1
|
Payseur BA, Anderson S, James RT, Parmenter MD, Gray MM, Vinyard CJ. Genetics of evolved load resistance in the skeletons of unusually large mice from Gough Island. Genetics 2023; 225:iyad137. [PMID: 37477896 PMCID: PMC10471205 DOI: 10.1093/genetics/iyad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
A primary function of the skeleton is to resist the loads imparted by body weight. Genetic analyses have identified genomic regions that contribute to differences in skeletal load resistance between laboratory strains of mice, but these studies are usually restricted to 1 or 2 bones and leave open the question of how load resistance evolves in natural populations. To address these challenges, we examined the genetics of bone structure using the largest wild house mice on record, which live on Gough Island (GI). We measured structural traits connected to load resistance in the femur, tibia, scapula, humerus, radius, ulna, and mandible of GI mice, a smaller-bodied reference strain from the mainland, and 760 of their F2s. GI mice have bone geometries indicative of greater load resistance abilities but show no increase in bone mineral density compared to the mainland strain. Across traits and bones, we identified a total of 153 quantitative trait loci (QTL) that span all but one of the autosomes. The breadth of QTL detection ranges from a single bone to all 7 bones. Additive effects of QTL are modest. QTL for bone structure show limited overlap with QTL for bone length and width and QTL for body weight mapped in the same cross, suggesting a distinct genetic architecture for load resistance. Our findings provide a rare genetic portrait of the evolution of load resistance in a natural population with extreme body size.
Collapse
Affiliation(s)
- Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sara Anderson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Roy T James
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | | | - Melissa M Gray
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christopher J Vinyard
- Department of Biomedical Sciences, Ohio University - Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| |
Collapse
|
2
|
Chanpaisaeng K, Reyes‐Fernandez PC, Dilkes B, Fleet JC. Diet X Gene Interactions Control Femoral Bone Adaptation to Low Dietary Calcium. JBMR Plus 2022; 6:e10668. [PMID: 36111202 PMCID: PMC9465001 DOI: 10.1002/jbm4.10668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/12/2022] Open
Abstract
Genetics and dietary calcium (Ca) are each critical regulators of peak bone mass but it is unclear how genetics alters the physiologic response of bone to dietary Ca restriction (RCR). Here, we conducted genetic mapping in C57BL/6J × DBA/2J (BXD) recombinant inbred mouse lines to identify environmentally sensitive loci controlling whole-bone mass (bone mineral density [BMD], bone mineral content [BMC]), distal trabecular bone, and cortical bone midshaft of the femur. Mice were fed adequate (basal) or low Ca diets from 4-12 weeks of age. Femurs were then examined by dual-energy X-ray absorptiometry (DXA) and micro-computed tomography (μCT). Body size-corrected residuals were used for statistical analysis, genetic mapping, and to estimate narrow sense heritability (h2). Genetics had a strong impact on femoral traits (eg, bone volume fraction [BV/TV] basal Ca, h2 = 0.60) as well as their RCR (eg, BV/TV, h2 = 0.32). Quantitative trait locus (QTL) mapping identified up to six loci affecting each bone trait. A subset of loci was detected in both diet groups, providing replication of environmentally robust genetic effects. Several loci control multiple bone phenotypes suggesting the existence of genetic pleiotropy. QTL controlling the bone RCR did not overlap with basal diet QTL, demonstrating genetic independence of those traits. Candidate genes underlying select multi-trait loci were prioritized by protein coding effects or gene expression differences in bone cells. These include candidate alleles in Rictor (chromosome [chr] 15) and Egfl7 (chr 2) at loci affecting bone in the basal or low Ca groups and in Msr1 (chr 8), Apc, and Camk4 (chr 18) at loci affecting RCR. By carefully controlling dietary Ca and measuring traits in age-matched mice we identified novel genetic loci determining bone mass/microarchitecture of the distal femur as well as their physiologic adaptation to inadequate dietary Ca intake. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Krittikan Chanpaisaeng
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Perla C. Reyes‐Fernandez
- School of Health and Human Sciences, Department of Physical TherapyIndiana University–Purdue University IndianapolisIndianapolisINUSA
| | - Brian Dilkes
- Center for Plant BiologyPurdue UniversityWest LafayetteINUSA
- Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - James C. Fleet
- Department of Nutritional Sciences and the Dell Pediatric Research InstituteUniversity of TexasAustinTXUSA
| |
Collapse
|
3
|
Ozaki H, Hamai R, Shiwaku Y, Sakai S, Tsuchiya K, Suzuki O. Mutual chemical effect of autograft and octacalcium phosphate implantation on enhancing intramembranous bone regeneration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:345-362. [PMID: 34104115 PMCID: PMC8168741 DOI: 10.1080/14686996.2021.1916378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
This study examined the effect of a mixture of octacalcium phosphate (OCP) and autologous bone on bone regeneration in rat calvaria critical-sized defect (CSD). Mechanically mixed OCP and autologous bone granules (OCP+Auto), approximately 500 to 1000 μm in diameter, and each individual material were implanted in rat CSD for 8 weeks, and subjected to X-ray micro-computed tomography (micro-CT), histology, tartrate-resistant acid phosphatase (TRAP) staining, and histomorphometry for bone regeneration. Osteoblastic differentiation from mesenchymal stem cells (D1 cells) was examined in the presence of non-contacting materials by alkaline phosphatase (ALP) activity for 21 days. The material properties and medium composition before and after the incubation were determined by selected area electron diffraction (SAED) under transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and chemical analysis. The results showed that while bone formation coupled with TRAP-positive osteoclastic resorption and cellular ALP activity were the highest in the Auto group, a positive effect per OCP weight or per autologous bone weight on ALP activity was found. Although the OCP structure was maintained even after the incubation (SAED), micro-deposits were grown on OCP surfaces (TEM). Fibrous tissue was also exposed on the autologous bone surfaces (SEM). Through FT-IR absorption, it was determined that bone mineral-like characteristics of the phosphate group increased in the OCP + Auto group. These findings were interpreted as a structural change from OCP to the apatitic phase, a conclusion supported by the medium degree of saturation changes. The results demonstrate the mutual chemical effect of mixing OCP with autologous bone as an active bone substitute material.
