1
|
Mankuzhy PD, Ramesh ST, Thirupathi Y, Mohandas PS, Chandra V, Sharma TG. The preclinical and clinical implications of fetal adnexa derived mesenchymal stromal cells in wound healing therapy. Wound Repair Regen 2021; 29:347-369. [PMID: 33721373 DOI: 10.1111/wrr.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Mesenchymal stromal cells (MSCs) isolated from fetal adnexa namely amniotic membrane/epithelium, amniotic fluid and umbilical cord have hogged the limelight in recent times, as a proposed alternative to MSCs from conventional sources. These cells which are identified as being in a developmentally primitive state have many advantages, the most important being the non-invasive nature of their isolation procedures, absence of ethical concerns, proliferation potential, differentiation abilities and low immunogenicity. In the present review, we are focusing on the potential preclinical and clinical applications of different cell types of fetal adnexa, in wound healing therapy. We also discuss the isolation-culture methods, cell surface marker expression, multi-lineage differentiation abilities, immune-modulatory capabilities and their homing property. Different mechanisms involved in the wound healing process and the role of stromal cells in therapeutic wound healing are highlighted. Further, we summarize the findings of the cell delivery systems in skin lesion models and paracrine functions of their secretome in the wound healing process. Overall, this holistic review outlines the research findings of fetal adnexa derived MSCs, their usefulness in wound healing therapy in human as well as in veterinary medicine.
Collapse
Affiliation(s)
- Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Sreekumar T Ramesh
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Yasotha Thirupathi
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Ponny S Mohandas
- Consultant Gynecologist, Department of Gynecology and Obstetrics, Meditrina Hospital, Ayathil, Kollam, Kerala, India
| | - Vikash Chandra
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Taru Guttula Sharma
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
2
|
Kulebyakina M, Makarevich P. Hox-Positive Adult Mesenchymal Stromal Cells: Beyond Positional Identity. Front Cell Dev Biol 2020; 8:624. [PMID: 32850789 PMCID: PMC7412745 DOI: 10.3389/fcell.2020.00624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Homeotic genes (Hox) are universal regulators of the body patterning process in embryogenesis of metazoans. The Hox gene expression pattern (Hox code) retains in adult tissues and serves as a cellular positional identity marker. Despite previously existing notions that the Hox code is inherent in all stroma mesenchymal cells as a whole, recent studies have shown that the Hox code may be an attribute of a distinct subpopulation of adult resident mesenchymal stromal cells (MSC). Recent evidence allows suggesting a "non-canonical" role for Hox gene expression which is associated with renewal and regeneration in postnatal organs after damage. In tissues with high regenerative capacity, it has been shown that a special cell population is critical for these processes, a distinctive feature of which is the persistent expression of tissue-specific Hox genes. We believe that in the postnatal period Hox-positive subpopulation of resident MSC may serve as a unique regenerative reserve. These cells coordinate creation and maintenance of the correct structure of the stroma through a tissue-specific combination of mechanisms. In this article, we summarize data on the role of resident MSC with a tissue-specific pattern of Hox gene expression as regulators of correct tissue reconstruction after injury.
Collapse
Affiliation(s)
- Maria Kulebyakina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Makarevich
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Gene and Cell Therapy, Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Gao K, Kumar P, Cortez-Toledo E, Hao D, Reynaga L, Rose M, Wang C, Farmer D, Nolta J, Zhou J, Zhou P, Wang A. Potential long-term treatment of hemophilia A by neonatal co-transplantation of cord blood-derived endothelial colony-forming cells and placental mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:34. [PMID: 30670078 PMCID: PMC6341603 DOI: 10.1186/s13287-019-1138-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the Factor VIII (FVIII) gene leading to deficient blood coagulation. As a monogenic disorder, HA is an ideal target for cell-based gene therapy, but successful treatment has been hampered by insufficient engraftment of potential therapeutic cells. METHODS In this study, we sought to determine whether co-transplantation of endothelial colony-forming cells (ECFCs) and placenta-derived mesenchymal stromal cells (PMSCs) can achieve long-term engraftment and FVIII expression. ECFCs and PMSCs were transduced with a B domain deleted factor VIII (BDD-FVIII) expressing lentiviral vector and luciferase, green fluorescent protein or Td-Tomato containing lentiviral tracking vectors. They were transplanted intramuscularly into neonatal or adult immunodeficient mice. RESULTS In vivo bioluminescence imaging showed that the ECFC only and the co-transplantation groups but not the PMSCs only group achieved long-term engraftment for at least 26 weeks, and the co-transplantation group showed a higher engraftment than the ECFC only group at 16 and 20 weeks post-transplantation. In addition, cell transplantation at the neonatal age achieved higher engraftment than at the adult age. Immunohistochemical analyses further showed that the engrafted ECFCs expressed FVIII, maintained endothelial phenotype, and generated functional vasculature. Next, co-transplantation of ECFCs and PMSCs into F8 knock-out HA mice reduced the blood loss volume from 562.13 ± 19.84 μl to 155.78 ± 44.93 μl in a tail-clip assay. CONCLUSIONS This work demonstrated that co-transplantation of ECFCs with PMSCs at the neonatal age is a potential strategy to achieve stable, long-term engraftment, and thus holds great promise for cell-based treatment of HA.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817 USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817 USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA 95817 USA
| | - Elizabeth Cortez-Toledo
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817 USA
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817 USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA 95817 USA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817 USA
| | - Melanie Rose
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817 USA
| | - Chuwang Wang
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817 USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817 USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA 95817 USA
| | - Jan Nolta
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817 USA
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Ping Zhou
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817 USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817 USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA 95817 USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
4
|
Shahi M, Nadari M, Sahmani M, Seyedjafari E, Ahmadbeigi N, Peymani A. Osteoconduction of Unrestricted Somatic Stem Cells on an Electrospun Polylactic-Co-Glycolic Acid Scaffold Coated with Nanohydroxyapatite. Cells Tissues Organs 2018; 205:9-19. [PMID: 29414820 DOI: 10.1159/000485122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
The limitation of traditional bone grafts could be overcome by applying engineered bone constructs, which are mainly produced by seeding suitable stem cells on appropriate scaffolds. So far, bone marrow-derived stromal cells have been the most applied cells in bone tissue engineering, but current data show that unrestricted somatic stem cells (USSCs) from human cord blood might actually be a better stem cell source due to the accessibility and noninvasive procedure of collection. In this study, we cultured USSCs on a plasma-treated electrospun polylactic-co-glycolic acid (PLGA) scaffold coated with nanohydroxyapatite (nHA). Adhesion and proliferation of USSCs on PLGA/nHA were assessed by scanning electron microscopy and MTT assay. Osteogenic differentiation of USSCs into osteoblast lineage cells was evaluated via alkaline phosphatase (ALP) activity and real-time polymerase chain reaction. Our observation showed that USSCs attached and proliferated on PLGA/nHA. Osteogenic differentiation was confirmed by increased ALP activity and OSTEONECTIN expression in USSCs on PLGA/nHA after the 1st week of the osteogenic period. Therefore, using USSCs on electrospun PLGA/nHA is a promising approach in bone tissue engineering.
