1
|
Huang F, Cao X, Mei J, Wu C, Zhu W, Sun L, Dai C, Wang M. Gastric cancer cells shuttle lactate to induce inflammatory CAF-like phenotype and function in bone marrow-derived mesenchymal stem cells. Mol Immunol 2025; 183:93-103. [PMID: 40347782 DOI: 10.1016/j.molimm.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/21/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Metabolic reprogramming, exemplified by the "Warburg effect," is a hallmark of human cancers, leading to lactate buildup in tumors. Bone marrow-derived mesenchymal stem cells (BM-MSCs), key contributors to cancer-associated fibroblasts (CAFs), integrate into gastric cancer stroma through interactions with cancer cells. However, the role of lactate in activating BM-MSCs in this context remains unclear. Herein, exogenous lactate induced a pro-tumorigenic phenotype in BM-MSCs, which was blocked by AZD3965. Gastric cancer cells released more lactate under hypoxia than normoxia. While normoxic gastric cancer cells could educate BM-MSCs, hypoxic cells were more effective. However, the effects of the supernatant from gastric cancer cells in both conditions were significantly reduced by AZD3965. Similarly, prevention of lactate production by oxamic acid sodium significantly reduced the effects observed. Lactate-activated BM-MSCs showed NF-κB signaling activation, increased IL-8 secretion, and no change in TGF-β signaling. These activated BM-MSCs promoted gastric cancer cell migration and invasion through IL-8 secretion and enhanced resistance to CD8 + T cell cytotoxicity by upregulating PD-L1. Collectively, gastric cancer cells induce an iCAF-like phenotype and function in BM-MSCs through a lactate shuttle mechanism, emphasizing the role of metabolic reprogramming in cellular communication that fosters a supportive tumor microenvironment. Targeting lactate-related pathways may provide new therapeutic strategies to hinder BM-MSCs' supportive roles in gastric cancer.
Collapse
Affiliation(s)
- Feng Huang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China; Department of Clinical Laboratory, Maternal and Child Health Care Hospital of Kunshan, Suzhou, Jiangsu Province, China; Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chen Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Sun
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China; Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China.
| | - Chun Dai
- Department of General Surgery, Yangzhong People's Hospital Affiliated to medical college of Yangzhou University, Yangzhong, Jiangsu Province, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China; Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Li Y, Hamad M, Elkord E. Cancer-associated fibroblasts in hepatocellular carcinoma: heterogeneity, mechanisms and therapeutic targets. Hepatol Int 2025; 19:325-336. [PMID: 39979756 DOI: 10.1007/s12072-025-10788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignant cancers worldwide. Although immunotherapy has improved the treatment outcome in HCC, a significant percentage of patients with advanced HCC still cannot benefit from immunotherapy. Therefore, developing new targets or combination therapeutic strategies to improve the efficacy of immunotherapy is urgently needed. A deeper understanding of the mechanisms underlying immune regulation may help in this regard. The tumor microenvironment (TME) consists of a diverse set of components modulating the efficacy of immunotherapy. Cancer-associated fibroblasts (CAFs) are critical components of the TME and can regulate both tumor and immune cells through secreted cytokines and exosomes that impact various signaling pathways in target cells. CAF-derived cytokines can also participate in extracellular matrix (ECM) remodeling, thereby impacting cancer progression and tumor responsiveness to immunotherapy among other effects. A thorough understanding of the phenotypic and functional profile dynamism of CAFs may lead the way for new treatment strategies and/or better treatment outcomes in HCC patients. In this review, we outline the biomarkers and functional heterogeneity of CAFs in HCC and elaborate on molecular mechanisms of CAFs, including anti-programmed cell death protein 1 (PD-1)/PD-ligand 1 (PD-L1) immunotherapy. We also examine current clinical implications of CAFs-related targets as potential therapeutic candidates in HCC.
