1
|
Rao R, Gulfishan M, Kim MS, Kashyap MK. Deciphering Cancer Complexity: Integrative Proteogenomics and Proteomics Approaches for Biomarker Discovery. Methods Mol Biol 2025; 2859:211-237. [PMID: 39436604 DOI: 10.1007/978-1-0716-4152-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Proteomics has revolutionized the field of cancer biology because the use of a large number of in vivo (SILAC), in vitro (iTRAQ, ICAT, TMT, stable-isotope Dimethyl, and 18O) labeling techniques or label-free methods (spectral counting or peak intensities) coupled with mass spectrometry enables us to profile and identify dysregulated proteins in diseases such as cancer. These proteome and genome studies have led to many challenges, such as the lack of consistency or correlation between copy numbers, RNA, and protein-level data. This review covers solely mass spectrometry-based approaches used for cancer biomarker discovery. It also touches on the emerging role of oncoproteogenomics or proteogenomics in cancer biomarker discovery and how this new area is attracting the integration of genomics and proteomics areas to address some of the important questions to help impinge on the biology and pathophysiology of different malignancies to make these mass spectrometry-based studies more realistic and relevant to clinical settings.
Collapse
Affiliation(s)
- Rashmi Rao
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, India
| | - Mohd Gulfishan
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, India
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute (ASCI), Amity Medical School (AMS), Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Su X, Júnior GPDO, Marie A, Gregus M, Figueroa‐Navedo A, Ghiran IC, Ivanov AR. Enhanced proteomic profiling of human plasma-derived extracellular vesicles through charge-based fractionation to advance biomarker discovery potential. J Extracell Vesicles 2024; 13:e70024. [PMID: 39641316 PMCID: PMC11621968 DOI: 10.1002/jev2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
The study introduces a charge-based fractionation method for fractionating plasma-derived extracellular vesicles (EVs) into sub-populations aimed at the improved purification from free plasma proteins to enhance the diagnostic potential of EV sub-populations for specific pathophysiological states. Here, we present a novel approach for EV fractionation that leverages EVs' inherent surface charges, differentiating them from other plasma components and, thus, reducing the sample complexity and increasing the purity of EVs. The developed method was optimized and thoroughly evaluated using proteomic analysis, transmission electron microscopy, nanoparticle tracking, and western blotting of isolated EVs from healthy donors. Subsequently, we pilot-tested the developed technique for its applicability to real-world specimens using a small set of clinical prostate cancer samples and matched controls. The presented technique demonstrates the effective isolation and fractionation of EV sub-populations based on their surface charge, which may potentially help enhance EV-based diagnostics, biomarker discovery, and basic biology research. The method is designed to be straightforward, scalable, easy-to-use, and it does not require specialized skills or equipment.
Collapse
Affiliation(s)
- Xianyi Su
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Getúlio Pereira de Oliveira Júnior
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Anne‐Lise Marie
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Michal Gregus
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Amanda Figueroa‐Navedo
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Ionita C. Ghiran
- Department of Anesthesia, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
Wang ZZ, Yao GT, Wang LZ, Zhu YJ, Chen JH. Increased Expression and Prognostic Significance of BYSL in Melanoma. J Immunother 2024; 47:279-302. [PMID: 38980088 DOI: 10.1097/cji.0000000000000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/19/2024] [Indexed: 07/10/2024]
Abstract
We evaluated the BYSL content and underlying mechanism in melanoma (SKCM) overall survival (OS). In this study, we used a comprehensive approach combining bioinformatics tools, including miRNA estimation, quantitative real-time polymerase chain reaction (qRT-PCR) of miRNAs, E3 ligase estimation, STRING analysis, TIMER analysis, examination of associated upstream modulators, protein-protein interaction (PPI) analysis, as well as retrospective and survival analyses, alongside clinical sample validation. These methods were used to investigate the content of BYSL, its methylation status, its relation to patient outcome, and its immunologic significance in tumors. Our findings revealed that BYSL expression is negatively regulated by BYSL methylation. Analysis of 468 cases of SKCM RNA sequencing samples demonstrated that enhanced BYSL expression was associated with higher tumor grade. We identified several miRNAs, namely hsa-miR-146b-3p, hsa-miR-342-3p, hsa-miR-511-5p, hsa-miR-3690, and hsa-miR-193a-5p, which showed a strong association with BYSL levels. Furthermore, we predicted the E3 ubiquitin ligase of BYSL and identified CBL, FBXW7, FZR1, KLHL3, and MARCH1 as potential modulators of BYSL. Through our investigation, we discovered that PNO1, RIOK2, TSR1, WDR3, and NOB1 proteins were strongly associated with BYSL expression. In addition, we found a close association between BYSL levels and certain immune cells, particularly dendritic cells (DCs). Notably, we observed a significant negative correlation between miR-146b-3p and BYSL mRNA expression in SKCM sera samples. Collectively, based on the previously shown evidences, BYSL can serve as a robust bioindicator of SKCM patient prognosis, and it potentially contributes to immune cell invasion in SKCM.
Collapse
Affiliation(s)
- Zhong-Zhi Wang
- Department of Dermatology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Guo-Tai Yao
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang-Zhe Wang
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yuan-Jie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Jiang-Han Chen
- Department of Dermatology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Li K, Wang Q, Tang X, Akakuru OU, Li R, Wang Y, Zhang R, Jiang Z, Yang Z. Advances in Prostate Cancer Biomarkers and Probes. CYBORG AND BIONIC SYSTEMS 2024; 5:0129. [PMID: 40353136 PMCID: PMC12063729 DOI: 10.34133/cbsystems.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/25/2024] [Indexed: 01/03/2025] Open
Abstract
Prostate cancer is one of the most prevalent malignant tumors in men worldwide, and early diagnosis is essential to improve patient survival. This review provides a comprehensive discussion of recent advances in prostate cancer biomarkers, including molecular, cellular, and exosomal biomarkers. The potential of various biomarkers such as gene fusions (TMPRSS2-ERG), noncoding RNAs (SNHG12), proteins (PSA, PSMA, AR), and circulating tumor cells (CTCs) in the diagnosis, prognosis, and targeted therapies of prostate cancer is emphasized. In addition, this review systematically explores how multi-omics data and artificial intelligence technologies can be used for biomarker discovery and personalized medicine applications. In addition, this review provides insights into the development of specific probes, including fluorescent, electrochemical, and radionuclide probes, for sensitive and accurate detection of prostate cancer biomarkers. In conclusion, this review provides a comprehensive overview of the status and future directions of prostate cancer biomarker research, emphasizing the potential for precision diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Keyi Li
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, P. R. China
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Qiao Wang
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, P. R. China
| | - Xiaoying Tang
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering,
University of Calgary, Alberta T2N 1N4, Canada
| | - Ruobing Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Yan Wang
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Renran Zhang
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Zhenqi Jiang
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Zhuo Yang
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, P. R. China
| |
Collapse
|
5
|
Hamza GM, Raghunathan R, Ashenden S, Zhang B, Miele E, Jarnuczak AF. Proteomics of prostate cancer serum and plasma using low and high throughput approaches. Clin Proteomics 2024; 21:21. [PMID: 38475692 DOI: 10.1186/s12014-024-09461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Despite progress, MS-based proteomics in biofluids, especially blood, faces challenges such as dynamic range and throughput limitations in biomarker and disease studies. In this work, we used cutting-edge proteomics technologies to construct label-based and label-free workflows, capable of quantifying approximately 2,000 proteins in biofluids. With 70µL of blood and a single depletion strategy, we conducted an analysis of a homogenous cohort (n = 32), comparing medium-grade prostate cancer patients (Gleason score: 7(3 + 4); TNM stage: T2cN0M0, stage IIB) to healthy donors. The results revealed dozens of differentially expressed proteins in both plasma and serum. We identified the upregulation of Prostate Specific Antigen (PSA), a well-known biomarker for prostate cancer, in the serum of cancer cohort. Further bioinformatics analysis highlighted noteworthy proteins which appear to be differentially secreted into the bloodstream, making them good candidates for further exploration.