Collapse
Affiliation(s)
- Maryam Shahi
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | | | | | | |
Collapse
|
5
|
Mills DR, Mao Q, Chu S, Falcon Girard K, Kraus M, Padbury JF, De Paepe ME. Effects of human umbilical cord blood mononuclear cells on respiratory system mechanics in a murine model of neonatal lung injury. Exp Lung Res 2017; 43:66-81. [PMID: 28353351 DOI: 10.1080/01902148.2017.1300713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mononuclear cells (MNCs) have well-documented beneficial effects in a wide range of adult pulmonary diseases. The effects of human umbilical cord blood-derived MNCs on neonatal lung injury, highly relevant for potential autologous application in preterm newborns at risk for bronchopulmonary dysplasia (BPD), remain incompletely established. The aim of this study was to determine the long-term morphologic and functional effects of systemically delivered MNCs in a murine model of neonatal lung injury. MATERIALS AND METHODS MNCs from cryopreserved cord blood (1 × 106 cells per pup) were given intravenously to newborn mice exposed to 90% O2 from birth; controls received cord blood total nucleated cells (TNCs) or granular cells, or equal volume vehicle buffer (sham controls). In order to avoid immune rejection, we used SCID mice as recipients. Lung mechanics (flexiVent™), engraftment, growth, and alveolarization were evaluated eight weeks postinfusion. RESULTS Systemic MNC administration to hyperoxia-exposed newborn mice resulted in significant attenuation of methacholine-induced airway hyperreactivity, leading to reduction of central airway resistance to normoxic levels. These bronchial effects were associated with mild improvement of alveolarization, lung compliance, and elastance. TNCs had no effects on alveolar remodeling and were associated with worsened methacholine-induced bronchial hyperreactivity. Granular cell administration resulted in a marked morphologic and functional emphysematous phenotype, associated with high mortality. Pulmonary donor cell engraftment was sporadic in all groups. CONCLUSIONS These results suggest that cord blood MNCs may have a cell type-specific role in therapy of pulmonary conditions characterized by increased airway resistance, such as BPD and asthma. Future studies need to determine the active MNC subtype(s), their mechanisms of action, and optimal purification methods to minimize granular cell contamination.
Collapse
Affiliation(s)
- David R Mills
- a Department of Pathology , Women and Infants Hospital , Providence , Rhode Island , USA
| | - Quanfu Mao
- a Department of Pathology , Women and Infants Hospital , Providence , Rhode Island , USA.,b Department of Pathology and Laboratory Medicine , Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | - Sharon Chu
- a Department of Pathology , Women and Infants Hospital , Providence , Rhode Island , USA.,b Department of Pathology and Laboratory Medicine , Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | | | - Morey Kraus
- c ViaCord LLC, a Perkin Elmer Company , Cambridge , Massachusetts , USA
| | - James F Padbury
- d Department of Pediatrics , Women and Infants Hospital , Providence , Rhode Island , USA.,e Department of Pediatrics , Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | - Monique E De Paepe
- a Department of Pathology , Women and Infants Hospital , Providence , Rhode Island , USA.,b Department of Pathology and Laboratory Medicine , Alpert Medical School of Brown University , Providence , Rhode Island , USA
| |
Collapse
|
6
|
Roura S, Pujal JM, Gálvez-Montón C, Bayes-Genis A. Quality and exploitation of umbilical cord blood for cell therapy: Are we beyond our capabilities? Dev Dyn 2016; 245:710-7. [PMID: 27043849 DOI: 10.1002/dvdy.24408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023] Open
Abstract
There is increasing interest in identifying novel stem cell sources for application in emerging cell therapies. In this context, umbilical cord blood (UCB) shows great promise in multiple clinical settings. The number of UCB banks has therefore increased worldwide, with the objective of preserving potentially life-saving cells that are usually discarded after birth. After a rather long and costly processing procedure, the resultant UCB-derived cell products are cryopreserved until transplantation to patients. However, in many cases, only a small proportion of administered cells engraft successfully. Thus, can we do any better regarding current UCB-based therapeutic approaches? Here we discuss concerns about the use of UCB that are not critically pondered by researchers, clinicians, and banking services, including wasting samples with small volumes and the need for more reliable quality and functional controls to ensure the biological activity of stem cells and subsequent engraftment and treatment efficacy. Finally, we appeal for collaborative agreements between research institutions and UCB banks in order to redirect currently discarded small-volume UCB units for basic and clinical research purposes. Developmental Dynamics 245:710-717, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Santiago Roura
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Crta.Can Ruti-Camí Escoles s/n, 08916, Badalona, Spain
- Center of Regenerative Medicine in Barcelona, c/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Josep Maria Pujal
- Cell Processing Laboratory, Edifici Giroemprèn, Pic de Peguera 11, Parc Científic i Tecnològic Universitat de Girona, 17003, Girona, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Crta.Can Ruti-Camí Escoles s/n, 08916, Badalona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Crta.Can Ruti-Camí Escoles s/n, 08916, Badalona, Spain
- Cardiology Service, Germans Trias i Pujol University Hospital, Crta.Can Ruti-Camí Escoles s/n, 08916, Badalona, Spain
- Department of Medicine, Crta. Can Ruti-Camí Escoles s/n, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| |
Collapse
|
7
|
|
8
|
