Institute of Imaging Science, 1161 21st Avenue South, AA-1105 MCN, Nashville, Tennessee 37232-2310, United States ; Vanderbilt University , Radiology and Radiological Sciences, 1161 21st Avenue South, MCN CCC-1118, Nashville, Tennessee 37232-2675, United States ; Vanderbilt University , Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, 691 PRB, Nashville, Tennessee 37232-6838, United States ; Vanderbilt University , Physics and Astronomy, PMB 401807, 2301 Vanderbilt Place, Nashville, Tennessee 37240-1807, United States ; Vanderbilt University , Cancer Biology, 2220 Pierce Avenue, 771 PRB, Nashville, Tennessee 37232-6840, United States
| | - Michael I Miga
- Vanderbilt University , Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, United States ; Vanderbilt University , Institute of Imaging Science, 1161 21st Avenue South, AA-1105 MCN, Nashville, Tennessee 37232-2310, United States ; Vanderbilt University , Radiology and Radiological Sciences, 1161 21st Avenue South, MCN CCC-1118, Nashville, Tennessee 37232-2675, United States ; Vanderbilt University , Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, 691 PRB, Nashville, Tennessee 37232-6838, United States ; Vanderbilt University , Neurosurgery, T-4224 MCN Nashville, Tennessee 37232-2380, United States
| |
Collapse
|
38
|
Papaevangelou E, Almeida GS, Jamin Y, Robinson SP, deSouza NM. Diffusion-weighted MRI for imaging cell death after cytotoxic or apoptosis-inducing therapy. Br J Cancer 2015; 112:1471-9. [PMID: 25880014 PMCID: PMC4453679 DOI: 10.1038/bjc.2015.134] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/10/2015] [Accepted: 03/17/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Non-invasive serial imaging is desirable to detect processes such as necrotic and apoptotic cell death in cancer patients undergoing treatment. This study investigated the use of diffusion-weighted (DW-) magnetic resonance imaging (MRI) for imaging cell death induced by either a cytotoxic drug (irinotecan), or the apoptosis-inducing agent birinapant, in human tumour xenografts in vivo. METHODS Nude mice bearing human SW620 colon carcinoma xenografts were treated with vehicle, irinotecan (50 mg kg(-1)) or birinapant (30 mg kg(-1)) for up to 5 days. DW-MRI was performed prior to and on days 1, 3 and 5 during treatment. Assessment of tumour apoptosis and necrosis ex vivo was used to validate the imaging findings. RESULTS Both irinotecan and birinapant induced significant tumour growth delay. Irinotecan induced a small increase in the tumour apparent diffusion coefficient (ADC) after 1 day, with a 20 and 30% increase at days 3 and 5 respectively. ADC was unchanged in the vehicle- and birinapant-treated tumours despite a growth delay in the latter. Histological analysis showed that irinotecan increased necrosis at days 3 and 5, and induced apoptosis after 1 day, compared with vehicle. Birinapant induced apoptosis after day 3, but had no effect on tumour necrosis. CONCLUSIONS Tumour ADC changes after irinotecan treatment were associated with the induction of a mixture of necrotic and apoptotic cell death, whereas induction of apoptosis alone with birinapant was not sufficient to induce changes in tissue microstructure that were detectable with DW-MRI. ADC is a useful non-invasive biomarker for early detection of response to cytotoxic drugs, but false negatives may arise while detecting apoptotic response to birinapant.