Collapse
Affiliation(s)
| | - Rekha Raghunathan
- Bioanalytical and Biomarker, Prevail Therapeutics, Wholly Owned Subsidiary of Eli Lilly and Company, New York, NY, 10016, USA
| | | | - Bairu Zhang
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Eric Miele
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
| | | |
Collapse
|
6
|
Khan AA, Al-Mahrouqi N, Al-Yahyaee A, Al-Sayegh H, Al-Harthy M, Al-Zadjali S. Deciphering Urogenital Cancers through Proteomic Biomarkers: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 16:22. [PMID: 38201450 PMCID: PMC10778028 DOI: 10.3390/cancers16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Urogenital cancers, which include prostate, bladder, and kidney malignancies, exert a substantial impact on global cancer-related morbidity and mortality. Proteomic biomarkers, emerging as valuable tools, aim to enhance early detection, prognostic accuracy, and the development of personalized therapeutic strategies. This study undertook a comprehensive systematic review and meta-analysis of the existing literature investigating the role and potential of proteomic biomarkers in plasma, tissue, and urine samples in urogenital cancers. Our extensive search across several databases identified 1879 differentially expressed proteins from 37 studies, signifying their potential as unique biomarkers for these cancers. A meta-analysis of the significantly differentially expressed proteins was executed, accentuating the findings through visually intuitive volcano plots. A functional enrichment analysis unveiled their significant involvement in diverse biological processes, including signal transduction, immune response, cell communication, and cell growth. A pathway analysis highlighted the participation of key pathways such as the nectin adhesion pathway, TRAIL signaling pathway, and integrin signaling pathways. These findings not only pave the way for future investigations into early detection and targeted therapeutic approaches but also underscore the fundamental role of proteomics in advancing our understanding of the molecular mechanisms underpinning urogenital cancer pathogenesis. Ultimately, these findings hold remarkable potential to significantly enhance patient care and improve clinical outcomes.
Collapse
Affiliation(s)
- Aafaque Ahmad Khan
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| | - Nahad Al-Mahrouqi
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| | - Aida Al-Yahyaee
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| | - Hasan Al-Sayegh
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| | - Munjid Al-Harthy
- Medical Oncology Department, Urogenital Cancers Program, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman;
| | - Shoaib Al-Zadjali
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| |
Collapse
|
7
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
8
|
Wani S, Humaira, Farooq I, Ali S, Rehman MU, Arafah A. Proteomic profiling and its applications in cancer research. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
9
|
Shansky Y, Bespyatykh J. Bile Acids: Physiological Activity and Perspectives of Using in Clinical and Laboratory Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227830. [PMID: 36431930 PMCID: PMC9692537 DOI: 10.3390/molecules27227830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
Collapse
Affiliation(s)
- Yaroslav Shansky
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Correspondence:
| | - Julia Bespyatykh
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
- Department of Public Health and Health Care, Federal Scientific State Budgetary Institution «N.A. Semashko National Research Institute of Public Health», Vorontsovo Pole Str., 12-1, 105064 Moscow, Russia
| |
Collapse
|
10
|
Fu Q, Hong R, Zhou H, Li Y, Liu X, Gong J, Wang X, Chen J, Ran H, Wang L, Li F, Yuan J. Proteomics reveals MRPL4 as a high-risk factor and a potential diagnostic biomarker for prostate cancer. Proteomics 2022; 22:e2200081. [PMID: 36059095 DOI: 10.1002/pmic.202200081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022]
Abstract
Through digital rectal examinations (DRE) and routine prostate-specific antigen (PSA) screening, early prostate cancer (PC) treatment has become possible. However, PC is a complex and heterogeneous disease. In vivo, cancer cells can invade adjacent tissues and metastasize to other tissues resulting in hard cures. Therefore, the key to improving PC patients' survival time is preventing cancer cells' metastasis. We used mass spectrometry to profile primary PC in patients with versus without metastatic PC. We named these two groups of PC patients as high-risk primary PC (n = 11) and low-risk primary PC (n = 7), respectively. At the same time, patients with benign prostatic hyperplasia (BPH, n = 6) were used as controls to explore the possible factors driving PC metastasis. Based on comprehensive mass spectrometry analysis and biological validation, we found significant upregulation of MRPL4 expression in high-risk primary PC relative to low-risk primary PC and BPH. Further, through research of the extensive clinical cohort data in the database, we discovered that MRPL4 could be a high-risk factor for PC and serve as a potential diagnostic biomarker. The MRPL4 might be used as an auxiliary indicator for clinical status/stage of primary PC to predict patient survival time.
Collapse
Affiliation(s)
- Qihuan Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ruixia Hong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Hang Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiu Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiaqi Gong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Jiajia Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fang Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| |
Collapse
|
11
|
Feng C, Wu Y, Chen Y, Xiong X, Li P, Peng X, Li C, Weng W, Zhu Y, Zhou D, Li Y. Arsenic trioxide increases apoptosis of SK-N-BE (2) cells partially by inducing GPX4-mediated ferroptosis. Mol Biol Rep 2022; 49:6573-6580. [PMID: 35598199 DOI: 10.1007/s11033-022-07497-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial tumor in central nervous system threatening children's health with limited therapeutic options. Arsenic trioxide (ATO) has been identified the cytotoxicity in NB cells but the potential mechanism remains unclear. In this study, we attempted to obtain some insight into the mechanisms of cell death induced by ATO in NB cells. METHODS AND RESULTS Proteomic analyses found that ATO can affect the signaling pathway associated with ferroptosis, including the upregulation of iron absorption (FTL, FTH1, HO-1), ferritinophagy (LC3, P62, ATG7, NCOA4) and modifier of glutathione synthesis (GCLM); downregulation of glutamine synthetase (GS) and GPX4, which was the critical inhibitor of ferroptosis. Western blot analysis revealing GPX4 expression in SK-N-BE (2) cells decreased after treatment with ATO (7.3 µM), resulting in a loss of GPX4 activity. Furthermore, Ferroptosis inhibitor ferrostatin-1 partially blocked ATO-induced cell death. CONCLUSIONS Our study revealed that ATO may induce ferroptosis in neuroblastoma cell SK-N-BE (2) by facilitating the downregulation of GPX4, ultimately resulting in iron-dependent oxidative death.
Collapse
Affiliation(s)
- Chuchu Feng
- Department of Pediatric Hematology/Oncology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China
| | - Yu Wu
- Department of Pediatric Hematology/Oncology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China
| | - Yantao Chen
- Department of Orthopaedics, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China
| | - Xilin Xiong
- Department of Pediatric Hematology/Oncology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Kaiyuan Avenue, No. 190, Guangzhou, 510530, China
| | - Xiaomin Peng
- Department of Pediatric Hematology/Oncology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China
| | - Chunmou Li
- Department of Pediatric Hematology/Oncology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China
| | - Wenjun Weng
- Department of Pediatric Hematology/Oncology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China
| | - Yafeng Zhu
- Medical Researcher Center, Sun Yat-Sen University Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China
| | - Dunhua Zhou
- Department of Pediatric Hematology/Oncology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China.
| | - Yang Li
- Department of Pediatric Hematology/Oncology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Yan Jiang Xi Road, No. 107, Guangzhou, 510120, China.
| |
Collapse
|
12
|
Ding L, Liu Z, Wang J. Role of cystatin C in urogenital malignancy. Front Endocrinol (Lausanne) 2022; 13:1082871. [PMID: 36589819 PMCID: PMC9794607 DOI: 10.3389/fendo.2022.1082871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Urogenital malignancy accounts for one of the major causes of cancer-related deaths globally. Numerous studies have investigated novel molecular markers in the blood circulation, tumor tissue, or urine in order to assist in the clinical identification of tumors at early stages, predict the response of therapeutic strategies, and give accurate prognosis assessment. As an endogenous inhibitor of lysosomal cysteine proteinases, cystatin C plays an integral role in diverse processes. A substantial number of studies have indicated that it may be such a potential promising biomarker. Therefore, this review was intended to provide a detailed overview of the role of cystatin C in urogenital malignancy.
Collapse
Affiliation(s)
- Li Ding
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zijie Liu
- Department of Urology, Wuxi No.2 People’s Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Junqi Wang
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Junqi Wang,
| |
Collapse
|
13
|
Miles HN, Delafield DG, Li L. Recent Developments and Applications of Quantitative Proteomics Strategies for High-Throughput Biomolecular Analyses in Cancer Research. RSC Chem Biol 2021; 4:1050-1072. [PMID: 34430874 PMCID: PMC8341969 DOI: 10.1039/d1cb00039j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Innovations in medical technology and dedicated focus from the scientific community have inspired numerous treatment strategies for benign and invasive cancers. While these improvements often lend themselves to more positive prognoses and greater patient longevity, means for early detection and severity stratification have failed to keep pace. Detection and validation of cancer-specific biomarkers hinges on the ability to identify subtype-specific phenotypic and proteomic alterations and the systematic screening of diverse patient groups. For this reason, clinical and scientific research settings rely on high throughput and high sensitivity mass spectrometry methods to discover and quantify unique molecular perturbations in cancer patients. Discussed within is an overview of quantitative proteomics strategies and a summary of recent applications that enable revealing potential biomarkers and treatment targets in prostate, ovarian, breast, and pancreatic cancer in a high throughput manner.