Liedtke S, Biebernick S, Radke TF, Stapelkamp D, Coenen C, Zaehres H, Fritz G, Kogler G. DNA damage response in neonatal and adult stromal cells compared with induced pluripotent stem cells. Stem Cells Transl Med 2015; 4:576-89. [PMID: 25900727 DOI: 10.5966/sctm.2014-0209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/23/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Comprehensive analyses comparing individual DNA damage response (DDR) of induced pluripotent stem cells (iPSCs) with neonatal stromal cells with respect to their developmental age are limited. The imperative necessity of providing developmental age-matched cell sources for meaningful toxicological drug safety assessments in replacement of animal-based testing strategies is evident. Here, DDR after radiation or treatment with N-methyl-N-nitrosurea (MNU) was determined in iPSCs compared with neonatal and bone marrow stromal cells. Neonatal and adult stromal cells showed no significant morphologically detectable cytotoxicity following treatment with 1 Gy or 1 mM MNU, whereas iPSCs revealed a much higher sensitivity. Foci analyses revealed an effective DNA repair in stromal cell types and iPSCs, as reflected by a rapid formation and disappearance of phosphorylated ATM and γH2AX foci. Furthermore, quantitative polymerase chain reaction analyses revealed the highest basic expression level of DDR and repair-associated genes in iPSCs, followed by neonatal stromal cells and adult stromal cells with the lowest expression levels. In addition, the influence of genotoxic stress prior to and during osteogenic differentiation of neonatal and adult stromal cells was analyzed applying common differentiation procedures. Experiments presented here suggest a developmental age-dependent basic expression level of genes involved in the processing of DNA damage. In addition a differentiation-dependent downregulation of repair genes was observed during osteogenesis. These results strongly support the requirement to provide adequate cell sources for toxicological in vitro drug testing strategies that match to the developmental age and differentiation status of the presumptive target cell of interest. SIGNIFICANCE The results obtained in this study advance the understanding of DNA damage processing in human neonatal stromal cells as compared with adult stromal cells and induced pluripotent stem cells (iPSCs). The data suggest developmental age-dependent differences in DNA damage repair capacity. In iPSCs (closest to embryonic stem cells), the highest expression level of DNA damage response and repair genes was found, followed by neonatal stromal cells and adult stromal cells with the lowest overall expression. In addition, a differentiation-dependent downregulation of repair capacity was observed during osteogenic differentiation in neonatal stromal cells. Notably, the impact of genotoxic stress on osteogenic differentiation depended on the time the genotoxic insult took place and, moreover, was agent-specific. These results strongly support the necessity of offering and establishing adequate cell sources for informative toxicological testing matching to the developmental age and differentiation status of the respective cell of interest.
Collapse
Affiliation(s)
- Stefanie Liedtke
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sophie Biebernick
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Teja Falk Radke
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Stapelkamp
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Carolin Coenen
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Holm Zaehres
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Gerhard Fritz
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Gesine Kogler
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
9
|
Ahn SY, Chang YS, Sung DK, Yoo HS, Sung SI, Choi SJ, Park WS. Cell type-dependent variation in paracrine potency determines therapeutic efficacy against neonatal hyperoxic lung injury. Cytotherapy 2015; 17:1025-35. [PMID: 25863963 DOI: 10.1016/j.jcyt.2015.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS The aim of this study was to determine the optimal cell type for transplantation to protect against neonatal hyperoxic lung injury. To this end, the in vitro and in vivo therapeutic efficacies and paracrine potencies of human umbilical cord blood-derived mesenchymal stromal cells (HUMs), human adipose tissue-derived mesenchymal stromal cells (HAMs) and human umbilical cord blood mononuclear cells (HMNs) were compared. METHODS Hyperoxic injury was induced in vitro in A549 cells by challenge with H2O2. Alternatively, hyperoxic injury was induced in newborn Sprague-Dawley rats in vivo by exposure to hyperoxia (90% oxygen) for 14 days. HUMs, HAMs or HMNs (5 × 10(5) cells) were given intratracheally at postnatal day 5. RESULTS Hyperoxia-induced increases in in vitro cell death and in vivo impaired alveolarization were significantly attenuated in both the HUM and HAM groups but not in the HMN group. Hyperoxia impaired angiogenesis, increased the cell death and pulmonary macrophages and elevated inflammatory cytokine levels. These effects were significantly decreased in the HUM group but not in the HAM or HMN groups. The levels of human vascular endothelial growth factor and hepatocyte growth factor produced by donor cells were highest in HUM group, followed by HAM group and then HMN group. CONCLUSIONS HUMs exhibited the best therapeutic efficacy and paracrine potency than HAMs or HMNs in protecting against neonatal hyperoxic lung injury. These cell type-dependent variations in therapeutic efficacy might be associated or mediated with the paracrine potency of the transplanted donor cells.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Basile DP, Yoder MC. Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets 2015; 14:3-14. [PMID: 25088124 DOI: 10.2174/1871529x1401140724093505] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 01/11/2023]
Abstract
Acute kidney injury is associated with alterations in vascular tone that contribute to an overall reduction in GFR. Studies in animal models indicate that ischemia triggers alterations in endothelial function that contribute significantly to the overall degree and severity of a kidney injury. Putative mediators of vasoconstriction that may contribute to the initial loss of renal blood flow and GFR are highlighted. In addition, there is discussion of how intrinsic damage to the endothelium impairs homeostatic responses in vascular tone as well as promotes leukocyte adhesion and exacerbating the reduction in renal blood flow. The timing of potential therapies in animal models as they relate to the evolution of AKI, as well as the limitations of such approaches in the clinical setting are discussed. Finally, we discuss how acute kidney injury induces permanent alterations in renal vascular structure. We posit that the cause of the sustained impairment in kidney capillary density results from impaired endothelial growth responses and suggest that this limitation is a primary contributing feature underlying progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Mervin C Yoder
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Med Sci 334, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Impact of umbilical cord blood-derived mesenchymal stem cells on cardiovascular research. BIOMED RESEARCH INTERNATIONAL 2015; 2015:975302. [PMID: 25861654 PMCID: PMC4377460 DOI: 10.1155/2015/975302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/11/2015] [Indexed: 01/06/2023]
Abstract
Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB). In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs) on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit.
