1
|
Carotenuto R, Pallotta MM, Tussellino M, Fogliano C. Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective. BIOLOGY 2023; 12:890. [PMID: 37372174 DOI: 10.3390/biology12060890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
2
|
Li C, Wang Y, Ge R, Zhang L, Du H, Zhang J, Li B, Chen K. Eukaryotic initiation factor 6 modulates the metamorphosis and reproduction of Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2023; 32:106-117. [PMID: 36366777 DOI: 10.1111/imb.12817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Eukaryotic initiation factor 6 (eIF6) is necessary for ribosome biogenesis and translation, but eIF6 has been poorly elucidated in insects. Phylogenetic analysis demonstrated that eIF6 originated from one ancestral gene among animals and exhibited specific duplication in Tribolium, yielding three homologues in Tribolium castaneum, eIF6, eIF6-like 1 (eIF6l1), and eIF6-like 2 (eIF6l2). It was found that eIF6 was highly expressed in the embryonic and early adult stages, eIF6l1 had peak expression at the adult stage, and eIF6l2 showed peak expression in late adults of T. castaneum. Tissue-specific analyses in late-stage larvae demonstrated that eIF6 was abundantly expressed in all tissues, while eIF6l1 and eIF6l2 had the highest expression in the gut and the lowest expression in the head of T. castaneum. Knockdown of eIF6 caused precocious pupation and eclosion, impaired ovary and testis development and completely repressed egg production. The expression levels of vitellogenin 1 (Vg1), Vg2 and Vg receptor (VgR) significantly decreased in ds-eIF6 females 5 days post-adult emergence. Silencing eIF6 activated ecdysteroid biosynthesis and juvenile hormone degradation but reduced the activity of insulin signalling in T. castaneum, which might mediate its roles in metamorphosis, reproduction and gene expression regulation. However, silence of eIF6l1 or eIF6l2 had no effects on metamorphosis and reproduction in T. castaneum. This study provides comprehensive information for eIF6 evolution and function in the insect.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Runting Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ling Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Liu Z, Mo H, Sun L, Wang L, Chen T, Yao B, Liu R, Niu Y, Tu K, Xu Q, Yang N. Long noncoding RNA PICSAR/miR-588/EIF6 axis regulates tumorigenesis of hepatocellular carcinoma by activating PI3K/AKT/mTOR signaling pathway. Cancer Sci 2020; 111:4118-4128. [PMID: 32860321 PMCID: PMC7648049 DOI: 10.1111/cas.14631] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has identified long noncoding RNAs (lncRNAs) as regulators in tumor progression and development. Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-PICSAR (p38 inhibited cutaneous squamous cell carcinoma associated lincRNA) on the biological behaviors of HCC. In the present study, we found that PICSAR was upregulated in HCC tissues and cells and correlated with progression and poor prognosis in HCC patients. Gain- and loss-of-function experiments indicated that PICSAR enhanced cell proliferation, colony formation, and cell cycle progression and inhibited apoptosis of HCC cells. PICSAR could function as a competing endogenous RNA by sponging microRNA (miR)-588 in HCC cells. Mechanically, miR-588 inhibited HCC progression and alternation of miR-588 reversed the promotive effects of PICSAR on HCC cells. In addition, we confirmed that eukaryotic initiation factor 6 (EIF6) was a direct target of miR-588 in HCC and mediated the biological effects of miR-588 and PICSAR in HCC, resulting in PI3K/AKT/mTOR pathway activation. Our data identified PICSAR as a novel oncogenic lncRNA associated with malignant clinical outcomes in HCC patients. PICSAR played an oncogenic role by targeting miR-588 and subsequently promoted EIF6 expression and PI3K/AKT/mTOR activation in HCC. Our results revealed that PICSAR could be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- Mice
- MicroRNAs/genetics
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Long Noncoding/genetics
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Zhikui Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Huanye Mo
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Liankang Sun
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Liang Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Tianxiang Chen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Bowen Yao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Runkun Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yongshen Niu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Kangsheng Tu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College)HangzhouChina
| | - Nan Yang