Collapse
Affiliation(s)
- Yutong Li
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Mawieh Hamad
- College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, 59911, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK.
| |
Collapse
|
3
|
Kobayashi H, Iida T, Ochiai Y, Malagola E, Zhi X, White RA, Qian J, Wu F, Waterbury QT, Tu R, Zheng B, LaBella JS, Zamechek LB, Ogura A, Woods SL, Worthley DL, Enomoto A, Wang TC. Neuro-Mesenchymal Interaction Mediated by a β2-Adrenergic Nerve Growth Factor Feedforward Loop Promotes Colorectal Cancer Progression. Cancer Discov 2025; 15:202-226. [PMID: 39137067 PMCID: PMC11729495 DOI: 10.1158/2159-8290.cd-24-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
SIGNIFICANCE Our work demonstrates that the bidirectional interplay between sympathetic nerves and NGF-expressing CAFs drives colorectal tumorigenesis. This study also offers novel mechanistic insights into catecholamine action in colorectal cancer. Inhibiting the neuro-mesenchymal interaction by TRK blockade could be a potential strategy for treating colorectal cancer.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Xiaofei Zhi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruth A. White
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jin Qian
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Quin T. Waterbury
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruhong Tu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Jonathan S. LaBella
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Leah B. Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Atsushi Ogura
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Susan L. Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Daniel L. Worthley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colonoscopy Clinic, Lutwyche, QLD, 4030, Australia
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
4
|
Chang Z, Gao Y, Chen P, Gao W, Zhao W, Wu D, Liang W, Chen Z, Chen L, Xi H. THBS2 promotes gastric cancer progression and stemness via the Notch signaling pathway. Am J Cancer Res 2024; 14:3433-3450. [PMID: 39113869 PMCID: PMC11301304 DOI: 10.62347/uxwk4038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Thrombospondin-2 (THBS2), a secreted extracellular matrix protein, plays a crucial role in various biological processes including angiogenesis, tissue remodeling, and inflammation. Our study focuses on its function in human gastric cancer (GC). Through bioinformatics and tumor tissue analysis, we compared THBS2 expression in GC tissues and adjacent tissues, and predicted regulatory upstream and downstream molecules. The direct regulatory effect of miR-29b-3p on THBS2 was evaluated through dual-luciferase reporter assays, showing that miR-29b-3p targets the 3'-UTR of THBS2 mRNA, reducing its expression in GC cells. The influence of THBS2 on tumorigenesis and stemness was examined on protein expression levels via Western blot. In vivo, THBS2's role was investigated through xenograft and metastasis assays in nude mice, demonstrating that downregulation of THBS2 impairs GC tumorigenesis and liver metastasis. Our study identified THBS2 as a highly expressed prognostic factor in GC patients. Functionally, THBS2 promotes GC progression through the Notch signaling pathway by regulating Notch3, NEY1, and HES1 proteins, and sustains cancer stem cell-like characteristics by Notch3, including the expression of CD44, Nanog, OCT4, and SOX2. In sum, our study reveals that THBS2 promotes GC progression and stemness, modulated negatively by miR-29b-3p. This suggests potential therapeutic targets within the THBS2/Notch signaling axis for combating gastric cancer.
Collapse
Affiliation(s)
- Zhengyao Chang
- Medical School of Chinese PLABeijing 100853, China
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Yunhe Gao
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Peng Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Wenxing Gao
- Medical School of Chinese PLABeijing 100853, China
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
- School of Medicine, Nankai UniversityTianjin 300071, China
| | - Di Wu
- Medical School of Chinese PLABeijing 100853, China
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Wenquan Liang
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Zhida Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Lin Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| | - Hongqing Xi
- Department of General Surgery, The First Medical Center of Chinese PLA General HospitalBeijing 100853, China
| |
Collapse
|
5
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
6
|
Ma H, Ma X, Qi L, Zhang Q, Wang T, Guo Q, Li P, Zhang S, Liu S. Lysophosphatidic acid promotes ESCC progression by increasing the level of CCL2 secreted by esophageal epithelial cells. J Gene Med 2024; 26:e3708. [PMID: 38837511 DOI: 10.1002/jgm.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 03/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Xiaoqian Ma
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Lingyu Qi
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Qian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Tiange Wang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Qingdong Guo
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Peng Li
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Shutian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Si Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| |
Collapse
|
7
|
Brichkina A, Polo P, Sharma SD, Visestamkul N, Lauth M. A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15092614. [PMID: 37174079 PMCID: PMC10177377 DOI: 10.3390/cancers15092614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer represents one of the most desmoplastic malignancies and is characterized by an extensive deposition of extracellular matrix. The latter is provided by activated cancer-associated fibroblasts (CAFs), which are abundant cells in the pancreatic tumor microenvironment. Many recent studies have made it clear that CAFs are not a singular cellular entity but represent a multitude of potentially dynamic subgroups that affect tumor biology at several levels. As mentioned before, CAFs significantly contribute to the fibrotic reaction and the biomechanical properties of the tumor, but they can also modulate the local immune environment and the response to targeted, chemo or radiotherapy. As the number of known and emerging CAF subgroups is steadily increasing, it is becoming increasingly difficult to keep up with these developments and to clearly discriminate the cellular subsets identified so far. This review aims to provide a helpful overview that enables readers to quickly familiarize themselves with field of CAF heterogeneity and to grasp the phenotypic, functional and therapeutic distinctions of the various stromal subpopulations.