Collapse
|
12
|
Pereira-Cunha FG, Duarte ASS, Reis-Alves SC, Olalla Saad ST, Metze K, Lorand-Metze I, Luzo ÂCM. Umbilical cord blood CD34(+) stem cells and other mononuclear cell subtypes processed up to 96 h from collection and stored at room temperature maintain a satisfactory functionality for cell therapy. Vox Sang 2014; 108:72-81. [PMID: 25333825 DOI: 10.1111/vox.12199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/13/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Umbilical cord blood (UCB) is a good stem cell source for cell therapy. We recently demonstrated that cord blood mononuclear cell (MNCs) subtypes were viable and functional until 96 h after collection, even stored at room temperature. Now, we analyzed the viability and functionality of the cells before and after cryopreservation. MATERIALS AND METHODS Twenty UCB units were analyzed at 24 and 96 h after collection, frozen for 6 months, thawed and re-evaluated. MNCs were analyzed by flow cytometry, viability by 7-AAD and clonogenic assays (CFU) were performed. RESULTS After 96 h of storage, no substantial loss of MNC was found (median 7.320 × 10(6 ) × 6.05 × 10(6) ). Percentage and viability CD34(+) cells, B-cell precursors and mesenchymal stem cells were not affected. However, mature B and T lymphocytes as well as granulocytes had a substantial loss. CFU growth was observed in all samples. Prefreezing storage of 96 h was associated with a relative loss of colony formation (median 12%). Postthaw, this loss had a median of 49% (24 h samples) to 56% (96 h samples). CONCLUSION The delay of 96 h before UCB processing is possible, without a prohibitive impairment of CD34(+) loss in number and functionality.
Collapse
Affiliation(s)
- F G Pereira-Cunha
- Flow Cytometry Laboratory, Haematology Hemotherapy Center, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Wisgrill L, Schüller S, Bammer M, Berger A, Pollak A, Radke TF, Kögler G, Spittler A, Helmer H, Husslein P, Gortner L. Hematopoietic stem cells in neonates: any differences between very preterm and term neonates? PLoS One 2014; 9:e106717. [PMID: 25181353 PMCID: PMC4152327 DOI: 10.1371/journal.pone.0106717] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/07/2014] [Indexed: 01/14/2023] Open
Abstract
Background In the last decades, human full-term cord blood was extensively investigated as a potential source of hematopoietic stem and progenitor cells (HSPCs). Despite the growing interest of regenerative therapies in preterm neonates, only little is known about the biological function of HSPCs from early preterm neonates under different perinatal conditions. Therefore, we investigated the concentration, the clonogenic capacity and the influence of obstetric/perinatal complications and maternal history on HSPC subsets in preterm and term cord blood. Methods CD34+ HSPC subsets in UCB of 30 preterm and 30 term infants were evaluated by flow cytometry. Clonogenic assays suitable for detection of the proliferative potential of HSPCs were conducted. Furthermore, we analyzed the clonogenic potential of isolated HSPCs according to the stem cell marker CD133 and aldehyde dehydrogenase (ALDH) activity. Results Preterm cord blood contained a significantly higher concentration of circulating CD34+ HSPCs, especially primitive progenitors, than term cord blood. The clonogenic capacity of HSPCs was enhanced in preterm cord blood. Using univariate analysis, the number and clonogenic potential of circulating UCB HSPCs was influenced by gestational age, birth weight and maternal age. Multivariate analysis showed that main factors that significantly influenced the HSPC count were maternal age, gestational age and white blood cell count. Further, only gestational age significantly influenced the clonogenic potential of UCB HSPCs. Finally, isolated CD34+/CD133+, CD34+/CD133– and ALDHhigh HSPC obtained from preterm cord blood showed a significantly higher clonogenic potential compared to term cord blood. Conclusion We demonstrate that preterm cord blood exhibits a higher HSPC concentration and increased clonogenic capacity compared to term neonates. These data may imply an emerging use of HSPCs in autologous stem cell therapy in preterm neonates.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Dept. of Pediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Simone Schüller
- Dept. of Pediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Markus Bammer
- Dept. of Pediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Dept. of Pediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Arnold Pollak
- Dept. of Pediatrics and Adolescent Medicine, Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics, Medical University of Vienna, Vienna, Austria
| | - Teja Falk Radke
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Duesseldorf, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Duesseldorf, Germany
| | - Andreas Spittler
- Department of Surgery, Research Labs & Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Hanns Helmer
- Dept. of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Peter Husslein
- Dept. of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Ludwig Gortner
- Dept. of Pediatrics and Neonatology, Saarland University, Homburg, Saar, Germany
- * E-mail:
| |
Collapse
|
14
|
Petrini C. Umbilical cord blood banking: from personal donation to international public registries to global bioeconomy. J Blood Med 2014; 5:87-97. [PMID: 24971040 PMCID: PMC4069132 DOI: 10.2147/jbm.s64090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The procedures for collecting voluntarily and freely donated umbilical cord blood (UCB) units and processing them for use in transplants are extremely costly, and the capital flows thus generated form part of an increasingly pervasive global bioeconomy. To place the issue in perspective, this article first examines the different types of UCB biobank, the organization of international registries of public UCB biobanks, the optimal size of national inventories, and the possibility of obtaining commercial products from donated units. The fees generally applied for the acquisition of UCB units for transplantation are then discussed, and some considerations are proposed regarding the social and ethical implications raised by the international network for the importation and exportation of UCB, with a particular emphasis on the globalized bioeconomy of UCB and its commerciality or lack thereof.