- Department of Infectious DiseasesThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
4
|
Carotenuto R, Capriello T, Cofone R, Galdiero G, Fogliano C, Ferrandino I. Impact of copper in Xenopus laevis liver: Histological damages and atp7b downregulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109940. [PMID: 31757510 DOI: 10.1016/j.ecoenv.2019.109940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Copper is an essential micronutrient but its excess in the dietary can be toxic. Both copper deficiency and abundance can occur in natural conditions and can lead to pathological dysfunctions. Many of the toxic effects of copper, such as increased lipid peroxidation in cell membranes and DNA damage, are due to its role in the generation of oxygen free radicals. Copper is released into the environment by both natural sources and human activities and it can damage organisms and ecosystems. In the present work the effects of copper has been studied on Xenopus laevis, an interesting model organism, after three weeks of exposure at 1 mg/L of CuCl, concentration allowed in the water for human use. The effects of this metal were analysed on the liver at light microscope by Hematoxylin-Eosin, Mallory, Pas and Perls stainings to evaluate the general histology, the glycogen metabolism and presence of hemosiderin. Moreover the number and area of melanomoacrophages, known as inflammation parameters, were assessment. Finally, we investigated the expression of atp7b gene and localization of respective ATP7B protein, the membrane protein involved in Cu detoxication. The achieved results showed that copper, even at a low concentration, causes serious histological alterations of liver. It induces an increase in the size and number of melanomacrophages and higher amount of hemosiderin in the treated than controls. Moreover, it alters the gene expression and localization of ATP7B protein. The data are indicative that an exposition at low and chronic concentration of copper in Xenopus laevis damages seriously the liver. For this reason it's important to consider this metal one of the pollutants involved in the decline of the amphibians and for its possible effects in other vertebrates including humans.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Teresa Capriello
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Rita Cofone
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Galdiero
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Ida Ferrandino
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
5
|
Modulating eIF6 levels unveils the role of translation in ecdysone biosynthesis during Drosophila development. Dev Biol 2019; 455:100-111. [DOI: 10.1016/j.ydbio.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
|
6
|
Separation of low and high grade colon and rectum carcinoma by eukaryotic translation initiation factors 1, 5 and 6. Oncotarget 2017; 8:101224-101243. [PMID: 29254159 PMCID: PMC5731869 DOI: 10.18632/oncotarget.20642] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer related death worldwide. Furthermore, with more than 1.2 million cases registered per year, it constitutes the third most frequent diagnosed cancer entity worldwide. Deregulation of protein synthesis has received considerable attention as a major step in cancer development and progression. Eukaryotic translation initiation factors (eIFs) are involved in the regulation of protein synthesis and are functionally linked to the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway. The identification of factors accounting for colorectal carcinoma (CRC) development is a major gap in the field. Besides the importance of eIF3 subunits and the eIF4 complex, eIF1, eIF5 and eIF6 were found to be altered in primary and metastatic CRC. We observed significant difference in the expression profile between low and high grade CRC. eIF1, eIF5 and eIF6 are involved in translational control in CRC. Our findings also indicate a probable clinical impact when separating them into low and high grade colon and rectum carcinoma. eIF and mTOR expression were analysed on protein and mRNA level in primary low and high grade colon carcinoma (CC) and rectum carcinoma (RC) samples in comparison to non-neoplastic tissue without any disease-related pathology. To assess the therapeutic potential of targeting eIF1, eIF5 and eIF6 siRNA knockdown in HCT116 and HT29 cells was performed. We evaluated the eIF knockdown efficacy on protein and mRNA level and investigated proliferation, apoptosis, invasion, as well as colony forming and polysome associated fractions. These results indicate that eIFs, in particular eIF1, eIF5 and eIF6 play a major role in translational control in colon and rectum cancer.