Collapse
Affiliation(s)
- Anna Brichkina
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Pierfrancesco Polo
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Shrey Dharamvir Sharma
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Nico Visestamkul
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| |
Collapse
|
8
|
Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M, Maeda K. The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci 2022; 114:16-24. [PMID: 36197901 PMCID: PMC9807521 DOI: 10.1111/cas.15609] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 01/07/2023] Open
Abstract
The prognosis for patients with cancers known for a highly activated stromal reaction, including diffuse-type (scirrhous) gastric cancer, consensus molecular subtype 4 (CMS4) colorectal cancer, and pancreatic ductal adenocarcinoma, is extremely poor. To explore the resistance of conventional therapy for those refractory cancers, detailed classification and investigation of the different subsets of cancer-associated fibroblasts (CAFs) involved are needed. Recent studies with a single-cell transcriptomics strategy (single-cell RNA-seq) have demonstrated that CAF subpopulations contain different origins and marker proteins with the capacity to either promote or suppress cancer progression. Through multiple signaling pathways, CAFs can promote tumor growth, metastasis, and angiogenesis with extracellular matrix (ECM) remodeling; they can also interact with tumor-infiltrating immune cells and modulate the antitumor immunological state in the tumor microenvironment (TME). Here, we review the recent literature on the various subpopulations of CAFs to improve our understanding of the cell-cell interactions in the TME and highlight future avenues for CAF-targeted therapy.
Collapse
Affiliation(s)
- Yurie Yamamoto
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Hiroaki Kasashima
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Yasuhiro Fukui
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Gen Tsujio
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Masakazu Yashiro
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Kiyoshi Maeda
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| |
Collapse
|
9
|
Islas JF, Quiroz-Reyes AG, Delgado-Gonzalez P, Franco-Villarreal H, Delgado-Gallegos JL, Garza-Treviño EN, Gonzalez-Villarreal CA. Cancer Stem Cells in Tumor Microenvironment of Adenocarcinoma of the Stomach, Colon, and Rectum. Cancers (Basel) 2022; 14:3948. [PMID: 36010940 PMCID: PMC9405851 DOI: 10.3390/cancers14163948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal adenocarcinomas are one of the world's deadliest cancers. Cancer stem cells and the tissue microenvironment are highly regulated by cell and molecular mechanisms. Cancer stem cells are essential for maintenance and progression and are associated with resistance to conventional treatments. This article reviews the current knowledge of the role of the microenvironment during the primary establishment of gastrointestinal adenocarcinomas in the stomach, colon, and rectum and its relationship with cancer stem cells. We also describe novel developments in cancer therapeutics, such as targeted therapy, and discuss the advantages and disadvantages of different treatments for improving gastrointestinal cancer prognosis.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Adriana G. Quiroz-Reyes
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Paulina Delgado-Gonzalez
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | | | - Juan Luis Delgado-Gallegos
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Elsa N. Garza-Treviño
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | | |
Collapse
|
10
|
Goto W, Kashiwagi S, Asano Y, Takada K, Morisaki T, Takahashi K, Fujita H, Shibutani M, Amano R, Takashima T, Tomita S, Hirakawa K, Ohira M. Inhibitory effects of iron depletion plus eribulin on the breast cancer microenvironment. BMC Cancer 2020; 20:1215. [PMID: 33302911 PMCID: PMC7727180 DOI: 10.1186/s12885-020-07673-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/22/2020] [Indexed: 12/29/2022] Open
Abstract
Background Iron is required for the proliferation of cancer cells, and its depletion suppresses tumor growth. Eribulin mesylate (eribulin), a non-taxane microtubule inhibitor, disrupts the tumor microenvironment via vascular remodeling and obstruction of the epithelial-mesenchymal transition (EMT). Herein, we investigated the effects of the iron chelator on tumor-related properties of breast cancer cells and the effects of iron chelator plus eribulin on tumor growth in vivo. Methods Two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and BT-549, and one hormone-receptor positive breast cancer cell line, MCF-7, were used in our study. Cell proliferation, cell migration, cell cycle position, and gene expression were analyzed via MTT assays, wound-healing assays, flow cytometry, and quantitative real-time-polymerase chain reaction, respectively. For the in vivo experiments, mice with breast cancer xenografts were treated with the inhibitors, alone or together, and tumor volume was determined. Results Iron chelator inhibited breast cancer cell proliferation and decreased the proportion of S-phase cells. Conversely, it induced hypoxia, angiogenesis, EMT, and immune checkpoints, as determined by quantifying the expression of marker mRNAs in MDA-MB-231 and MCF-7 cells. Eribulin suppressed the expression of the hypoxia and EMT related marker mRNAs in the presence of iron chelator. Iron chelator plus eribulin inhibited tumor growth in vivo to a greater extent than did either inhibitor alone. Conclusions Although iron chelator induces oncogenic events (hypoxia, angiogenesis, EMT, and immune checkpoints), it may be an effective treatment for breast cancer when administered in combination with eribulin. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07673-9.