Collapse
Affiliation(s)
- Hannah N. Miles
- School of Pharmacy, University of Wisconsin-Madison777 Highland AvenueMadisonWI53705-2222USA+1-608-262-5345+1-608-265-8491
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison777 Highland AvenueMadisonWI53705-2222USA+1-608-262-5345+1-608-265-8491
- Department of Chemistry, University of Wisconsin-MadisonMadisonWI53706USA
| |
Collapse
|
14
|
Cao Z, Sloper DT, Nakamura N. Identification of Altered Proteins in the Plasma of Rats With Chronic Prostatic Inflammation Induced by Estradiol Benzoate and Sex Hormones. ACS OMEGA 2021; 6:14361-14370. [PMID: 34124458 PMCID: PMC8190918 DOI: 10.1021/acsomega.1c01191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The cause of nonbacterial chronic prostatitis is unknown, yet its prevalence accounts for more than 90% of all prostatitis cases. Whole blood, plasma, and serum have been used to identify prostate cancer biomarkers; however, few studies have performed protein profiling to identify prostatitis biomarkers. The purpose of this study was to identify protein biomarkers altered by chronic prostatitis. To perform the study, we chemically induced chronic prostate inflammation in Sprague Dawley rats using estradiol benzoate (EB), testosterone (T), and estradiol (E) and then examined protein levels in their plasma. Plasma was collected on postnatal days (PNDs) 90, 100, 145, and 200; plasma proteins were profiled using liquid chromatography-tandem mass spectrometry. Chronic inflammation was observed in the rat prostate induced with EB on PNDs 1, 3, and 5. Rats then were dosed with T+E during PNDs 90-200 via subcutaneous implants. We identified time-specific expression for several proteins (i.e., CFB, MYH9, AZGP1). Some altered proteins that were expressed in the prostate (i.e., SERPINF1, CTR9) also were identified in the rat plasma in the EB+T+E group on PNDs 145 and 200. These findings suggest that the identified proteins could be used as biomarkers of chronic prostatitis. Further studies are needed to verify the results in human samples.
Collapse
|
15
|
Ahn SB, Kamath KS, Mohamedali A, Noor Z, Wu JX, Pascovici D, Adhikari S, Cheruku HR, Guillemin GJ, McKay MJ, Nice EC, Baker MS. Use of a Recombinant Biomarker Protein DDA Library Increases DIA Coverage of Low Abundance Plasma Proteins. J Proteome Res 2021; 20:2374-2389. [PMID: 33752330 DOI: 10.1021/acs.jproteome.0c00898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Credible detection and quantification of low abundance proteins from human blood plasma is a major challenge in precision medicine biomarker discovery when using mass spectrometry (MS). In this proof-of-concept study, we employed a mixture of selected recombinant proteins in DDA libraries to subsequently identify (not quantify) cancer-associated low abundance plasma proteins using SWATH/DIA. The exemplar DDA recombinant protein spectral library (rPSL) was derived from tryptic digestion of 36 recombinant human proteins that had been previously implicated as possible cancer biomarkers from both our own and other studies. The rPSL was then used to identify proteins from nondepleted colorectal cancer (CRC) EDTA plasmas by SWATH-MS. Most (32/36) of the proteins used in the rPSL were reliably identified from CRC plasma samples, including 8 proteins (i.e., BTC, CXCL10, IL1B, IL6, ITGB6, TGFα, TNF, TP53) not previously detected using high-stringency protein inference MS according to PeptideAtlas. The rPSL SWATH-MS protocol was compared to DDA-MS using MARS-depleted and postdigestion peptide fractionated plasmas (here referred to as a human plasma DDA library). Of the 32 proteins identified using rPSL SWATH, only 12 could be identified using DDA-MS. The 20 additional proteins exclusively identified using the rPSL SWATH approach were almost exclusively lower abundance (i.e., <10 ng/mL) proteins. To mitigate justified FDR concerns, and to replicate a more typical library creation approach, the DDA rPSL library was merged with a human plasma DDA library and SWATH identification repeated using such a merged library. The majority (33/36) of the low abundance plasma proteins added from the rPSL were still able to be identified using such a merged library when high-stringency HPP Guidelines v3.0 protein inference criteria were applied to our data set. The MS data set has been deposited to ProteomeXchange Consortium via the PRIDE partner repository (PXD022361).
Collapse
Affiliation(s)
- Seong Beom Ahn
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Karthik S Kamath
- Australian Proteome Analysis Facility (APAF), Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Abidali Mohamedali
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Zainab Noor
- ProCan, Children's Medical Research Institute, The University of Sydney, Westmead, Newtown, NSW 2042, Australia
| | - Jemma X Wu
- Australian Proteome Analysis Facility (APAF), Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Subash Adhikari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Harish R Cheruku
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Matthew J McKay
- Australian Proteome Analysis Facility (APAF), Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
16
|
Wang W, Xie H, Xia B, Zhang L, Hou Y, Li K. Identifying Potential Markers for Monitoring Progression to Ovarian Cancer Using Plasma Label-free Proteomics. J Cancer 2021; 12:1651-1659. [PMID: 33613752 PMCID: PMC7890305 DOI: 10.7150/jca.50733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Cancer antigen 125 (CA125) is considered to have high sensitivity but poor specificity for ovarian cancer. New biomarkers utilized to early detect and monitor the progression of ovarian cancer patients are critically needed. Methods: A total of 80 patients including 16 early stage, and matched with 17 late stage, 23 benign ovarian tumor (BOT) and 24 uterine fibroid (UF) patients were utilized to perform plasma proteomics analysis using isobaric tag for relative and absolute quantitation (iTRAQ) method to identify differential diagnostic proteins of ovarian cancer patients. A validation set of 9 early stage, 11 late stage, 17 BOT and 16 UF collected by an independent cohort of samples with the same matching principles was examined to confirm the expressed levels of differential expression proteins by ELISA analysis. Results: CRP and ARHGEF 11 were identified as potential diagnostic biomarkers of ovarian cancer. Results of area under the curve (AUC) analysis suggested that combination of diagnostic proteins and CA125 achieved a much higher diagnostic accuracy compared with CA125 alone (AUC values: 0.98 versus 0.80), especially improved the specificity (0.97 versus 0.77). In addition, elevated plasma CRP levels were associated with increased risk of ovarian cancer. Conclusions: Current study found that plasma protein CRP was an indicator for monitoring the progression of ovarian cancer. Combination of plasma protein biomarkers with CA125 could be utilized to early diagnose of ovarian cancer patients.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Hongyu Xie
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150000, China
| | - Bairong Xia
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150000, China
| | - Liuchao Zhang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Yan Hou
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| | - Kang Li
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
17
|
Moro L. The Mitochondrial Proteome of Tumor Cells: A SnapShot on Methodological Approaches and New Biomarkers. BIOLOGY 2020; 9:biology9120479. [PMID: 33353059 PMCID: PMC7766083 DOI: 10.3390/biology9120479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Mitochondria are central hubs of cellular signaling, energy metabolism, and redox balance. The plasticity of these cellular organelles is an essential requisite for the cells to cope with different stimuli and stress conditions. Cancer cells are characterized by changes in energy metabolism, mitochondrial signaling, and dynamics. These changes are driven by alterations in the mitochondrial proteome. For this reason, in the last years a focus of basic and cancer research has been the implementation and optimization of technologies to investigate changes in the mitochondrial proteome during cancer initiation and progression. This review presents an overview of the most used technologies to investigate the mitochondrial proteome and recent evidence on changes in the expression levels and delocalization of certain proteins in and out the mitochondria for shaping the functional properties of tumor cells. Abstract Mitochondria are highly dynamic and regulated organelles implicated in a variety of important functions in the cell, including energy production, fatty acid metabolism, iron homeostasis, programmed cell death, and cell signaling. Changes in mitochondrial metabolism, signaling and dynamics are hallmarks of cancer. Understanding whether these modifications are associated with alterations of the mitochondrial proteome is particularly relevant from a translational point of view because it may contribute to better understanding the molecular bases of cancer development and progression and may provide new potential prognostic and diagnostic biomarkers as well as novel molecular targets for anti-cancer treatment. Making an inventory of the mitochondrial proteins has been particularly challenging given that there is no unique consensus targeting sequence that directs protein import into mitochondria, some proteins are present at very low levels, while other proteins are expressed only in some cell types, in a particular developmental stage or under specific stress conditions. This review aims at providing the state-of-the-art on methodologies used to characterize the mitochondrial proteome in tumors and highlighting the biological relevance of changes in expression and delocalization of proteins in and out the mitochondria in cancer biology.
