1
|
Campoverde Reyes KJ, Stanford FC, Singhal V, Animashaun AO, Bose A, Gleeson EL, Bredella MA, Misra M. Bone density, microarchitecture and strength estimates in white versus African American youth with obesity. Bone 2020; 138:115514. [PMID: 32622072 PMCID: PMC7423738 DOI: 10.1016/j.bone.2020.115514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND African Americans (AA) have more favorable bone density and microarchitecture compared to Whites (W), which may explain their observed lower fracture rates. Obesity has deleterious effects on bone microarchitecture and strength estimates and is associated with an increase in fracture risk. Adolescence and young adulthood are periods of active bone accrual and also periods characterized by an increasing prevalence of obesity. The effect of obesity on the relationship between race and bone parameters remains unclear, particularly in youth. OBJECTIVE To assess differences in BMD, bone microarchitecture and strength estimates in AA and W adolescents and young adults with moderate to severe obesity. We hypothesized that racial differences in bone endpoints in lean youth would also be noted in youth with moderate to severe obesity. METHODS We evaluated 24 AA and 48 W adolescent and young adults with a mean age of 18.2 ± 2.4 years and a median body mass index (BMI) of 44.8 (40.5-49.4) kg/m2 who underwent dual energy X-ray absorptiometry (DXA), high resolution peripheral quantitative computed tomography (HRpQCT), extended cortical analysis (ECA) and micro-finite element analysis (FEA) to obtain measures of volumetric bone mineral density (vBMD), bone geometry, microarchitecture, and strength estimates at the distal radius and tibia. RESULTS We found no differences between AA and W for total fat and lean mass, and areal BMD Z-scores (p > 0.05 for all). At the distal radius, no significant differences were detected in vBMD, bone geometry or microarchitecture (p > 0.05 for all); however, stiffness and failure load were higher in the AA group (p = 0.031 and 0.047 respectively). At the distal tibia, cortical vBMD was higher in AA vs. W (p = 0.012), while trabecular number was higher and trabecular separation lower in W vs. AA (p ≤ 0.028). Stiffness and failure load trended higher in AA vs. W (p = 0.052 and p = 0.048, respectively). Groups did not differ for any other bone parameter (p > 0.05). CONCLUSION Racial differences in bone endpoints appear to be less marked in those with moderate to severe obesity, suggesting that effects of obesity may blunt the effect of race on bone endpoints.
Collapse
Affiliation(s)
- Karen J Campoverde Reyes
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; Liver Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Fatima Cody Stanford
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States of America.
| | - Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States of America
| | - Abisayo O Animashaun
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Amita Bose
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Elizabeth L Gleeson
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America; Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
2
|
High Ghrelin Level Predicts the Curve Progression of Adolescent Idiopathic Scoliosis Girls. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9784083. [PMID: 30079352 PMCID: PMC6069699 DOI: 10.1155/2018/9784083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
Background Adolescent idiopathic scoliosis (AIS) is common deformity with unknown cause. Previous studies have suggested the abnormal serum leptin and ghrelin level in AIS girls. The aim of present study was to evaluate whether the serum leptin and ghrelin level could serve as risk factor in predicting the curve progression in AIS girls. The associations between them and the physical characteristics were also investigated. Materials and Methods Circulating leptin and ghrelin levels from 105 AIS girls and 40 age-matched non-AIS girls were examined by enzyme-linked immunosorbent assay. The correlations between ghrelin and leptin levels and growth-related parameters (age, weight, corrected height, corrected BMI, main Cobb angle, and Risser sign) were analyzed in AIS group. Multivariate logistic regression was used to investigate factors predicting curve progression in AIS girls. Results A significantly lower leptin level (6.55 ± 2.88 vs. 8.01 ± 3.12 ng/ml, p < 0.05) and a higher ghrelin level (6.33 ± 2.46 vs. 4.46 ± 2.02 ng/ml, p < 0.05) were found in all AIS patients, as compared with normal controls. Curve progression patients had a higher ghrelin level than stable curve patients (7.61 ± 2.48 vs. 5.54 ± 2.11 ng/ml, p < 0.01); for leptin level, there was no significant difference between progression and stable group. The results of multivariate logistic stepwise regression showed that premenarche status, initial main Cobb magnitude that was more than or equal to 23°, high ghrelin level (≥7.30 ng/ml), and lower Risser grade (grades 0 to 2) were identified as risk factors in predicting curve progression. Ghrelin levels of >6.48 ng/ml were predictive for curve progression with 70.00 % sensitivity and 72.31 % specificity, and the area under the curve (AUC) was 0.741 (95 % confidence interval 0.646-0.821). Conclusions High ghrelin level may serve as a new quantitative indicator for predicting curve progression in AIS girls.