Collapse
Affiliation(s)
- Wataru Goto
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinichiro Kashiwagi
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Yuka Asano
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koji Takada
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tamami Morisaki
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Katsuyuki Takahashi
- Department of Pharmacology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hisakazu Fujita
- Department of Scientific and Linguistic Fundamentals of Nursing, Osaka City University Graduate School of Nursing, 1-5-17 Asahi-machi, Abeno-ku, Osaka, 545-0051, Japan
| | - Masatsune Shibutani
- Department of Gastrointestinal Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Ryosuke Amano
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tsutomu Takashima
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kosei Hirakawa
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Department of Gastrointestinal Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaichi Ohira
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Department of Gastrointestinal Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
11
|
Yashiro M, Kinoshita H, Tsujio G, Fukuoka T, Yamamoto Y, Sera T, Sugimoto A, Nishimura S, Kushiyama S, Togano S, Kuroda K, Toyokawa T, Ohira M. SDF1α/CXCR4 axis may be associated with the malignant progression of gastric cancer in the hypoxic tumor microenvironment. Oncol Lett 2020; 21:38. [PMID: 33262830 PMCID: PMC7693388 DOI: 10.3892/ol.2020.12299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
Stromal cell-derived factor 1α (SDF1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) have been reported to form an important chemokine signaling pathway. Our previous study reported that SDF1α from tumor stromal cells may stimulate the proliferation of gastric cancer (GC) cells through the CXCR4 axis in a hypoxic microenvironment. However, a limited number of studies have addressed the clinicopathological significance of the expression of SDF1α and CXCR4 in GC, particularly at hypoxic regions. Immunohistochemistry was used to investigate the expression levels of SDF1α, CXCR4 and the hypoxic marker carbonic anhydrase 9 (CA9) in 185 patients with stage II and III GC. The results demonstrated that CA9 was expressed on cancer and stromal cells in hypoxic lesions, CXCR4 was mainly expressed in cancer cells, and SDFα was mainly expressed in stromal cells. CXCR4 expression in cancer cells and SDFα expression in stromal cells were associated with the hypoxic regions with CA9 expression. The CA9 and CXCR4 expression in the cancer cells, and the SDF1α expression in the stromal cells (CA9/CXCR4/SDF1α) was significantly associated with macroscopic type 4 tumor (P=0.012) and the pattern of tumor infiltration into the surrounding tissue (P<0.001). The prognosis of the all CA9/CXCR4/SDF1α-positive patients was significantly poorer compared with that of patients with CA9-, CXCR4- or SDF1α-negative GC at Stage III (P=0.041). These results indicated that hypoxia may upregulate SDFα production in stromal cells and CXCR4 expression in cancer cells. The SDF1α/CXCR4 axis may serve an important role in the progression of GC.