Collapse
Affiliation(s)
- Loredana Moro
- Institute of Biomembranes, Bioenergetic and Molecular Biotechnologies, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| |
Collapse
|
18
|
Tonry C, Finn S, Armstrong J, Pennington SR. Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clin Proteomics 2020; 17:41. [PMID: 33292167 PMCID: PMC7678104 DOI: 10.1186/s12014-020-09305-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Following the introduction of routine Prostate Specific Antigen (PSA) screening in the early 1990's, Prostate Cancer (PCa) is often detected at an early stage. There are also a growing number of treatment options available and so the associated mortality rate is generally low. However, PCa is an extremely complex and heterogenous disease and many patients suffer disease recurrence following initial therapy. Disease recurrence commonly results in metastasis and metastatic PCa has an average survival rate of just 3-5 years. A significant problem in the clinical management of PCa is being able to differentiate between patients who will respond to standard therapies and those who may benefit from more aggressive intervention at an earlier stage. It is also acknowledged that for many men the disease is not life threatenting. Hence, there is a growing desire to identify patients who can be spared the significant side effects associated with PCa treatment until such time (if ever) their disease progresses to the point where treatment is required. To these important clinical needs, current biomarkers and clinical methods for patient stratification and personlised treatment are insufficient. This review provides a comprehensive overview of the complexities of PCa pathology and disease management. In this context it is possible to review current biomarkers and proteomic technologies that will support development of biomarker-driven decision tools to meet current important clinical needs. With such an in-depth understanding of disease pathology, the development of novel clinical biomarkers can proceed in an efficient and effective manner, such that they have a better chance of improving patient outcomes.
Collapse
Affiliation(s)
- Claire Tonry
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | | | | |
Collapse
|
19
|
Li YL, Gao YL, Niu XL, Wu YT, Du YM, Tang MS, Li JY, Guan XH, Song B. Identification of Subtype-Specific Metastasis-Related Genetic Signatures in Sarcoma. Front Oncol 2020; 10:544956. [PMID: 33123466 PMCID: PMC7573283 DOI: 10.3389/fonc.2020.544956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Sarcomas are heterogeneous rare malignancies constituting approximately 1% of all solid cancers in adults and including more than 70 histological and molecular subtypes with different pathological and clinical development characteristics. Method: We identified prognostic biomarkers of sarcomas by integrating clinical information and RNA-seq data from TCGA and GEO databases. In addition, results obtained from cell cycle, cell migration, and invasion assays were used to assess the capacity for Tanespimycin to inhibit the proliferation and metastasis of sarcoma. Results: Sarcoma samples (N = 536) were divided into four pathological subtypes including DL (dedifferentiated liposarcoma), LMS (leiomyosarcoma), UPS (undifferentiated pleomorphic sarcomas), and MFS (myxofibrosarcoma). RNA-seq expression profile data from the TCGA dataset were used to analyze differentially expressed genes (DEGs) within metastatic and non-metastatic samples of these four sarcoma pathological subtypes with DEGs defined as metastatic-related signatures (MRS). Prognostic analysis of MRS identified a group of genes significantly associated with prognosis in three pathological subtypes: DL, LMS, and UPS. ISG15, NUP50, PTTG1, SERPINE1, and TSR1 were found to be more likely associated with adverse prognosis. We also identified Tanespimycin as a drug exerting inhibitory effects on metastatic LMS subtype and therefore can serve a potential treatment for this type of sarcoma. Conclusions: These results provide new insights into the pathogenesis, diagnosis, treatment, and prognosis of sarcomas and provide new directions for further study of sarcoma.
Collapse
Affiliation(s)
- Ya-Ling Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Ya-Li Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Xue-Li Niu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Yu-Tong Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Yi-Mei Du
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Ming-Sui Tang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Jing-Yi Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Xiu-Hao Guan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Bing Song
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,School of Dentistry, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
20
|
Frantzi M, Gomez-Gomez E, Mischak H. Noninvasive biomarkers to guide intervention: toward personalized patient management in prostate cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1804866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Maria Frantzi
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, Hannover, Germany
| | | | - Harald Mischak
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, Hannover, Germany
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| |
Collapse
|
21
|
Garay-Baquero DJ, White CH, Walker NF, Tebruegge M, Schiff HF, Ugarte-Gil C, Morris-Jones S, Marshall BG, Manousopoulou A, Adamson J, Vallejo AF, Bielecka MK, Wilkinson RJ, Tezera LB, Woelk CH, Garbis SD, Elkington P. Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis. JCI Insight 2020; 5:137427. [PMID: 32780727 PMCID: PMC7526553 DOI: 10.1172/jci.insight.137427] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDTuberculosis (TB) kills more people than any other infection, and new diagnostic tests to identify active cases are required. We aimed to discover and verify novel markers for TB in nondepleted plasma.METHODSWe applied an optimized quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation combined with high-resolution mass spectrometry to study nondepleted plasma of 11 patients with active TB compared with 10 healthy controls. Prioritized candidates were verified in independent UK (n = 118) and South African cohorts (n = 203).RESULTSWe generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We analyzed the predominantly low-molecular weight subproteome, identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide FDR ≤ 1%, q ≤ 0.05). Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in 2 independent cohorts. Receiver operating characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP, and SAA1) exhibited discriminatory power in distinguishing TB from other respiratory diseases (AUC = 0.81).CONCLUSIONWe report the most comprehensive TB plasma proteome to date, identifying novel markers with verification in 2 independent cohorts, leading to a 5-protein biosignature with potential to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic triage test.FUNDINGColciencias, Medical Research Council, Innovate UK, NIHR, Academy of Medical Sciences, Program for Advanced Research Capacities for AIDS, Wellcome Centre for Infectious Diseases Research.
Collapse
Affiliation(s)
- Diana J Garay-Baquero
- School of Clinical and Experimental Sciences, Faculty of Medicine, and.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Cory H White
- School of Clinical and Experimental Sciences, Faculty of Medicine, and
| | - Naomi F Walker
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Department of Medicine, University of Cape Town, Observatory 7925, South Africa.,TB Centre and Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marc Tebruegge
- Department of Paediatric Infectious Diseases & Immunology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Hannah F Schiff
- School of Clinical and Experimental Sciences, Faculty of Medicine, and
| | - Cesar Ugarte-Gil
- TB Centre and Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Instituto de Medicina Tropical Alexander von Humboldt, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stephen Morris-Jones
- Department of Microbiology, University College London Hospitals NHS Trust, London, United Kingdom.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Ben G Marshall
- School of Clinical and Experimental Sciences, Faculty of Medicine, and.,National Institute for Health Research (NIHR) Biomedical Research Centre, University Hospital NHS Foundation Trust, Southampton, Southampton, United Kingdom
| | | | - John Adamson
- Pharmacology Core, Africa Health Research Institute (AHRI), Durban, South Africa
| | - Andres F Vallejo
- School of Clinical and Experimental Sciences, Faculty of Medicine, and
| | | | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, South Africa.,The Francis Crick Institute, London, United Kingdom.,Department of Infectious Diseases, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Liku B Tezera
- School of Clinical and Experimental Sciences, Faculty of Medicine, and.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Spiros D Garbis
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, USA.,Cancer Sciences Division, Faculty of Medicine, University of Southampton, United Kingdom
| | - Paul Elkington
- School of Clinical and Experimental Sciences, Faculty of Medicine, and.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Biomedical Research Centre, University Hospital NHS Foundation Trust, Southampton, Southampton, United Kingdom
| |
Collapse
|
22
|
Secretome Proteomic Approaches for Biomarker Discovery: An Update on Colorectal Cancer. ACTA ACUST UNITED AC 2020; 56:medicina56090443. [PMID: 32878319 PMCID: PMC7559921 DOI: 10.3390/medicina56090443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Searching for new cancer-related biomarkers is a key priority for the early detection of solid tumors, such as colorectal cancer (CRC), in clinically relevant biological fluids. The cell line and/or tumor tissue secretome represents a valuable resource for discovering novel protein markers secreted by cancer cells. The advantage of a secretome analysis is the reduction of the large dynamic range characterizing human plasma/serum, and the simultaneous enrichment of low abundance cancer-secreted proteins, thereby overcoming the technical limitations underlying the direct search in blood samples. In this review, we provided a comprehensive overview of recent studies on the CRC secretome for biomarker discovery, focusing both on methodological and technical aspects of secretome proteomic approaches and on biomarker-independent validation in CRC patient samples (blood and tissues). Secretome proteomics are mainly based on LC-MS/MS analyses for which secretome samples are either in-gel or in-solution trypsin-digested. Adequate numbers of biological and technical replicates are required to ensure high reproducibility and robustness of the secretome studies. Moreover, another major challenge is the accuracy of proteomic quantitative analysis performed by label-free or labeling methods. The analysis of differentially expressed proteins in the CRC secretome by using bioinformatic tools allowed the identification of potential biomarkers for early CRC detection. In this scenario, this review may help to follow-up the recent secretome studies in order to select promising circulating biomarkers to be validated in larger screenings, thereby contributing toward a complete translation in clinical practice.