Collapse
Affiliation(s)
- Hisashi Ozaki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Dentistry, Oral and Maxillofacial Surgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
4
|
Rowe DW, Hong SH, Zhang C, Shin DG, Adams DJ, Youngstrom DW, Chen L, Wu Z, Zhou Y, Maye P. Skeletal screening IMPC/KOMP using μCT and computer automated cryohistology: Application to the Efna4 KO mouse line. Bone 2021; 144:115688. [PMID: 33065355 DOI: 10.1016/j.bone.2020.115688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
The IMPC/KOMP program provides the opportunity to screen mice harboring well defined gene-inactivation mutations in a uniform genetic background. The program performs a global tissue phenotyping survey that includes skeletal x-rays and bone density measurements. Because of the relative insensitivity of the two screening tests for detecting variance in bone architecture, we initiated a secondary screen based on μCT and a cryohistolomorphological workflow that was performed on the femur and vertebral compartments on 220 randomly selected knockouts (KOs) and 36 control bone samples over a 2 1/2 year collection period provided by one of the production/phenotyping centers. The performance of the screening protocol was designed to balance throughput and cost versus sensitivity and informativeness such that the output would be of value to the skeletal biology community. Here we report the reliability of this screening protocol to establish criteria for control skeletal variance at the architectural, dynamic and cellular histomorphometric level. Unexpected properties of the control population include unusually high variance in BV/TV in male femurs and greater bone formation and bone turnover rates in the female femur and vertebral trabeculae bone compartments. However, the manner for maintaining bone formation differed between these two bone sites. The vertebral compartment relies on maintaining a greater number of bone forming surfaces while the femoral compartment utilized more matrix production per cell. The comparison of the architectural properties obtained by μCT and histomorphology revealed significant differences in values for BV/TV, Tb.Th and Tb.N which is attributable to sampling density of the two methods. However, as a screening tool, expressing the ratio of KO to the control line as obtained by either method was remarkably similar. It identified KOs with significant variance which led to a more detailed histological analysis. Our findings are exemplified by the Efna4 KO, in which a high BV/TV was identified by μCT and confirmed by histomorphometry in the femur but not in the vertebral compartment. Dynamic labeling showed a marked increase in BFR which was attributable to increased labeling surfaces. Cellular analysis confirmed partitioning of osteoblast to labeling surfaces and a marked decrease in osteoclastic activity on both labeling and quiescent surfaces. This pattern of increased bone modeling would not be expected based on prior studies of the Ephrin-Ephrin receptor signaling pathways between osteoblasts and osteoclasts. Overall, our findings underscore why unbiased screening is needed because it can reveal unknown or unanticipated genes that impact skeletal variation.
Collapse
Affiliation(s)
- David W Rowe
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America.