Collapse
Affiliation(s)
- Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Haruhito Kinoshita
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tatsunari Fukuoka
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yurie Yamamoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shingo Togano
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kenji Kuroda
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
12
|
Anqi C, Takabatake K, Kawai H, Oo MW, Yoshida S, Fujii M, Omori H, Sukegawa S, Nakano K, Tsujigiwa H, Jinhua Z, Nagatsuka H. Differentiation and roles of bone marrow-derived cells on the tumor microenvironment of oral squamous cell carcinoma. Oncol Lett 2019; 18:6628-6638. [PMID: 31807176 PMCID: PMC6876317 DOI: 10.3892/ol.2019.11045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
The stroma affects the properties and dynamics of the tumor. Previous studies have demonstrated that bone marrow-derived cells (BMDCs) possess the capability of differentiating into stromal cells. However, the characteristics and roles of BMDCs in oral squamous cell carcinoma remain unclear. The current study therefore investigated their locations and features by tracing green fluorescent protein (GFP)-labeled BMDCs in a transplantation mouse model. After irradiation, BALB-c nu-nu mice were injected with bone marrow cells from C57BL/6-BALB-C-nu/nu-GFP transgenic mice. These recipient mice were then injected subcutaneously in the head with human squamous cell carcinoma-2 cells. Immunohistochemistry for GFP, Vimentin, CD11b, CD31 and α-smooth muscle actin (SMA), and double-fluorescent immunohistochemistry for GFP-Vimentin, GFP-CD11b, GFP-CD31 and GFP-α-SMA was subsequently performed. Many round-shaped GFP-positive cells were observed in the cancer stroma, which indicated that BMDCs served a predominant role in tumorigenesis. Vimentin(+) GFP(+) cells may also be a member of the cancer-associated stroma, originating from bone marrow. Round or spindle-shaped CD11b(+) GFP(+) cells identified in the present study may be macrophages derived from bone marrow. CD31(+)GFP(+) cells exhibited a high tendency towards bone marrow-derived angioblasts. The results also indicated that spindle-shaped α-SMA(+) GFP(+) cells were not likely to represent bone marrow-derived cancer-associated fibroblasts. BMDCs gathering within the tumor microenvironment exhibited multilineage potency and participated in several important processes, such as tumorigenesis, tumor invasion and angiogenesis.
Collapse
Affiliation(s)
- Chang Anqi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan.,Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Saori Yoshida
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Masae Fujii
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Haruka Omori
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan.,Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Kagawa 760-8557, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hidetsugu Tsujigiwa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan.,Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Zheng Jinhua
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
13
|
Rezalotfi A, Ahmadian E, Aazami H, Solgi G, Ebrahimi M. Gastric Cancer Stem Cells Effect on Th17/Treg Balance; A Bench to Beside Perspective. Front Oncol 2019; 9:226. [PMID: 31024835 PMCID: PMC6464032 DOI: 10.3389/fonc.2019.00226] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer stem cells (GCSCs), a small population among tumor cells, are responsible for tumor initiation, development, metastasis, and recurrence. They play a crucial role in immune evasion, immunomodulation, and impairment of effector immunity and believed to be emerged to change the balance of the immune system, importantly CD4+ T cells in the chronic inflamed tumor site. However, different subtypes of innate and adaptive immune cells are involved in the formation of the immune system in the tumor microenvironment, we would look at T cells in this study. Tumor microenvironment induces differentiation of CD4+ T cells into different subsets of T cells, mainly suppressive regulatory T cells (Treg), and T helper 17 (Th17) cells, although their exact role in tumor immunity is still under debate depending on tumor types and stages. Counterbalance between Th17 and Treg cells in the gastrointestinal system result in the homeostasis and normal function of the immune system, particularly mucosal immunity. Recent data demonstrated a high infiltration of Th17 and Treg cells into the gastric tumor site and proved that tumor microenvironment might disturb the balance between Th17 and Treg. It is possible to assume an association between activation of CSCs which contribute to metastasis in late stages, and the imbalanced Th17/Treg cells observed in advanced gastric cancer patients. This review intends to clarify the importance of gastric tumor microenvironment specifically CSCs in relation to Th17/Tregs balance firstly and to highlight the relevance of imbalanced Th17/Treg subsets in determining the stages and behavior of the tumor secondly. Finally, the present study suggests a clinical approach looking at the plasticity of T cells with a focus on Th17 as a promising dedicated arm in cancer immunotherapy.