Collapse
|
23
|
Challenges and Opportunities in Clinical Applications of Blood-Based Proteomics in Cancer. Cancers (Basel) 2020; 12:cancers12092428. [PMID: 32867043 PMCID: PMC7564506 DOI: 10.3390/cancers12092428] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The traditional approach in identifying cancer related protein biomarkers has focused on evaluation of a single peptide/protein in tissue or circulation. At best, this approach has had limited success for clinical applications, since multiple pathological tumor pathways may be involved during initiation or progression of cancer which diminishes the significance of a single candidate protein/peptide. Emerging sensitive proteomic based technologies like liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics can provide a platform for evaluating serial serum or plasma samples to interrogate secreted products of tumor–host interactions, thereby revealing a more “complete” repertoire of biological variables encompassing heterogeneous tumor biology. However, several challenges need to be met for successful application of serum/plasma based proteomics. These include uniform pre-analyte processing of specimens, sensitive and specific proteomic analytical platforms and adequate attention to study design during discovery phase followed by validation of discovery-level signatures for prognostic, predictive, and diagnostic cancer biomarker applications. Abstract Blood is a readily accessible biofluid containing a plethora of important proteins, nucleic acids, and metabolites that can be used as clinical diagnostic tools in diseases, including cancer. Like the on-going efforts for cancer biomarker discovery using the liquid biopsy detection of circulating cell-free and cell-based tumor nucleic acids, the circulatory proteome has been underexplored for clinical cancer biomarker applications. A comprehensive proteome analysis of human serum/plasma with high-quality data and compelling interpretation can potentially provide opportunities for understanding disease mechanisms, although several challenges will have to be met. Serum/plasma proteome biomarkers are present in very low abundance, and there is high complexity involved due to the heterogeneity of cancers, for which there is a compelling need to develop sensitive and specific proteomic technologies and analytical platforms. To date, liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics has been a dominant analytical workflow to discover new potential cancer biomarkers in serum/plasma. This review will summarize the opportunities of serum proteomics for clinical applications; the challenges in the discovery of novel biomarkers in serum/plasma; and current proteomic strategies in cancer research for the application of serum/plasma proteomics for clinical prognostic, predictive, and diagnostic applications, as well as for monitoring minimal residual disease after treatments. We will highlight some of the recent advances in MS-based proteomics technologies with appropriate sample collection, processing uniformity, study design, and data analysis, focusing on how these integrated workflows can identify novel potential cancer biomarkers for clinical applications.
Collapse
|
24
|
Anjo SI, Dos Santos PV, Rosado L, Baltazar G, Baldeiras I, Pires D, Gomes A, Januário C, Castelo-Branco M, Grãos M, Manadas B. A different vision of translational research in biomarker discovery: a pilot study on circulatory mitochondrial proteins as Parkinson's disease potential biomarkers. Transl Neurodegener 2020; 9:11. [PMID: 32266064 PMCID: PMC7118951 DOI: 10.1186/s40035-020-00188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background The identification of circulating biomarkers that closely correlate with Parkinson’s Disease (PD) has failed several times in the past. Nevertheless, in this pilot study, a translational approach was conducted, allowing the evaluation of the plasma levels of two mitochondrial-related proteins, whose combination leads to a robust model with potential diagnostic value to discriminate the PD patients from matched controls. Methods The proposed translational approach was initiated by the analysis of secretomes from cells cultured under control or well-defined oxidative stress conditions, followed by the identification of proteins related to PD pathologic mechanisms that were altered between the two states. This pipeline was further translated into the analysis of undepleted plasma samples from 28 control and 31 PD patients. Results From the secretome analysis, several mitochondria-related proteins were found to be differentially released between control and stress conditions and to be able to distinguish the two secretomes. Similarly, two mitochondrial-related proteins were found to be significantly changed in a PD cohort compared to matched controls. Moreover, a linear discriminant model with potential diagnostic value to discriminate PD patients was obtained using the combination of these two proteins. Both proteins are associated with apoptotic mitochondrial changes, which may correspond to potential indicators of cell death. Moreover, one of these proteins, the VPS35 protein, was reported in plasma for the first time, and its quantification was only possible due to its previous identification in the secretome analysis. Conclusions In this work, an adaptation of a translational pipeline for biomarker selection was presented and transposed to neurological diseases, in the present case Parkinson’s Disease. The novelty and success of this pilot study may arise from the combination of: i) a translational research pipeline, where plasma samples are interrogated using knowledge previously obtained from the evaluation of cells’ secretome under oxidative stress; ii) the combined used of statistical analysis and an informed selection of candidates based on their link with relevant disease mechanisms, and iii) the use of SWATH-MS, an untargeted MS method that allows a complete record of the analyzed samples and a targeted data extraction of the quantitative values of proteins previously identified.
Collapse
Affiliation(s)
- Sandra I Anjo
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,2Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Luiza Rosado
- 4Centro Hospitalar Cova da Beira, E.P.E, Covilhã, Portugal
| | - Graça Baltazar
- 3Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Inês Baldeiras
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,2Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,5Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Diana Pires
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Andreia Gomes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Cristina Januário
- 5Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Mário Grãos
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,7Biocant, Biotechnology Transfer Association, Cantanhede, Portugal.,8Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Bruno Manadas
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,8Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| |
Collapse
|
25
|
Increased plasma CD14 levels 1 year postpartum in women with pre-eclampsia during pregnancy: a case-control plasma proteomics study. Nutr Diabetes 2020; 10:2. [PMID: 32066653 PMCID: PMC7026086 DOI: 10.1038/s41387-019-0105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 11/08/2022] Open
Abstract
Epidemiological data suggest that pre-eclampsia (PE) is associated with an increased risk of post-delivery metabolic dysregulation. The aim of the present case-control observational study was to examine the global plasma proteomic profile 1 year postpartum in women who developed PE during pregnancy (n = 5) compared to controls (n = 5), in order to identify a novel predictive marker linking PE with long-term metabolic imbalance. Key findings were verified with enzyme-linked immunosorbent assay (ELISA) in a separate cohort (n = 17 women with PE and n = 43 controls). One hundred and seventy-two proteins were differentially expressed in the PE vs. control groups. Gene ontology analysis showed that Inflammatory|Immune responses, Blood coagulation and Metabolism were significantly enriched terms. CD14, mapping to the inflammatory response protein network, was selected for verification based on bibliographic evidence. ELISA measurements showed CD14 to be significantly increased 1 year postpartum in women with PE during pregnancy compared to controls [PE group (median ± SD): 296.5 ± 113.6; control group (median ± SD): 128.9 ± 98.5; Mann-Whitney U test p = 0.0078]. Overall, the identified proteins could provide insight into the long-term disease risk among women with PE during pregnancy and highlight the need for their postpartum monitoring. CD14 could be examined in larger cohorts as a predictive marker of insulin resistance and type II diabetes mellitus among women with PE.