Collapse
Affiliation(s)
- E Papaevangelou
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - G S Almeida
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - Y Jamin
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - S P Robinson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - N M deSouza
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
39
|
Jamin Y, Boult JK, Li J, Popov S, Garteiser P, Ulloa JL, Cummings C, Box G, Eccles SA, Jones C, Waterton JC, Bamber JC, Sinkus R, Robinson SP. Exploring the biomechanical properties of brain malignancies and their pathologic determinants in vivo with magnetic resonance elastography. Cancer Res 2015; 75:1216-1224. [PMID: 25672978 PMCID: PMC4384983 DOI: 10.1158/0008-5472.can-14-1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/15/2015] [Indexed: 12/29/2022]
Abstract
Malignant tumors are typically associated with altered rigidity relative to normal host tissue. Magnetic resonance elastography (MRE) enables the noninvasive quantitation of the mechanical properties of deep-seated tissue following application of an external vibrational mechanical stress to that tissue. In this preclinical study, we used MRE to quantify (kPa) the elasticity modulus Gd and viscosity modulus Gl of three intracranially implanted glioma and breast metastatic tumor models. In all these brain tumors, we found a notable softness characterized by lower elasticity and viscosity than normal brain parenchyma, enabling their detection on Gd and Gl parametric maps. The most circumscribed tumor (U-87 MG glioma) was the stiffest, whereas the most infiltrative tumor (MDA-MB-231 metastatic breast carcinoma) was the softest. Tumor cell density and microvessel density correlated significantly and positively with elasticity and viscosity, whereas there was no association with the extent of collagen deposition or myelin fiber entrapment. In conclusion, although malignant tumors tend to exhibit increased rigidity, intracranial tumors presented as remarkably softer than normal brain parenchyma. Our findings reinforce the case for MRE use in diagnosing and staging brain malignancies, based on the association of different tumor phenotypes with different mechanical properties.
Collapse
Affiliation(s)
- Yann Jamin
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Jessica K.R. Boult
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Jin Li
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Sergey Popov
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Philippe Garteiser
- INSERM U1149, CRI, Centre de Recherche sur l’Inflammation, Paris, France
| | | | - Craig Cummings
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Gary Box
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Suzanne A. Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - John C. Waterton
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Jeffrey C. Bamber
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| | - Ralph Sinkus
- BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, United Kingdom
| | - Simon P. Robinson
- Division of Radiotherapy & Imaging, The Institute of Cancer Research and Royal Marsden NHS Trust, London, United Kingdom
| |
Collapse
|
40
|
Abstract
Newly developed or advanced methods of ultrasonography and MR imaging provide combined anatomical and quantitative functional information about diffuse and focal liver diseases. Ultrasound elastography has a central role for staging liver fibrosis and an increasing role in grading portal hypertension; dynamic contrast-enhanced ultrasonography may improve tumor characterization. In clinical practice, MR imaging examinations currently include diffusion-weighted and dynamic MR imaging, enhanced with extracellular or hepatobiliary contrast agents. Moreover, quantitative parameters obtained with diffusion-weighted MR imaging, dynamic contrast-enhanced MR imaging and MR elastography have the potential to characterize further diffuse and focal liver diseases, by adding information about tissue cellularity, perfusion, hepatocyte transport function and visco-elasticity. The multiparametric capability of ultrasonography and more markedly of MR imaging gives the opportunity for high diagnostic performance by combining imaging biomarkers. However, image acquisition and post-processing methods should be further standardized and validated in multicenter trials.
Collapse
|
41
|
Abstract
Accurate pretherapeutic imaging is the cornerstone of all cancer treatment. Unfortunately, modern imaging modalities have several unsolved problems and limitations. The differentiation between inflammation and cancer infiltration, false positive and false negative findings as well as lack of confirming biopsies in suspected metastases may have serious negative consequences in cancer patients. This review describes some of these problems and challenges the use of conventional imaging by suggesting new combined strategies that include selective use of confirming biopsies and complementary methods to detect microscopic cancer dissemination.
Collapse
Affiliation(s)
- Michael Bau Mortensen
- Department of Surgery, Upper GI Section and HPB Center, Odense University Hospital, Sdr. Boulevard, DK-5000 Odense C, Denmark
| |
Collapse
|
42
|
Chen J, Yin HB. Dynamic contrast-enhanced magnetic resonance imaging of the liver: Applications in treatment of hepatic malignancies with vascular targeting agents. Shijie Huaren Xiaohua Zazhi 2014; 22:4928-4933. [DOI: 10.11569/wcjd.v22.i32.4928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging of the liver as a trendy technique can be applied in various kinds of liver diseases to evaluate perfusion and vascular characteristics of liver tissue and tumor. It has been proved that DCE-MR imaging plays an important role in the treatment of liver malignancies with vascular targeting agents. This review aims to give an overview of DCE-MR imaging of the liver in terms of semi-quantitative analysis methods, common quantitative analysis models and contrast agents and discuss its application value in the treatment of liver malignancies with vascular targeting agents.
Collapse
|