Collapse
|
15
|
Ding Z, Burghoff S, Buchheiser A, Kögler G, Schrader J. Survival, integration, and differentiation of unrestricted somatic stem cells in the heart. Cell Transplant 2014; 22:15-27. [PMID: 23594819 DOI: 10.3727/096368912x640466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unrestricted somatic stem cells (USSCs) derived from human umbilical cord blood represent an attractive cell source to reconstitute the damaged heart. We have analyzed the cardiomyogenic potential and investigated the fate of USSCs after transplantation into rat heart in vivo. USSCs demonstrated cardiomyogenic differentiation properties characterized by the spontaneously beating activity and the robust expression of cardiac α-actinin and troponin T (cTnT) at protein and mRNA level after cocultivation with neonatal rat cardiomyocytes. To study the fate in vivo, eGFP⁺ USSCs were injected transcoronarily into immunosuppressed rats via a catheter-based technique. Nearly 80% USSCs were retained within the myocardium without altering cardiac hemodynamics. After 7 days, 20% of the transplanted cells survived in the host myocardium and showed elongated morphology with weak expression of cardiac-specific markers, while some eGFP⁺ USSCs were found to integrate into the vascular wall. After 21 days, only a small fraction of USSCs were found in the myocardium (0.13%); however, the remaining cells clearly exhibited a sarcomeric structure similar to mature cardiomyocytes. Identical results were also obtained in nude rats. In addition, we found some cells stained positively for activated caspase 3 paralleled by the massive infiltration of CD11b⁺ cells into the myocardium. In summary, USSCs can differentiate into beating cardiomyocytes by cocultivation in vitro. After coronary transplantation in vivo, however, long-term survival of differentiated USSCs was rather low despite a high initial fraction of trapped cells.
Collapse
Affiliation(s)
- Zhaoping Ding
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
16
|
Iafolla MAJ, Tay J, Allan DS. Transplantation of umbilical cord blood-derived cells for novel indications in regenerative therapy or immune modulation: a scoping review of clinical studies. Biol Blood Marrow Transplant 2014; 20:20-5. [PMID: 24067504 DOI: 10.1016/j.bbmt.2013.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/15/2013] [Indexed: 02/06/2023]
Abstract
Although used mainly for transplantation of hematopoietic stem cells in the treatment of blood disorders, umbilical cord blood (UCB)-based therapies are now being used increasingly for novel applications in nonhematopoietic diseases and as a form of cellular regenerative therapy or immune modulation. We performed a systematic scoping review by searching Medline, EMBASE, and the Cochrane Library for published articles, and we searched www.clinicaltrials.com and the World Health Organization International Clinical Trials Registry Platform to describe the breadth of published studies and ongoing clinical activity in umbilical cord-based cellular therapy for regenerative therapy and immune modulation. The most commonly published area of expertise in the use of UCB-derived cellular transplantation for novel indications is for neurological disorders and this remains the most active area of study in ongoing registered trials. An increasingly broad range of disorders, however, are reflected in ongoing registered trials, which suggests greater activity, interest, and investment in UCB-derived cellular therapy. Interestingly, adult patients compose the majority of patients reported in published reports and registered ongoing clinical studies continue to enroll predominantly adult subjects. Geographically, Asian countries appear most active in UCB-derived cellular therapy and our analysis of ongoing studies suggests this trend will likely continue. Regular assessment of published and ongoing activity in UCB transplantation for emerging novel indications will be critical for informing UCB banking establishments and funding agencies to guide changes in banking practices related to emerging trends in cell therapy.
Collapse
Affiliation(s)
| | - Jason Tay
- Clinical Epidemiology Program, Ottawa Hospital Research Institute; Blood & Marrow Transplantation Program, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David S Allan
- Regenerative Medicine Program; Blood & Marrow Transplantation Program, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
17
|
Human umbilical cord blood mononuclear cells in a double-hit model of bronchopulmonary dysplasia in neonatal mice. PLoS One 2013; 8:e74740. [PMID: 24069341 PMCID: PMC3778007 DOI: 10.1371/journal.pone.0074740] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/02/2013] [Indexed: 02/01/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) presents a major threat of very preterm birth and treatment options are still limited. Stem cells from different sources have been used successfully in experimental BPD, induced by postnatal hyperoxia. Objectives We investigated the effect of umbilical cord blood mononuclear cells (MNCs) in a new double-hit mouse model of BPD. Methods For the double-hit, date mated mice were subjected to hypoxia and thereafter the offspring was exposed to hyperoxia. Human umbilical cord blood MNCs were given intraperitoneally by day P7. As outcome variables were defined: physical development (auxology), lung structure (histomorphometry), expression of markers for lung maturation and inflammation on mRNA and protein level. Pre- and postnatal normoxic pups and sham treated double-hit pups served as control groups. Results Compared to normoxic controls, sham treated double-hit animals showed impaired physical and lung development with reduced alveolarization and increased thickness of septa. Electron microscopy revealed reduced volume density of lamellar bodies. Pulmonary expression of mRNA for surfactant proteins B and C, Mtor and Crabp1 was reduced. Expression of Igf1 was increased. Treatment with umbilical cord blood MNCs normalized thickness of septa and mRNA expression of Mtor to levels of normoxic controls. Tgfb3 mRNA expression and pro-inflammatory IL-1β protein concentration were decreased. Conclusion The results of our study demonstrate the therapeutic potential of umbilical cord blood MNCs in a new double-hit model of BPD in newborn mice. We found improved lung structure and effects on molecular level. Further studies are needed to address the role of systemic administration of MNCs in experimental BPD.