Collapse
|
26
|
Rosado M, Silva R, G Bexiga M, G Jones J, Manadas B, Anjo SI. Advances in biomarker detection: Alternative approaches for blood-based biomarker detection. Adv Clin Chem 2019; 92:141-199. [PMID: 31472753 DOI: 10.1016/bs.acc.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the clinical setting, a blood sample is typically the starting point for biomarker search and discovery. Mass spectrometry (MS) is a highly sensitive and informative method for characterizing a very wide range of metabolites and proteins and is therefore a potentially powerful tool for biomarker discovery. However, the physicochemical characteristics of blood coupled with very large ranges of protein and metabolite concentrations present a significant technical obstacle for resolving and quantifying putative biomarkers by MS. Blood fractionation procedures are being developed to reduce the proteome/metabolome complexity and concentration ranges, allowing a greater diversity of analytes, including those at very low concentrations, to be quantified. In this chapter, several strategies for enriching and/or isolating specific blood components are summarized, including methods for the analysis of low and high molecular weight compounds, usually neglected in this type of assays, extracellular vesicles, and peripheral blood mononuclear cells (PBMCs). For each method, relevant practical information is presented for effective implementation.
Collapse
Affiliation(s)
- Miguel Rosado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rafael Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mariana G Bexiga
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
27
|
Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie 2019; 166:233-250. [PMID: 31071357 DOI: 10.1016/j.biochi.2019.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
Cystatins are endogenous and reversible inhibitors of cysteine peptidases that are important players in cancer progression. Besides their primary role as regulators of cysteine peptidase activity, cystatins are involved in cancer development and progression through proteolysis-independent mechanisms. Mechanistic studies of cystatin function revealed that they affect all stages of cancer progression including tumor growth, apoptosis, invasion, metastasis and angiogenesis. Recently, the involvement of cystatins in the antitumor immune responses was reported. In this review, we discuss molecular mechanisms and clinical aspects of cystatins in cancer. Altered expression of cystatins in cancer resulting in harmful excessive cysteine peptidase activity has been a subject of several studies in order to find correlations with clinical outcome and therapy response. However, involvement in anti-tumor immune response and signaling cascades leading to cancer progression designates cystatins as possible targets for development of new anti-tumor drugs.
Collapse
|
28
|
Anjo SI, Manadas B. A translational view of cells' secretome analysis - from untargeted proteomics to potential circulating biomarkers. Biochimie 2018; 155:37-49. [PMID: 29782891 DOI: 10.1016/j.biochi.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
|
29
|
Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R. Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. MASS SPECTROMETRY REVIEWS 2018; 37:583-606. [PMID: 29120501 DOI: 10.1002/mas.21550] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 05/23/2023]
Abstract
Over the past decade, chemical labeling with isobaric tandem mass tags, such as isobaric tags for relative and absolute quantification reagents (iTRAQ) and tandem mass tag (TMT) reagents, has been employed in a wide range of different clinically orientated serum and plasma proteomics studies. In this review the scope of these works is presented with attention to the areas of research, methods employed and performance limitations. These applications have covered a wide range of diseases, disorders and infections, and have implemented a variety of different preparative and mass spectrometric approaches. In contrast to earlier works, which struggled to quantify more than a few hundred proteins, increasingly these studies have provided deeper insight into the plasma proteome extending the numbers of quantified proteins to over a thousand.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Santosh D Bhosale
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
30
|
Latosinska A, Frantzi M, Merseburger AS, Mischak H. Promise and Implementation of Proteomic Prostate Cancer Biomarkers. Diagnostics (Basel) 2018; 8:diagnostics8030057. [PMID: 30158500 PMCID: PMC6174350 DOI: 10.3390/diagnostics8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is one of the most commonly diagnosed malignancy and the fifth leading cause of cancer mortality in men. Despite the broad use of prostate-specific antigen test that resulted in an increase in number of diagnosed cases, disease management needs to be improved. Proteomic biomarkers alone and or in combination with clinical and pathological risk calculators are expected to improve on decreasing the unnecessary biopsies, stratify low risk patients, and predict response to treatment. To this end, significant efforts have been undertaken to identify novel biomarkers that can accurately discriminate between indolent and aggressive cancer forms and indicate those men at high risk for developing prostate cancer that require immediate treatment. In the era of “big data” and “personalized medicine” proteomics-based biomarkers hold great promise to provide clinically applicable tools, as proteins regulate all biological functions, and integrate genomic information with the environmental impact. In this review article, we aim to provide a critical assessment of the current proteomics-based biomarkers for prostate cancer and their actual clinical applicability. For that purpose, a systematic review of the literature published within the last 10 years was performed using the Web of Science Database. We specifically discuss the potential and prospects of use for diagnostic, prognostic and predictive proteomics-based biomarkers, including both body fluid- and tissue-based markers.
Collapse
Affiliation(s)
| | - Maria Frantzi
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany.
| | - Axel S Merseburger
- Department of Urology, University Clinic of Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany.
| | | |
Collapse
|
31
|
Leto G, Crescimanno M, Flandina C. On the role of cystatin C in cancer progression. Life Sci 2018; 202:152-160. [DOI: 10.1016/j.lfs.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/17/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
|
32
|
Banzola I, Mengus C, Wyler S, Hudolin T, Manzella G, Chiarugi A, Boldorini R, Sais G, Schmidli TS, Chiffi G, Bachmann A, Sulser T, Spagnoli GC, Provenzano M. Expression of Indoleamine 2,3-Dioxygenase Induced by IFN-γ and TNF-α as Potential Biomarker of Prostate Cancer Progression. Front Immunol 2018; 9:1051. [PMID: 29896191 PMCID: PMC5986916 DOI: 10.3389/fimmu.2018.01051] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammation has been suggested to play an important role in onset and progression of prostate cancer (PCa). Histological analysis of prostatectomy specimens has revealed focal inflammation in early stage lesions of this malignancy. We addressed the role of inflammatory stimuli in the release of PCa-specific, tumor-derived soluble factors (PCa-TDSFs) already reported to be mediators of PCa morbidity, such as indoleamine 2,3-dioxygenase (IDO) and interleukin (IL)-6. Inflammation-driven production and functions of PCa-TDFSs were tested "in vitro" by stimulating established cell lines (CA-HPV-10 and PC3) with IFN-γ or TNF-α. Expression of genes encoding IDO, IL-6, IFN-γ, TNF-α, and their receptors was investigated in tumor tissues of PCa patients undergoing radical prostatectomy, in comparison with benign prostatic hyperplasia (BPH) specimens. IFN-γ and TNF-α-treatment resulted in the induction of IDO and IL-6 gene expression and release in established cell lines, suggesting that the elicitation of PCa-TDSFs by these cytokines might contribute to progression of cancer into an untreatable phenotype. An analysis based on timing of biochemical recurrence revealed the prognostic value of IDO but not IL-6 gene expression in predicting recurrence-free survival in patients (RFS) with PCa. In addition, a urine-based mRNA biomarker study revealed the diagnostic potential of IDO gene expression in urines of men at risk of PCa development.
Collapse
Affiliation(s)
- Irina Banzola
- Oncology Research Unit, Department of Urology, University Hospital of Zurich, Zurich, Switzerland
- Department of Oncology and Children’s Research Center (CRC), University Children’s Hospital, Zurich, Switzerland
| | - Chantal Mengus
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Stephen Wyler
- Department of Urology, University Hospital of Basel, Basel, Switzerland
| | - Tvrko Hudolin
- Department of Urology, University Hospital of Basel, Basel, Switzerland
| | - Gabriele Manzella
- Department of Oncology and Children’s Research Center (CRC), University Children’s Hospital, Zurich, Switzerland
| | - Alberto Chiarugi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Renzo Boldorini
- Department of Health Science, School of Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Giovanni Sais
- Oncology Research Unit, Department of Urology, University Hospital of Zurich, Zurich, Switzerland
| | - Tobias S. Schmidli
- Oncology Research Unit, Department of Urology, University Hospital of Zurich, Zurich, Switzerland
| | - Gabriele Chiffi
- Oncology Research Unit, Department of Urology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Tullio Sulser
- Oncology Research Unit, Department of Urology, University Hospital of Zurich, Zurich, Switzerland
| | - Giulio C. Spagnoli
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
- CNR Institute of Translational Pharmacology, Rome, Italy
| | - Maurizio Provenzano
- Oncology Research Unit, Department of Urology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Cao XY, Zhang XX, Yang MW, Hu LP, Jiang SH, Tian GA, Zhu LL, Li Q, Sun YW, Zhang ZG. Aberrant upregulation of KLK10 promotes metastasis via enhancement of EMT and FAK/SRC/ERK axis in PDAC. Biochem Biophys Res Commun 2018; 499:584-593. [PMID: 29621546 DOI: 10.1016/j.bbrc.2018.03.194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PADC) metastasis is the leading cause of morality of this severe malignant tumor. Proteases are key players in the degradation of extracellular matrix which promotes the cascade of tumor metastasis. As a kind of serine proteases, the kallikrein family performs vital function on the cancer proteolysis scene, which have been proved in diverse malignant tumors. However, the specific member of kallikrein family and its function in PDAC remain unexplored. In this study, by data mining of GEO datasets, we have identified KLK10 is upregulated gene in PDAC. We found that KLK10 was significantly overexpressed in tissues of pancreatic intraepithelial neoplasia (PanIN) and PDAC from Pdx1-Cre; LSL-KrasG12D/+ mice (KC) and Pdx1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ mice (KPC) by immunohistochemical analysis. Moreover, KLK10 is extremely elevated in the PDAC tissues, especially that from the PDAC patients with lymphatic and distant metastasis. Aberrant KLK10 expression is significantly correlated with poor prognosis and shorter survival by univariable and multivariable analysis. Functionally, knockdown of KLK10 observably inhibits invasion and metastatic phenotype of PDAC cells in vitro and metastasis in vivo. In addition, blockade of KLK10 attenuates epithelial-mesenchymal transition and activation of FAK-SRC-ERK signaling, which explains the mechanism of KLK10 in promoting metastasis. Collectively, KLK10 should be considered as a promising biomarker for diagnosis and potential target for therapy in PDAC.