| | - Seung-Hyun Hong
- Computer Science & Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Caibin Zhang
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Dong-Guk Shin
- Computer Science & Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Douglas J Adams
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Li Chen
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Zhihua Wu
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Yueying Zhou
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Peter Maye
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| |
Collapse
|
5
|
Osipov B, Alaica AK, Pickard C, Garcia‐Donas JG, Márquez‐Grant N, Kranioti EF. The effect of diet and sociopolitical change on physiological stress and behavior in late
Roman‐Early
Byzantine (300–700
AD
) and Islamic (902–1,235
AD
) populations from Ibiza, Spain. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:189-213. [DOI: 10.1002/ajpa.24062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 02/24/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Benjamin Osipov
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic SurgeryUniversity of California Davis Medical Center Sacramento California USA
| | - Aleksa K Alaica
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- School of History, Classics and ArchaeologyUniversity of Edinburgh Edinburgh UK
| | - Catriona Pickard
- School of History, Classics and ArchaeologyUniversity of Edinburgh Edinburgh UK
| | - Julieta G Garcia‐Donas
- School of Science and Engineering, Center for Anatomy and Human IdentificationUniversity of Dundee Dundee UK
| | - Nicholas Márquez‐Grant
- Cranfield Forensic InstituteCranfield University, Defence Academy of the United Kingdom UK
| | - Elena F. Kranioti
- School of History, Classics and ArchaeologyUniversity of Edinburgh Edinburgh UK
- Department of Forensic Sciences, Faculty of MedicineUniversity of Crete Crete Greece
| |
Collapse
|
6
|
Rowe DW, Adams DJ, Hong SH, Zhang C, Shin DG, Renata Rydzik C, Chen L, Wu Z, Garland G, Godfrey DA, Sundberg JP, Ackert-Bicknell C. Screening Gene Knockout Mice for Variation in Bone Mass: Analysis by μCT and Histomorphometry. Curr Osteoporos Rep 2018; 16:77-94. [PMID: 29508144 DOI: 10.1007/s11914-018-0421-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The international mouse phenotyping consortium (IMPC) is producing defined gene knockout mouse lines. Here, a phenotyping program is presented that is based on micro-computed tomography (μCT) assessment of distal femur and vertebra. Lines with significant variation undergo a computer-based bone histomorphometric analysis. RECENT FINDINGS Of the 220 lines examined to date, approximately 15% have a significant variation (high or low) by μCT, most of which are not identified by the IMPC screen. Significant dimorphism between the sexes and bone compartments adds to the complexity of the skeletal findings. The μCT information that is posted at www.bonebase.org can group KOMP lines with similar morphological features. The histological data is presented in a graphic form that associates the cellular features with a specific anatomic group. The web portal presents a bone-centric view appropriate for the skeletal biologist/clinician to organize and understand the large number of genes that can influence skeletal health. Cataloging the relative severity of each variant is the first step towards compiling the dataset necessary to appreciate the full polygenic basis of degenerative bone disease.
Collapse
Affiliation(s)
- David W Rowe
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA.
| | - Douglas J Adams
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Seung-Hyun Hong
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Caibin Zhang
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Dong-Guk Shin
- Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - C Renata Rydzik
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Li Chen
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Zhihua Wu
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | | | - Dana A Godfrey
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| | | | - Cheryl Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| |
Collapse
|
7
|
Adams DJ, Rowe DW, Ackert-Bicknell CL. Genetics of aging bone. Mamm Genome 2016; 27:367-80. [PMID: 27272104 DOI: 10.1007/s00335-016-9650-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/24/2016] [Indexed: 01/08/2023]
Abstract
With aging, the skeleton experiences a number of changes, which include reductions in mass and changes in matrix composition, leading to fragility and ultimately an increase of fracture risk. A number of aspects of bone physiology are controlled by genetic factors, including peak bone mass, bone shape, and composition; however, forward genetic studies in humans have largely concentrated on clinically available measures such as bone mineral density (BMD). Forward genetic studies in rodents have also heavily focused on BMD; however, investigations of direct measures of bone strength, size, and shape have also been conducted. Overwhelmingly, these studies of the genetics of bone strength have identified loci that modulate strength via influencing bone size, and may not impact the matrix material properties of bone. Many of the rodent forward genetic studies lacked sufficient mapping resolution for candidate gene identification; however, newer studies using genetic mapping populations such as Advanced Intercrosses and the Collaborative Cross appear to have overcome this issue and show promise for future studies. The majority of the genetic mapping studies conducted to date have focused on younger animals and thus an understanding of the genetic control of age-related bone loss represents a key gap in knowledge.
Collapse
Affiliation(s)
- Douglas J Adams
- Department of Orthopaedic Surgery, University of Connecticut Musculoskeletal Institute, University of Connecticut Health, Farmington, CT, 06030, USA
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, University of Connecticut Health, Farmington, CT, USA
| | - Cheryl L Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box 665, Rochester, NY, 14624, USA.
| |
Collapse
|
8
|
Abstract
Osteoporosis is characterized by low bone mass and an increased risk of fracture. Genetic factors, environmental factors and gene-environment interactions all contribute to a person's lifetime risk of developing an osteoporotic fracture. This Review summarizes key advances in understanding of the genetics of bone traits and their role in osteoporosis. Candidate-gene approaches dominated this field 20 years ago, but clinical and preclinical genetic studies published in the past 5 years generally utilize more-sophisticated and better-powered genome-wide association studies (GWAS). High-throughput DNA sequencing, large genomic databases and improved methods of data analysis have greatly accelerated the gene-discovery process. Linkage analyses of single-gene traits that segregate in families with extreme phenotypes have led to the elucidation of critical pathways controlling bone mass. For example, components of the Wnt-β-catenin signalling pathway have been validated (in both GWAS and functional studies) as contributing to various bone phenotypes. These notable advances in gene discovery suggest that the next decade will witness cataloguing of the hundreds of genes that influence bone mass and osteoporosis, which in turn will provide a roadmap for the development of new drugs that target diseases of low bone mass, including osteoporosis.
Collapse
|