Collapse
|
3
|
Glorie L, D'Haese PC, Verhulst A. Boning up on DPP4, DPP4 substrates, and DPP4-adipokine interactions: Logical reasoning and known facts about bone related effects of DPP4 inhibitors. Bone 2016; 92:37-49. [PMID: 27535784 DOI: 10.1016/j.bone.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a conserved exopeptidase with an important function in protein regulation. The activity of DPP4, an enzyme which can either be anchored to the plasma membrane or circulate free in the extracellular compartment, affects the glucose metabolism, cellular signaling, migration and differentiation, oxidative stress and the immune system. DPP4 is also expressed on the surface of osteoblasts, osteoclasts and osteocytes, and was found to play a role in collagen metabolism. Many substrates of DPP4 have an established role in bone metabolism, among which are incretins, gastrointestinal peptides and neuropeptides. In general, their effects favor bone formation, but some effects are complex and have not been completely elucidated. DPP4 and some of its substrates are known to interact with adipokines, playing an essential role in the energy metabolism. The prolongation of the half-life of incretins through DPP4 inhibition led to the development of these inhibitors to improve glucose tolerance in diabetes. Current literature indicates that the inhibition of DPP4 activity might also result in a beneficial effect on the bone metabolism, but the long-term effect of DPP4 inhibition on fracture outcome has not been entirely established. Diabetic as well as postmenopausal osteoporosis is associated with an increased activity of DPP4, as well as a shift in the expression levels of DPP4 substrates, their receptors, and adipokines. The interactions between these factors and their relationship in bone metabolism are therefore an interesting field of study.
Collapse
Affiliation(s)
- Lorenzo Glorie
- Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
4
|
Martínez-Herrero S, Larrayoz IM, Ochoa-Callejero L, Fernández LJ, Allueva A, Ochoa I, Martínez A. Prevention of Bone Loss in a Model of Postmenopausal Osteoporosis through Adrenomedullin Inhibition. Front Physiol 2016; 7:280. [PMID: 27445864 PMCID: PMC4928306 DOI: 10.3389/fphys.2016.00280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/21/2016] [Indexed: 11/23/2022] Open
Abstract
Despite recent advances in the understanding and treatment options for osteoporosis, this condition remains a serious public health issue. Adrenomedullin (AM) is a regulatory peptide with reported activity on bone remodeling. To better understand this relationship we built an inducible knockout for AM. An outstanding feature of knockout mice is their heavier weight due, in part, to the presence of denser bones. The femur of knockout animals was denser, had more trabeculae, and a thicker growth plate than wild type littermates. The endocrine influence of AM on bone seems to be elicited through an indirect mechanism involving, at least, the regulation of insulin, glucose, ghrelin, and calcitonin gene-related peptide (CGRP). To confirm the data we performed a pharmacological approach using the AM inhibitor 16311 in a mouse model of osteoporosis. Ovariectomized females showed significant bone mass loss, whereas ovariectomized females treated with 16311 had similar bone density to sham operated females. In conclusion, we propose the use of AM inhibitors for the treatment of osteoporosis and other conditions leading to the loss of bone mass.