Collapse
Affiliation(s)
- Xiao-Yan Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiao-Xin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, PR China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shu-Heng Jiang
- Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Guang-Ang Tian
- Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Li-Li Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qing Li
- Shanghai Medical College of Fudan University, Shanghai 200032, PR China.
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, PR China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
34
|
Manousopoulou A, Hayden A, Mellone M, Garay-Baquero DJ, White CH, Noble F, Lopez M, Thomas GJ, Underwood TJ, Garbis SD. Quantitative proteomic profiling of primary cancer-associated fibroblasts in oesophageal adenocarcinoma. Br J Cancer 2018; 118:1200-1207. [PMID: 29593339 PMCID: PMC5943522 DOI: 10.1038/s41416-018-0042-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) form the major stromal component of the tumour microenvironment (TME). The present study aimed to examine the proteomic profiles of CAFs vs. normal fibroblasts (NOFs) from patients with oesophageal adenocarcinoma to gain insight into their pro-oncogenic phenotype. METHODS CAFs/NOFs from four patients were sub-cultured and analysed using quantitative proteomics. Differentially expressed proteins (DEPs) were subjected to bioinformatics and compared with published proteomics and transcriptomics datasets. RESULTS Principal component analysis of all profiled proteins showed that CAFs had high heterogeneity and clustered separately from NOFs. Bioinformatics interrogation of the DEPs demonstrated inhibition of adhesion of epithelial cells, adhesion of connective tissue cells and cell death of fibroblast cell lines in CAFs vs. NOFs (p < 0.0001). KEGG pathway analysis showed a significant enrichment of the insulin-signalling pathway (p = 0.03). Gene ontology terms related with myofibroblast phenotype, metabolism, cell adhesion/migration, hypoxia/oxidative stress, angiogenesis, immune/inflammatory response were enriched in CAFs vs. NOFs. Nestin, a stem-cell marker up-regulated in CAFs vs. NOFs, was confirmed to be expressed in the TME with immunohistochemistry. CONCLUSIONS The identified pathways and participating proteins may provide novel insight on the tumour-promoting properties of CAFs and unravel novel adjuvant therapeutic targets in the TME.
Collapse
Affiliation(s)
| | - Annette Hayden
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Massimiliano Mellone
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana J Garay-Baquero
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cory H White
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Merck Exploratory Science Center, Cambridge, MA, USA
| | - Fergus Noble
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Monette Lopez
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Gareth J Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Timothy J Underwood
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Spiros D Garbis
- Institute for Life Sciences, University of Southampton, Southampton, UK.
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
35
|
Zeidan B, Manousopoulou A, Garay-Baquero DJ, White CH, Larkin SET, Potter KN, Roumeliotis TI, Papachristou EK, Copson E, Cutress RI, Beers SA, Eccles D, Townsend PA, Garbis SD. Increased circulating resistin levels in early-onset breast cancer patients of normal body mass index correlate with lymph node negative involvement and longer disease free survival: a multi-center POSH cohort serum proteomics study. Breast Cancer Res 2018; 20:19. [PMID: 29566726 PMCID: PMC5863447 DOI: 10.1186/s13058-018-0938-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early-onset breast cancer (EOBC) affects about one in 300 women aged 40 years or younger and is associated with worse outcomes than later onset breast cancer. This study explored novel serum proteins as surrogate markers of prognosis in patients with EOBC. METHODS Serum samples from EOBC patients (stages 1-3) were analysed using agnostic high-precision quantitative proteomics. Patients received anthracycline-based chemotherapy. The discovery cohort (n = 399) either had more than 5-year disease-free survival (DFS) (good outcome group, n = 203) or DFS of less than 2 years (poor outcome group, n = 196). Expressed proteins were assessed for differential expression between the two groups. Bioinformatics pathway and network analysis in combination with literature research were used to determine clinically relevant proteins. ELISA analysis against an independent sample set from the Prospective study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) cohort (n = 181) was used to validate expression levels of the selected target. Linear and generalized linear modelling was applied to determine the effect of target markers, body mass index (BMI), lymph node involvement (LN), oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 status on patients' outcome. RESULTS A total of 5346 unique proteins were analysed (peptide FDR p ≤ 0.05). Of these, 812 were differentially expressed in the good vs poor outcome groups and showed significant enrichment for the insulin signalling (p = 0.01) and the glycolysis/gluconeogenesis (p = 0.01) pathways. These proteins further correlated with interaction networks involving glucose and fatty acid metabolism. A consistent nodal protein to these metabolic networks was resistin (upregulated in the good outcome group, p = 0.009). ELISA validation demonstrated resistin to be upregulated in the good outcome group (p = 0.04), irrespective of BMI and ER status. LN involvement was the only covariate with a significant association with resistin measurements (p = 0.004). An ancillary in-silico observation was the induction of the inflammatory response, leucocyte infiltration, lymphocyte migration and recruitment of phagocytes (p < 0.0001, z-score > 2). Survival analysis showed that resistin overexpression was associated with improved DFS. CONCLUSIONS Higher circulating resistin correlated with node-negative patients and longer DFS independent of BMI and ER status in women with EOBC. Overexpression of serum resistin in EOBC may be a surrogate indicator of improved prognosis.
Collapse
Affiliation(s)
- Bashar Zeidan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Diana J. Garay-Baquero
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cory H. White
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Present address: Merck Exploratory Science Center, Cambridge, MA USA
| | - Samantha E. T. Larkin
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kathleen N. Potter
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Theodoros I. Roumeliotis
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Present address: The Institute for Cancer Research, London, UK
| | - Evangelia K. Papachristou
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Present address: Cancer Research Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ellen Copson
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ramsey I. Cutress
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Stephen A. Beers
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana Eccles
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul A. Townsend
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science, Manchester Biomedical Research Centre, Health Innovation Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Spiros D. Garbis
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
36
|
Latonen L, Afyounian E, Jylhä A, Nättinen J, Aapola U, Annala M, Kivinummi KK, Tammela TTL, Beuerman RW, Uusitalo H, Nykter M, Visakorpi T. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat Commun 2018; 9:1176. [PMID: 29563510 PMCID: PMC5862881 DOI: 10.1038/s41467-018-03573-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 02/21/2018] [Indexed: 01/23/2023] Open
Abstract
To understand functional consequences of genetic and transcriptional aberrations in prostate cancer, the proteomic changes during disease formation and progression need to be revealed. Here we report high-throughput mass spectrometry on clinical tissue samples of benign prostatic hyperplasia (BPH), untreated primary prostate cancer (PC) and castration resistant prostate cancer (CRPC). Each sample group shows a distinct protein profile. By integrative analysis we show that, especially in CRPC, gene copy number, DNA methylation, and RNA expression levels do not reliably predict proteomic changes. Instead, we uncover previously unrecognized molecular and pathway events, for example, several miRNA target correlations present at protein but not at mRNA level. Notably, we identify two metabolic shifts in the citric acid cycle (TCA cycle) during prostate cancer development and progression. Our proteogenomic analysis uncovers robustness against genomic and transcriptomic aberrations during prostate cancer progression, and significantly extends understanding of prostate cancer disease mechanisms. Understanding of molecular events in cancer requires proteome-level characterisation. Here, proteome profiling of patient samples representing primary and progressed prostate cancer enables the authors to identify pathway alterations that are not reflected at the genomic and transcriptomic levels.