Collapse
Affiliation(s)
- Alaleh Rezalotfi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elmira Ahmadian
- Faculty of Biological Sciences and Technology, Department of Animal Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hossein Aazami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Kawai H, Tsujigiwa H, Siar CH, Nakano K, Takabatake K, Fujii M, Hamada M, Tamamura R, Nagatsuka H. Characterization and potential roles of bone marrow-derived stromal cells in cancer development and metastasis. Int J Med Sci 2018; 15:1406-1414. [PMID: 30275769 PMCID: PMC6158661 DOI: 10.7150/ijms.24370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
Background: The tumor microenvironment and its stromal cells play an important role in cancer development and metastasis. Bone marrow-derived cells (BMDCs), a rich source of hematopoietic and mesenchymal stem cells, putatively contribute to this tumoral stroma. However their characteristics and roles within the tumor microenvironment are unclear. In the present study, BMDCs in the tumor microenvironment were traced using the green fluorescent protein (GFP) bone marrow transplantation model. Methods: C57BL/6 mice were irradiated and rescued by bone marrow transplantation from GFP-transgenic mice. Lewis lung cancer cells were inoculated into the mice to generate subcutaneous allograft tumors or lung metastases. Confocal microscopy, immunohistochemistry for GFP, α-SMA, CD11b, CD31, CD34 and CD105, and double-fluorescent immunohistochemistry for GFP-CD11b, GFP-CD105 and GFP-CD31 were performed. Results: Round and dendritic-shaped GFP-positive mononuclear cells constituted a significant stromal subpopulation in primary tumor peripheral area (PA) and metastatic tumor area (MA) microenvironment, thus implicating an invasive and metastatic role for these cells. CD11b co-expression in GFP-positive cells suggests that round/dendritic cell subpopulations are possibly BM-derived macrophages. Identification of GFP-positive mononuclear infiltrates co-expressing CD31 suggests that these cells might be BM-derived angioblasts, whereas their non-reactivity for CD34, CD105 and α-SMA implies an altered vascular phenotype distinct from endothelial cells. Significant upregulation of GFP-positive, CD31-positive and GFP/CD31 double-positive cell densities positively correlated with PA and MA (P<0.05). Conclusion: Taken together, in vivo evidence of traceable GFP-positive BMDCs in primary and metastatic tumor microenvironment suggests that recruited BMDCs might partake in cancer invasion and metastasis, possess multilineage potency and promote angiogenesis.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Chong Huat Siar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masae Fujii
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mei Hamada
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryo Tamamura
- Department of Histology, Nihon University School of Dentistry at Matsudo, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
15
|
Conditioned Medium from Malignant Breast Cancer Cells Induces an EMT-Like Phenotype and an Altered N-Glycan Profile in Normal Epithelial MCF10A Cells. Int J Mol Sci 2017; 18:ijms18081528. [PMID: 28763000 PMCID: PMC5577993 DOI: 10.3390/ijms18081528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process in cancer development and progression. Communication (crosstalk) between cancer cells and normal (nonmalignant) cells may facilitate cancer progression. Conditioned medium (CM) obtained from cultured cancer cells contains secreted factors capable of affecting phenotypes and the behaviors of normal cells. In this study, a culture of normal breast epithelial MCF10A cells with CM from malignant breast cancer cells (termed 231-CM and 453-CM) resulted in an alteration of morphology. CM-treated MCF10A, in comparison with control cells, showed a reduced expression of the epithelial marker E-cadherin, increased expression of the mesenchymal markers fibronectin, vimentin, N-cadherin, and TWIST1, meanwhile cell proliferation and migration were enhanced while cell apoptosis was decreased. N-glycan profiles of 231-CM-treated and control MCF10A cells were compared by MALDI-TOF/TOF-MS (Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry) and a lectin microarray analysis. The treated cells showed lower levels of high-mannose-type N-glycan structures, and higher levels of complex-type and hybrid-type structures. Altered N-glycan profiles were also detected in 453-CM-treated and non-treated MCF10A cells by MALDI-TOF/TOF-MS, and we found that the expression of five fucosylated N-glycan structures (m/z 1406.663, 1590.471, 1668.782, 2421.141, and 2988.342) and one high-mannose structure m/z 1743.722 have the same pattern as 231-CM-treated MCF10A cells. Our findings, taken together, show that CM derived from breast cancer cells induced an EMT-like process in normal epithelial cells and altered their N-glycan profile.