Collapse
|
18
|
Neonatal mesenchymal-like cells adapt to surrounding cells. Stem Cell Res 2013; 11:634-46. [DOI: 10.1016/j.scr.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 12/17/2022] Open
|
19
|
Pereira-Cunha FG, Duarte ASS, Costa FF, Saad STO, Lorand-Metze I, Luzo ACM. Viability of umbilical cord blood mononuclear cell subsets until 96 hours after collection. Transfusion 2013; 53:2034-42. [PMID: 23320473 DOI: 10.1111/trf.12078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Umbilical cord blood (UCB) is a good source of hematopoietic stem cells for transplantation and cell therapy. In 2006, the Brazilian Public Network of Cord Blood Banks was founded; however, because our country is large, logistic problems could hamper the collection of numerous samples. Our aim was to evaluate the viability of several UCB cell subsets until 96 hours after collection, to examine whether this delay would be acceptable for processing and freezing the samples. STUDY DESIGN AND METHODS Two experiments were performed: in the first one, volume reduction of the UCB units was carried out before analysis. In the second one, analysis was carried out with no previous manipulation. Samples were stored at room temperature and one aliquot was taken daily for analysis. We examined CD34+ cell, B-cell precursor, mature B and T lymphocyte, monocyte, granulocyte, and mesenchymal stem cell (MSCs) concentrations. RESULTS Thirty-six UCB units were analyzed. CD34+ cells and mature T lymphocytes increased (viability 99%). Mature B lymphocytes and MSCs decreased, maintaining viability. Granulocytes decreased with loss of viability. Monocytes and immature B lymphocytes remained stable. Clonogenic assays showed a decrease in colony-forming unit (CFU) number in UCB units stored for 96 hours. CONCLUSION UCB manipulation did not influence cell viability. All cell subsets remained viable until 96 hours after collection. CD34+ cells and T lymphocytes increased, probably due to the loss of other subsets. CFU growth during the period analyzed and confirmed stem cell functionality, despite the decrease at 96 hours. Results demonstrated that UCB units could probably be processed up to 96 hours after collection.
Collapse
Affiliation(s)
- Fernanda G Pereira-Cunha
- Flow Cytometry Laboratory and Public Umbilical Cord Blood Bank of Haematology Hemotherapy Center, INCT do Sangue, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Kim J, Jeon YJ, Kim HE, Shin JM, Chung HM, Chae JI. Comparative proteomic analysis of endothelial cells progenitor cells derived from cord blood- and peripheral blood for cell therapy. Biomaterials 2012; 34:1669-85. [PMID: 23218840 DOI: 10.1016/j.biomaterials.2012.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/10/2012] [Indexed: 11/29/2022]
Abstract
Vasculopathy due to ischemia in damaged tissues is a major cause of morbidity and mortality. To treat these conditions, endothelial progenitor cells (EPCs) from various sources, such as umbilical cord or peripheral blood, have been the focus of the regenerative medicine field due to their proliferative and vasculogenic activities. However, the fundamental, molecular-level differences between EPCs obtained from different cellular sources have rarely been studied. In this study, we established endothelial progenitor cells derived from cord blood- and peripheral blood (CB- and PB-EPCs) and investigated their fundamental differences at the cellular and molecular levels through a combination of stem cell biology techniques and proteomic analysis. Our results suggest that specifically up-regulated factors such as STMIN 1, CFL 1, PARK 7, NME 1, GLO 1, HSP 27 and PRDX 2 in CB-EPCs as key elements that could be functionally active in ischemic regions. We also discussed functional behaviors important for inducing and maintaining long-lasting blood vessels under ischemic conditions. As a result, CB-EPCs retained a higher anti-oxidant and migration ability than PB-EPCs in vitro. Furthermore, CB-EPCs retained a higher therapeutic efficacy than PB-EPCs in a hindlimb ischemic disease model. The up-regulated expression pattern of STMIN 1, CFL 1, PARK 7, NME 1, GLO 1, HSP 27 and PRDX 2 was confirmed under several conditions in vitro and in vivo, indicating that the up-regulation of these molecules in CB-EPCs may be critical to the mechanism of healing in ischemic conditions and that CB-EPCs may be more appropriate for inducing neo-vessels. Thus, these results may aid in predetermining which cell sources will be of value for cell-based therapies of pathological conditions and identify several candidate molecules that may be involved in the therapeutic mechanism for ischemia.
Collapse
Affiliation(s)
- Jumi Kim
- CHA Bio & Diostech Co., Ltd., 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Aly H, Mohsen L, Badrawi N, Gabr H, Ali Z, Akmal D. Viability and neural differentiation of mesenchymal stem cells derived from the umbilical cord following perinatal asphyxia. J Perinatol 2012; 32:671-6. [PMID: 22134676 DOI: 10.1038/jp.2011.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hypoxia-ischemia is the leading cause of neurological handicaps in newborns worldwide. Mesenchymal stem cells (MSCs) collected from fresh cord blood of asphyxiated newborns have the potential to regenerate damaged neural tissues. The aim of this study was to examine the capacity for MSCs to differentiate into neural tissue that could subsequently be used for autologous transplantation. STUDY DESIGN We collected cord blood samples from full-term newborns with perinatal hypoxemia (n=27), healthy newborns (n=14) and non-hypoxic premature neonates (n=14). Mononuclear cells were separated, counted, and then analyzed by flow cytometry to assess various stem cell populations. MSCs were isolated by plastic adherence and characterized by morphology. Cells underwent immunophenotyping and trilineage differentiation potential. They were then cultured in conditions favoring neural differentiation. Neural lineage commitment was detected using immunohistochemical staining for glial fibrillary acidic protein, tubulin III and oligodendrocyte marker O4 antibodies. RESULT Mononuclear cell count and viability did not differ among the three groups of infants. Neural differentiation was best demonstrated in the cells derived from hypoxia-ischemia term neonates, of which 69% had complete and 31% had partial neural differentiation. Cells derived from preterm neonates had the least amount of neural differentiation, whereas partial differentiation was observed in only 12%. CONCLUSION These findings support the potential utilization of umbilical cord stem cells as a source for autologous transplant in asphyxiated neonates.