Collapse
Affiliation(s)
- Leena Latonen
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, 33014, Finland.,FimLab Laboratories, Tampere University Hospital, Tampere, 33101, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, 33014, Finland
| | - Antti Jylhä
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Janika Nättinen
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Ulla Aapola
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Matti Annala
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, 33014, Finland
| | - Kati K Kivinummi
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, 33014, Finland
| | - Teuvo T L Tammela
- Department of Urology, University of Tampere and Tampere University Hospital, Tampere, 33521, Finland
| | - Roger W Beuerman
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland.,Singapore Eye Research Institute, Singapore, 169856, Singapore.,Duke-NUS Neuroscience, Singapore, 169857, Singapore.,Duke-NUS Medical School Ophthalmology and Visual Sciences Academic Clinical Program, Singapore, 169857, Singapore.,Ophthalmology, Yong Loo Lin Medical School, National University of Singapore, Singapore, 119228, Singapore
| | - Hannu Uusitalo
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, 33521, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, 33014, Finland. .,Science Center, Tampere University Hospital, Tampere, 33521, Finland.
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, 33014, Finland. .,FimLab Laboratories, Tampere University Hospital, Tampere, 33101, Finland.
| |
Collapse
|
37
|
Cozar J, Robles-Fernandez I, Martinez-Gonzalez L, Pascual-Geler M, Rodriguez-Martinez A, Serrano M, Lorente J, Alvarez-Cubero M. Genetic markers a landscape in prostate cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:1-10. [DOI: 10.1016/j.mrrev.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022]
|
38
|
Intasqui P, Bertolla RP, Sadi MV. Prostate cancer proteomics: clinically useful protein biomarkers and future perspectives. Expert Rev Proteomics 2017; 15:65-79. [PMID: 29251021 DOI: 10.1080/14789450.2018.1417846] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Although prostate cancer constitutes one of the most important, death-related diseases in the male population, there is still a need for identification of sensitive biomarkers that could precociously detect the disease and differentiate aggressive from indolent cancers, in order to decrease overtreatment. Proteomics research has improved understanding on mechanisms underlying tumorigenesis, cancer cells migration and invasion potential, and castration resistance. This review has focused on proteomic studies of prostate cancer published in the recent years, with a special emphasis on determination of biomarkers for cancer progression and diagnosis. Areas covered: Shotgun and targeted-proteomic studies of prostate cancer in different matrices are reviewed, i.e., prostate tissue, prostate cell lines, blood (serum and plasma), urine, seminal plasma, and exosomes. The most important biomarkers for cancer diagnosis and aggressiveness characterization are highlighted. Expert commentary: In general, results demonstrate alteration in cell cycle control, DNA repair, proteasomal degradation, and metabolic activity. However, these studies suffer from low reproducibility due to heterogeneity of the cancer itself, as well as to techniques utilized for protein identification/quantification. Downstream confirmatory studies in separate cohorts are warranted in order to demonstrate accuracy of these results.
Collapse
Affiliation(s)
- Paula Intasqui
- a Department of Surgery, Division of Urology, Human Reproduction Section , Universidade Federal de São Paulo (UNIFESP) - Sao Paulo Hospital , Sao Paulo , Brazil
| | - Ricardo P Bertolla
- a Department of Surgery, Division of Urology, Human Reproduction Section , Universidade Federal de São Paulo (UNIFESP) - Sao Paulo Hospital , Sao Paulo , Brazil
| | - Marcus Vinicius Sadi
- a Department of Surgery, Division of Urology, Human Reproduction Section , Universidade Federal de São Paulo (UNIFESP) - Sao Paulo Hospital , Sao Paulo , Brazil
| |
Collapse
|
39
|
A new panel of pancreatic cancer biomarkers discovered using a mass spectrometry-based pipeline. Br J Cancer 2017; 117:1846-1854. [PMID: 29123261 PMCID: PMC5729477 DOI: 10.1038/bjc.2017.365] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
Background: Pancreatic carcinoma (PC) is an aggressive malignancy that lacks strategies for early detection. This study aimed to develop a coherent, high-throughput and non-discriminatory pipeline for the novel clinical biomarker discovery of PC. Methods: We combined mass spectrometry (MS)-intensive methods such as isobaric tags for relative and absolute quantitation with two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS), 1D-targeted LC-MS/MS, prime MRM (P-MRM) and stable isotope dilution-based MRM (SID-MRM) to analyse serum samples from healthy people (normal control, NC), patients with benign diseases (BD) and PC patients to identify novel biomarkers of PC. Results: On the basis of the newly developed pipeline, we identified >1000 proteins, verified 142 differentially expressed proteins and finally targeted four proteins for absolute quantitation in 100 serum samples. The novel biomarker panel of apolipoprotein E (APOE), inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3), apolipoprotein A-I (APOA1), apolipoprotein L1 (APOL1), combining with CA19-9, statistically-significantly improved the sensitivity (95%) and specificity (94.1%), outperforming CA19-9 alone, for the diagnosis of PC. Conclusions: We developed a highly efficient pipeline for biomarker discovery, verification and validation, with each step systematically informing the next. A panel of proteins that might be clinically relevant biomarkers for PC was found.
Collapse
|
40
|
Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I. Gender proteomics II. Which proteins in sexual organs. J Proteomics 2017; 178:18-30. [PMID: 28988880 DOI: 10.1016/j.jprot.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
In continuity with the review dealing with differences by gender in non-sexual organs [1], this review collects data on the proteomes of the sexual organs as involved in human reproduction, under both physiological and pathological conditions. It also collects data on the tissue structures and biological fluids typical of pregnancy, such as placenta and amniotic fluid, as well as what may be tested on preimplantation embryos during medically assisted reproduction. The review includes as well mention to all fluids and secretions connected with sex organs and/or reproduction, including sperm and milk, to exemplify two distinctive items in male and female physiology. SIGNIFICANCE The causes of infertility are only incompletely understood; the same holds for the causes, and even the early markers, of the most frequent complications of pregnancy. To these established medical challenges, present day practice adds new issues connected with medically assisted reproduction. Omics approaches, including proteomics, are building the database for basic knowledge to possibly translate into clinical testing and eventually into medical routine in this critical branch of health care.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
41
|
Al-Daghri NM, Alokail MS, Manousopoulou A, Heinson A, Al-Attas O, Al-Saleh Y, Sabico S, Yakout S, Woelk CH, Chrousos GP, Garbis SD. Sex-specific vitamin D effects on blood coagulation among overweight adults. Eur J Clin Invest 2016; 46:1031-1040. [PMID: 27727459 DOI: 10.1111/eci.12688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Overweight adults are at increased risk for cardiovascular disease and vitamin D deficiency, whereas an important feature to vitamin D physiology is its sex dependence. The aim of this study was to examine whether vitamin D status improvement exerts a sexually dimorphic effect on serum proteins associated with cardiovascular risk among overweight adults. MATERIALS AND METHODS Unprocessed serum from age- and BMI-matched men (n = 26) and premenopausal women (n = 24) with vitamin D deficiency and after they achieved sufficiency through a 12-month nutritional intervention was analysed using our previously published depletion-free quantitative proteomics method. Key findings were verified with ELISA. Differentially expressed proteins were subjected to in silico bioinformatics assessment using principal component analysis, hierarchical clustering and Metacore™ pathway analysis. All mass spectrometry proteomic data are available via ProteomeXchange (identifier: PXD003663). RESULTS A total of 282 proteins were differentially expressed after the intervention between men and women (P-value ≤ 0·05), in which the blood coagulation pathway was significantly enriched. In agreement with the proteomics findings, ELISA measurements showed vitamin K-dependent protein C, von Willebrand factor, fibrinogen gamma chain and multimerin-1 proteins, of relevance to blood coagulation, to be differentially affected (P-value ≤ 0·05) between sexes after vitamin D status correction. CONCLUSIONS This study identified novel protein-level molecular indicators on the sexually dimorphic effect of vitamin D status correction associated with blood coagulation among overweight adults. These sex-mediated vitamin D effects should be factored in the design and interpretation of vitamin D observational and interventional studies testing cardiometabolic outcomes.
Collapse
Affiliation(s)
- Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Antigoni Manousopoulou
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.,Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Ashley Heinson
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Omar Al-Attas
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Yousef Al-Saleh
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Sobhy Yakout
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - George P Chrousos
- First Department of Pediatrics, University of Athens, Athens, Greece
| | - Spiros D Garbis
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.,Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, UK.,Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|