Collapse
|
16
|
Kasashima H, Yashiro M, Nakamae H, Masuda G, Kinoshita H, Morisaki T, Fukuoka T, Hasegawa T, Nakane T, Hino M, Hirakawa K, Ohira M. Clinicopathologic significance of the CXCL1-CXCR2 axis in the tumor microenvironment of gastric carcinoma. PLoS One 2017; 12:e0178635. [PMID: 28575019 PMCID: PMC5456266 DOI: 10.1371/journal.pone.0178635] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Purpose It was reported that the chemokine (C-X-C motif) ligand 1 (CXCL1) from cancer cells stimulated the recruitment of bone marrow-derived mesenchymal cells (BM-MCs) into tumor stroma via chemokine (C-X-C motif) receptor 2 (CXCR2) signaling. We conducted this retrospective study to determine the clinicopathologic significance of the CXCL1-CXCR2 axis in human gastric cancer. Methods The correlations between the clinicopathological features of 270 primary gastric carcinomas and CXCL1 in cancer cells and CXCR2 in stromal cells were analyzed in immunohistochemical studies. The effect of gastric cancer cells on the expression of CXCR2 in BM-MCs was examined using diffuse-type gastric cancer cell lines in vitro. Results The expression of CXCL1 in cancer cells was correlated with T invasion (T2–T4), lymph node metastasis, lymphatic invasion, venous invasion, peritoneal cytology, peritoneal metastasis and CXCR2 expression in stromal cells. The expression of CXCR2 in stromal cells was correlated with macroscopic type-4 cancers, histological type, T invasion (T2–T4), lymph node metastasis, lymphatic invasion, infiltration, peritoneal cytology, peritoneal metastasis and CD271 expression in stromal cells. The overall survival of patients with CXCL1 and CXCR2-positive cancer was poorer than that of the patients with negative cancer. Both CXCL1 expression in cancer cells and CXCR2 expression in stromal cells were independent prognostic factors for gastric cancer patients. Conclusion The expressions of CXCL1 in cancer cells and CXCR2 in stromal cells are useful prognostic factors for gastric cancer patients.
Collapse
Affiliation(s)
- Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tamami Morisaki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Hasegawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiko Nakane
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
17
|
Gao YH, Ma LG, Cai AZ, Xi HQ, Chen L. Gastric cancer stem cells: Signal pathways and targeted therapies. Shijie Huaren Xiaohua Zazhi 2017; 25:351-357. [DOI: 10.11569/wcjd.v25.i4.351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is still one of the most common malignant neoplasms worldwide and the third leading cause of cancer-related death. Therefore, it is of great significance to clarify the mechanism of gastric cancer oncogenesis. In the past decades, the theory of cancer stem cell has enhanced our knowledge of gastric cancer. Cancer stem cells are defined as cells within a tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. The dysregulation of certain signal pathways occurs during tumor formation. Recently, the research on gastric cancer stem cells (GCSCs) and related signal pathways has provided a new theoretical basis for clarifying the mechanism of gastric cancer and treating this malignancy. This review will discuss the role of related signal pathways in GCSCs and therapies targeting the key molecules of these pathways.
Collapse
|
18
|
Kasashima H, Yashiro M, Nakamae H, Kitayama K, Masuda G, Kinoshita H, Fukuoka T, Hasegawa T, Nakane T, Hino M, Hirakawa K, Ohira M. CXCL1-Chemokine (C-X-C Motif) Receptor 2 Signaling Stimulates the Recruitment of Bone Marrow-Derived Mesenchymal Cells into Diffuse-Type Gastric Cancer Stroma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3028-3039. [PMID: 27742059 DOI: 10.1016/j.ajpath.2016.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/11/2016] [Accepted: 07/08/2016] [Indexed: 12/29/2022]
Abstract
Tumor stromal cells play a critical role in the progression of diffuse-type gastric cancer (DGC). The aim of this study was to clarify where tumor stromal cells originate from and which factor(s) recruits them into the tumor stroma. Immunodeficient mice with bone marrow transplantation from the cytomegalovirus enhancer/chicken β-actin promoter-enhanced green fluorescent protein mice were used for the in vivo experiments. An in vitro study analyzed the chemotaxis-stimulating factor from DGC cells using bone marrow-derived mesenchymal cells (BM-MCs). The influences of chemokine (C-X-C motif) receptor 2 (CXCR2) inhibitor on the migration of BM-MCs were examined both in vitro and in vivo. BM-MCs frequently migrated into stroma of DGC in vivo. The number of migrating BM-MCs was increased by conditioned medium from DGC cells. CXCL1 from DGC cells stimulated the chemoattractant ability of BM-MCs. Both anti-CXCL1 antibody and CXCR2 inhibitor decreased the migration of BM-MCs, stimulated by DGC cells. A CXCR2 inhibitor, SB225002, reduced the recruitment of BM-MCs into the tumor microenvironment in vivo, decreasing tumor size and lymph node metastasis, and prolonging the survival of gastric tumor-bearing mice. These findings suggested that most tumor stromal cells in DGC might originate from BM-MCs. CXCL1 from DGC cells stimulates the recruitment of BM-MCs into tumor stroma via CXCR2 signaling of BM-MCs. Inhibition of BM-MC recruitment via the CXCL1-CXCR2 axis appears a promising therapy for DGC.