Collapse
Affiliation(s)
- H Aly
- Department of Newborn Services, George Washington University and Children's National Medical Center, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
22
|
A comparative analysis of the opinions from European national and international ethics committees regarding the collection, storage and use of umbilical cord blood. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 10:279-89. [PMID: 22337278 DOI: 10.2450/2012.0172-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/17/2012] [Indexed: 02/04/2023]
|
23
|
Tumino M, Meli C, Farruggia P, La Spina M, Faraci M, Castana C, Di Raimondo V, Alfano M, Pittalà A, Lo Nigro L, Russo G, Di Cataldo A. Clinical manifestations and management of four children with Pearson syndrome. Am J Med Genet A 2011; 155A:3063-6. [PMID: 22012855 DOI: 10.1002/ajmg.a.34288] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/10/2011] [Indexed: 11/09/2022]
Abstract
Pearson marrow-pancreas syndrome is a fatal disorder mostly diagnosed during infancy and caused by mutations of mitochondrial DNA. We hereby report on four children affected by Pearson syndrome with hematological disorders at onset. The disease was fatal to three of them and the fourth one, who received hematopoietic stem cell transplantation, died of secondary malignancy. In this latter patient transplantation corrected hematological and non-hematological issues like metabolic acidosis, and we therefore argue that it could be considered as a useful option in an early stage of the disease.
Collapse
Affiliation(s)
- Manuela Tumino
- Pediatric Hematology and Oncology, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The term 'stem cell' most commonly refers to embryonic stem cells, particularly in the lay media; however, it also describes other cell types. A stem cell represents a cell of multi-lineage potential with the ability for self-renewal. It is now clear that the plasticity and immortality of a given stem cell will depend on what type of stem cell it is, whether an embryonic stem cell, a fetal-placental stem cell or an adult stem cell. Stem cells offer great promise as cell-based therapies for the future. With evolving technology, much of the socio-political debate regarding stem cells can now be avoided.
Collapse
Affiliation(s)
- Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
25
|
Weber B, Zeisberger SM, Hoerstrup SP. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta 2011; 32 Suppl 4:S316-9. [PMID: 21575988 DOI: 10.1016/j.placenta.2011.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/04/2011] [Indexed: 12/17/2022]
Abstract
Using the principal of tissue engineering, several groups have demonstrated the feasibility of creating heart valves, blood vessels, and myocardial structures using autologous cells and biodegradable scaffold materials. In the current cardiovascular clinical scenario, the main medical need for a tissue engineering solution is in the field of pediatric applications treating congenital heart disease. In these young patients, the introduction of autologous viable and growing replacement structures, such as tissue engineered heart valves and vessels, would substantially reduce today's severe therapeutic limitations, which are mainly due to the need for repeat reoperations to adapt the current artificial prostheses to somatic growth. Based on high resolution imaging techniques, an increasing number of defects are diagnosed already prior to birth around week 20. For interventions, cells should be obtained already during pregnancy to provide tissue engineered implants either at birth or even prenatally. In our recent studies human fetal mesenchymal stem cells were isolated from routinely sampled prenatal amniotic fluid or chorionic villus specimens and expanded in vitro. Fresh and cryopreserved samples were used. After phenotyping and genotyping, cells were seeded onto synthetic biodegradable scaffolds and conditioned in a bioreactor. Leaflets were endothelialized with either amniotic fluid- or umbilical cord blood-derived endothelial progenitor cells and conditioned. Resulting tissues were analyzed by histology, immunohistochemistry, biochemistry (amounts of extracellular matrix, DNA), mechanical testing, and scanning electron microscopy (SEM) and were compared with native neonatal heart valve leaflets. Genotyping confirmed their fetal origin, and fresh versus cryopreserved cells showed comparable myofibroblast-like phenotypes. Neo-tissues exhibited organization, cell phenotypes, extracellular matrix production, and DNA content comparable to their native counterparts. Leaflet surfaces were covered with functional endothelia. SEM showed morphologically cellular distribution throughout the polymer and smooth surfaces. Mechanical profiles approximated those of native heart valves. These in vitro studies demonstrated the principal feasibility of using various human cell types isolated from fetal sources for cardiovascular tissue engineering. Umbilical cord blood-, amniotic fluid- and chorionic villi-derived cells have shown promising potential for the clinical realization of this congenital tissue engineering approach. Based on these results, future research must aim at further investigation as well as preclinical evaluation of prenatally harvested stem- or progenitor cells with regard to their potential for clinical use.