Collapse
Affiliation(s)
- Sonia Martínez-Herrero
- Angiogenesis Interest Group, Oncology Area, Center for Biomedical Research of La Rioja, Fundación Rioja Salud Logroño, Spain
| | - Ignacio M Larrayoz
- Angiogenesis Interest Group, Oncology Area, Center for Biomedical Research of La Rioja, Fundación Rioja Salud Logroño, Spain
| | - Laura Ochoa-Callejero
- Angiogenesis Interest Group, Oncology Area, Center for Biomedical Research of La Rioja, Fundación Rioja Salud Logroño, Spain
| | - Luis J Fernández
- Centro de Investigación Biomédica en Red, Aragon Institute of Health SciencesZaragoza, Spain; Group of Structural Mechanics and Materials Modelling, Aragón Institute of Engineering Research (I3A), University of ZaragozaZaragoza, Spain
| | - Alexis Allueva
- Centro de Investigación Biomédica en Red, Aragon Institute of Health SciencesZaragoza, Spain; Group of Structural Mechanics and Materials Modelling, Aragón Institute of Engineering Research (I3A), University of ZaragozaZaragoza, Spain
| | - Ignacio Ochoa
- Centro de Investigación Biomédica en Red, Aragon Institute of Health SciencesZaragoza, Spain; Group of Structural Mechanics and Materials Modelling, Aragón Institute of Engineering Research (I3A), University of ZaragozaZaragoza, Spain
| | - Alfredo Martínez
- Angiogenesis Interest Group, Oncology Area, Center for Biomedical Research of La Rioja, Fundación Rioja Salud Logroño, Spain
| |
Collapse
|
5
|
Sun X, Yang K, Wang C, Cao S, Merritt M, Hu Y, Xu X. Paradoxical response to mechanical unloading in bone loss, microarchitecture, and bone turnover markers. Int J Med Sci 2015; 12:270-9. [PMID: 25798053 PMCID: PMC4366632 DOI: 10.7150/ijms.11078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/27/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Sclerostin, encoded by the SOST gene, has been implicated in the response to mechanical loading in bone. Some studies demonstrated that unloading leads to up-regulated SOST expression, which may induce bone loss. PURPOSE Most reported studies regarding the changes caused by mechanical unloading were only based on a single site. Considering that the longitudinal bone growth leads to cells of different age with different sensitivity to unloading, we hypothesized that bone turnover in response to unloading is site specific. METHODS We established a disuse rat model by sciatic neurectomy in tibia. In various regions at two time-points, we evaluated the bone mass and microarchitecture in surgically-operated rats and control rats by micro-Computed Tomography (micro-CT) and histology, sclerostin/SOST by immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and quantitative reverse transcription polymerase chain reaction (qPCR), tartrate resistant acid phosphatase 5b (TRAP 5b) by ELISA and TRAP staining, and other bone markers by ELISA. RESULTS Micro-CT and histological analysis confirmed bone volume in the disuse rats was significantly decreased compared with those in the time-matched control rats, and microarchitecture also changed 2 and 8 weeks after surgery. Compared with the control groups, SOST mRNA expression in the diaphysis was down-regulated at both week 2 and 8. On the contrary, the percentage of sclerostin-positive osteocytes showed an up-regulated response in the 5 - 6 mm region away from the growth plate, while in the 2.5 - 3.5 mm region, the percentage was no significant difference. Nevertheless, in 0.5 - 1.5 mm region, the percentage of sclerostin-positive osteocytes decreased after 8 weeks, consistent with serum SOST level. Besides, the results of TRAP also suggested that the expression in response to unloading may be opposite in different sites or system. CONCLUSION Our data indicated that unloading-induced changes in bone turnover are probably site specific. This implies a more complex response pattern to unloading and unpredictable therapeutics which target SOST or TRAP 5b.
Collapse
Affiliation(s)
- Xiaodi Sun
- 1. School of Stomatology, Shandong University, Wenhuaxi Road 44-1, Jinan 250012, China. ; 3. Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China
| | - Kaiyun Yang
- 2. Institute of Dental Medicine, Qilu Hospital, Shandong University, Wenhuaxi Road 107, Jinan 250012, China
| | - Chune Wang
- 2. Institute of Dental Medicine, Qilu Hospital, Shandong University, Wenhuaxi Road 107, Jinan 250012, China
| | - Sensen Cao
- 2. Institute of Dental Medicine, Qilu Hospital, Shandong University, Wenhuaxi Road 107, Jinan 250012, China
| | - Mackenzie Merritt
- 4. Department of Biology, Faculty of Science, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada, N2L 3G1
| | - Yingwei Hu
- 2. Institute of Dental Medicine, Qilu Hospital, Shandong University, Wenhuaxi Road 107, Jinan 250012, China
| | - Xin Xu
- 1. School of Stomatology, Shandong University, Wenhuaxi Road 44-1, Jinan 250012, China. ; 3. Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China
| |
Collapse
|