Collapse
Affiliation(s)
- Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan; Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Hirohisa Nakamae
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kisyu Kitayama
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Hasegawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiko Nakane
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Hou X, Wan W, Wang J, Li M, Wang Y, Yao Y, Feng L, Jing L, Lu H, Jia Y, Peng T. Let-7a inhibits migration of melanoma cells via down-regulation of HMGA2 expression. Am J Transl Res 2016; 8:3656-3665. [PMID: 27725848 PMCID: PMC5040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to investigate the effects of exosomes derived from BM-MSCs transduced with let-7a on B16f10 cells and BM-MSCs. BM-MSCs were transduced with let-7a and the exosomes of them were isolated for further culture of B16f10 cells and BM-MSCs. The migration of B16f10 cells were detected by transwell, proliferation of B16f10 cells and BM-MSCs was examined by MTT method, HMGA2 expression was measured by western blot. In addition, the let-7a secreted level in exosomes and IGF level were measured by RT-PCR and ELISA respectively. Our results showed that the level of let-7a in exosomes derived from Let-7a-transducted BM-MSCs was increased after treated by exosomes. HMGA2 in B16f10 cells was down-regulated and cell survival rate of BM-MSCs was decreased. However, neither cell survival rate of B16f10 cells nor IGF-1 secreted by B16f10 cells in different groups had significant differences. In conclusion, Let-7a contained in exosomes can inhibit the migration of Melanoma cells and inhibit the proliferation of BM-MSCs.
Collapse
Affiliation(s)
- Xiaocan Hou
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Wencui Wan
- Department of Ophthalmology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Jing Wang
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Mingzhe Li
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Yiwen Wang
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Yaobing Yao
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Lihong Feng
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Lijun Jing
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Hong Lu
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Yanjie Jia
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Tao Peng
- Department of Neurology, Key-Disciplines Laboratory Clinical Medicine Henan, The 1 Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
20
|
Song L, Zhou X, Jia HJ, Du M, Zhang JL, Li L. Effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice. ASIAN PAC J TROP MED 2016; 9:796-800. [PMID: 27569891 DOI: 10.1016/j.apjtm.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To study the effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice. METHODS BABL/c nude mice were selected as experimental animals and gastric cancer tumor-bearing mice model were established by subcutaneous injection of gastric cancer cells, randomly divided into different intervention groups. hGC-MSCs group were given different amounts of gastric cancer cells for subcutaneous injection, PBS group was given equal volume of PBS for subcutaneous injection. Then tumor tissue volume were determined, tumor-bearing mice were killed and tumor tissues were collected, mRNA expression of proliferation, invasion, EMT-related molecules were determined. RESULTS 4, 8, 12, 16, 20 d after intervention, tumor tissue volume of hGC-MSCs group were significantly higher than those of PBS group and the more the number of hGC-MSCs, the higher the tumor tissue volume; mRNA contents of Ki-67, PCNA, Bcl-2, MMP-2, MMP-7, MMP-9, MMP-14, N-cadherin, vimentin, Snail and Twist in tumor tissue of hGC-MSCs group were higher than those of PBS group, and mRNA contents of Bax, TIMP1, TIMP2 and E-cadherin were lower than those of PBS group. CONCLUSION hGC-MSCs from human gastric cancer tissue can promote the tumor growth in gastric cancer tumor-bearing mice, and the molecular mechanism includes promoting cell proliferation, invasion and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Lin Song
- Oncology Department No. 2, Linyi People's Hospital of Shandong Province, Linyi City, Shandong Province, 276000, China
| | - Xin Zhou
- Oncology Department No. 2, Linyi People's Hospital of Shandong Province, Linyi City, Shandong Province, 276000, China
| | - Hong-Jun Jia
- Radiotherapy Technology Department, Linyi People's Hospital of Shandong Province, Linyi City, Shandong Province, 276000, China.
| | - Mei Du
- Oncology Department No. 2, Linyi People's Hospital of Shandong Province, Linyi City, Shandong Province, 276000, China
| | - Jin-Ling Zhang
- Oncology Department No. 2, Linyi People's Hospital of Shandong Province, Linyi City, Shandong Province, 276000, China
| | - Liang Li
- Oncology Department No. 2, Linyi People's Hospital of Shandong Province, Linyi City, Shandong Province, 276000, China
| |
Collapse
|