Collapse
Affiliation(s)
- B Weber
- Department of Surgical Research and Clinic for Cardiovascular Surgery, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | | | | |
Collapse
|
26
|
Filby CE, Williamson R, van Kooy P, Pébay A, Dottori M, Elwood NJ, Zaibak F. Stimulation of Activin A/Nodal signaling is insufficient to induce definitive endoderm formation of cord blood-derived unrestricted somatic stem cells. Stem Cell Res Ther 2011; 2:16. [PMID: 21463501 PMCID: PMC3226287 DOI: 10.1186/scrt57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/04/2011] [Indexed: 01/22/2023] Open
Abstract
Introduction Unrestricted somatic stem cells (USSC) derived from umbilical cord blood are an attractive alternative to human embryonic stem cells (hESC) for cellular therapy. USSC are capable of forming cells representative of all three germ line layers. The aim of this study was to determine the potential of USSC to form definitive endoderm following induction with Activin A, a protein known to specify definitive endoderm formation of hESC. Methods USSC were cultured for (1) three days with or without 100 ng/ml Activin A in either serum-free, low-serum or serum-containing media, (2) three days with or without 100 ng/ml Activin A in combination with 10 ng/ml FGF4 in pre-induction medium, or (3) four days with or without small molecules Induce Definitive Endoderm (IDE1, 100 nM; IDE2, 200 nM) in serum-free media. Formation of definitive endoderm was assessed using RT-PCR for gene markers of endoderm (Sox17, FOXA2 and TTF1) and lung epithelium (surfactant protein C; SPC) and cystic fibrosis transmembrane conductance regulator; CFTR). The differentiation capacity of Activin A treated USSC was also assessed. Results Activin A or IDE1/2 induced formation of Sox17+ definitive endoderm from hESC but not from USSC. Activin A treated USSC retained their capacity to form cells of the ectoderm (nerve), mesoderm (bone) and endoderm (lung). Activin A in combination with FGF4 did not induce formation of Sox17+ definitive endoderm from USSC. USSC express both Activin A receptor subunits at the mRNA and protein level, indicating that these cells are capable of binding Activin A. Conclusions Stimulation of the Nodal signaling pathway with Activin A or IDE1/2 is insufficient to induce definitive endoderm formation from USSC, indicating that USSC differ in their stem cell potential from hESC.
Collapse
Affiliation(s)
- Caitlin E Filby
- Early Development and Disease, Murdoch Childrens' Research Institute, Royal Children's Hospital, Flemington Rd, Parkville, VIC 3052, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kluth SM, Buchheiser A, Houben AP, Geyh S, Krenz T, Radke TF, Wiek C, Hanenberg H, Reinecke P, Wernet P, Kögler G. DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood. Stem Cells Dev 2011; 19:1471-83. [PMID: 20331358 DOI: 10.1089/scd.2010.0070] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In addition to hematopoietic stem cells, cord blood (CB) also contains different nonhematopoietic CD45-, CD34- adherent cell populations: cord blood mesenchymal stromal cells (CB MSC) that behave almost like MSC from bone marrow (BM MSC) and unrestricted somatic stem cells (USSC) that differentiate into cells of all 3 germ layers. Distinguishing between these populations is difficult due to overlapping features such as the immunophenotype or the osteogenic and chondrogenic differentiation pathway. Functional differences in the differentiation potential suggest different developmental stages or different cell populations. Here we demonstrate that the expression of genes and the differentiation toward the adipogenic lineage can discriminate between these 2 populations. USSC, including clonal-derived cells lacking adipogenic differentiation, strongly expressed δ-like 1/preadipocyte factor 1 (DLK-1/PREF1) correlating with high proliferative potential, while CB MSC were characterized by a strong differentiation toward adipocytes correlating with a weak or negative DLK-1/PREF1 expression. Constitutive overexpression of DLK-1/PREF1 in CB MSC resulted in a reduced adipogenic differentiation, whereas silencing of DLK-1 in USSC resulted in adipogenic differentiation.
Collapse
Affiliation(s)
- Simone Maria Kluth
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liedtke S, Buchheiser A, Bosch J, Bosse F, Kruse F, Zhao X, Santourlidis S, Kögler G. The HOX Code as a “biological fingerprint” to distinguish functionally distinct stem cell populations derived from cord blood. Stem Cell Res 2010; 5:40-50. [DOI: 10.1016/j.scr.2010.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/03/2010] [Accepted: 03/18/2010] [Indexed: 12/20/2022] Open
|
29
|
|
30
|
Sputtek A. Re: Stem cells derived from cord blood in transplantation and regenerative medicine. Further phenomena. DEUTSCHES ARZTEBLATT INTERNATIONAL 2010; 107:293; author reply 293-4. [PMID: 20467555 DOI: 10.3238/arztebl.2010.0293a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Reimann V, Creutzig U, Kögler G. Stem cells derived from cord blood in transplantation and regenerative medicine. DEUTSCHES ARZTEBLATT INTERNATIONAL 2009; 106:831-6. [PMID: 20049094 PMCID: PMC2801068 DOI: 10.3238/arztebl.2009.0831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND Physicians of any specialty may be the first persons to whom prospective parents turn for information about the acquisition and storage of stem cells derived from cord blood. Stem cells can potentially be used to treat many diseases, yet they are not a panacea. This article provides an overview of their current and possible future applications. METHODS Original papers were retrieved by a selective search of the literature, and the Internet sites and advertising brochures of private stem cell banks were also examined. RESULTS Allogeneic hematopoietic stem cells derived from umbilical cord blood (obtained from healthy donors, rather than from the patient to be treated) have been in routine use worldwide for more than ten years in the treatment of hematopoietic diseases. Experiments in cell culture and in animal models suggest that these cells might be of therapeutic use in regenerative medicine, but also show that this potential can be realized only if the cells are not cryopreserved. There is as yet no routine clinical application of autologous hematopoietic stem cells from cord blood (self-donation of blood), even though cord blood has been stored in private banks for more than ten years. CONCLUSIONS Autologous stem cells from cord blood have poor prospects for use in regenerative medicine, because they have to be cryopreserved until use. Physicians should tell prospective parents that they have no reason to feel guilty if they choose not to store cord blood in a private bank.
Collapse
Affiliation(s)
- Verena Reimann
- Institut für Transplantationsdiagnostik und Zelltherapeutika, José Carreras Stammzellbank, Universitätsklinikum Düsseldorf
| | | | - Gesine Kögler
- Institut für Transplantationsdiagnostik und Zelltherapeutika, José Carreras Stammzellbank, Universitätsklinikum Düsseldorf
| |
Collapse
|