Collapse
|
7
|
Eukaryotic initiation factor eIF6 modulates the expression of Kermit 2/XGIPC in IGF- regulated eye development. Dev Biol 2017; 427:148-154. [DOI: 10.1016/j.ydbio.2017.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
8
|
Zhu W, Li GX, Chen HL, Liu XY. The role of eukaryotic translation initiation factor 6 in tumors. Oncol Lett 2017; 14:3-9. [PMID: 28693127 PMCID: PMC5494901 DOI: 10.3892/ol.2017.6161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) affects the maturation of 60S ribosomal subunits. Found in yeast and mammalian cells, eIF6 is primarily located in the cytoplasm of mammalian cells. Emerging evidence has demonstrated that the dysregulated expression of eIF6 is important in several types of human cancer, including head and neck carcinoma, colorectal cancer, non-small cell lung cancer and ovarian serous adenocarcinoma. However, the molecular mechanisms by which eIF6 functions during tumor formation and progression remain elusive. The present review focuses on recent progress in terms of the mechanisms and functions of eIF6 in human tumorigenesis or cancer cell lines, along with the signal transduction pathways in which this novel translation initiation factor may participate. Oncogenic Ras activates Notch-1 and promotes transcription of eIF6 via a recombining binding protein suppressor of Hairless-dependent mechanism. In addition, overexpression of eIF6 results in aberrant activation of the Wnt/β-catenin signaling pathway. Similarly, overexpressed eIF6 regulates its downstream modulator, cell division control protein 42, which in turn affects oncogenesis. Finally, the potential of eIF6 as a biomarker for diagnosis of cancer is also discussed in the present review.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Gui Xian Li
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hong Lang Chen
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xing Yan Liu
- Sino-American Cancer Research Institute, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
9
|
Chu J, Cargnello M, Topisirovic I, Pelletier J. Translation Initiation Factors: Reprogramming Protein Synthesis in Cancer. Trends Cell Biol 2016; 26:918-933. [PMID: 27426745 DOI: 10.1016/j.tcb.2016.06.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Control of mRNA translation plays a crucial role in the regulation of gene expression and is critical for cellular homeostasis. Dysregulation of translation initiation factors has been documented in several pathologies including cancer. Aberrant function of translation initiation factors leads to translation reprogramming that promotes proliferation, survival, angiogenesis, and metastasis. In such context, understanding how altered levels (and presumably activity) of initiation factors can contribute to tumor initiation and/or maintenance is of major interest for the development of novel therapeutic strategies. In this review we provide an overview of translation initiation mechanisms and focus on recent findings describing the role of individual initiation factors and their aberrant activity in cancer.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marie Cargnello
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada.
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada; The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Protective Effects of Scutellarin on Human Cardiac Microvascular Endothelial Cells against Hypoxia-Reoxygenation Injury and Its Possible Target-Related Proteins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:278014. [PMID: 26557144 PMCID: PMC4628680 DOI: 10.1155/2015/278014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/25/2015] [Accepted: 04/25/2015] [Indexed: 11/17/2022]
Abstract
Scutellarin (SCU) is one of the main components of traditional Chinese medicine plant Erigeron breviscapus (Vant.) Hand.-Mazz. In this paper, we studied the protective effects of SCU on human cardiac microvascular endothelial cells (HCMECs) against hypoxia-reoxygenation (HR) injury and its possible target-related proteins. Results of MTT assay showed that pretreatment of SCU at doses of 1, 5, and 10 μM for 2 h could significantly inhibit the decrease in cell viability of HCMECs induced by HR injury. Subcellular fractions of cells treated with vehicle control, 1 μM SCU, HR injury, or 1 μM SCU + HR injury were separated by ultracentrifugation. The protein expression profiles of cytoplasm and membrane/nuclei fractions were checked using protein two-dimensional electrophoresis (2-DE). Proteins differentially expressed between control and SCU-treated group, control and HR group, or HR and SCU + HR group were identified using mass spectrometry (MS/MS). Possible interaction network of these target-related proteins was predicted using bioinformatic analysis. The influence of SCU on the expression levels of these proteins was confirmed using Western blotting assay. The results indicated that proteins such as p27BBP protein (EIF6), heat shock 60 kDa protein 1 (HSPD1), and chaperonin containing TCP1 subunit 6A isoform (CCT6A) might play important roles in the effects of SCU.
Collapse
|
11
|
Vega‐López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ. Functional analysis of
Hairy
genes in
Xenopus
neural crest initial specification and cell migration. Dev Dyn 2015; 244:988-1013. [DOI: 10.1002/dvdy.24295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Marcela Bonano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Celeste Tríbulo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| | - Juan P. Fernández
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Tristán H. Agüero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Manuel J. Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| |
Collapse
|
12
|
Brina D, Miluzio A, Ricciardi S, Biffo S. eIF6 anti-association activity is required for ribosome biogenesis, translational control and tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:830-5. [PMID: 25252159 DOI: 10.1016/j.bbagrm.2014.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/12/2014] [Accepted: 09/14/2014] [Indexed: 12/13/2022]
Abstract
Here we discuss the function of eukaryotic initiation factor 6 (eIF6; Tif6 in yeast). eIF6 binds 60S ribosomal subunits and blocks their joining to 40S. In this context, we propose that eIF6 impedes unproductive 80S formation, namely, the formation of 80S subunits without mRNA. Genetic evidence shows that eIF6 has a dual function: in yeast and mammals, nucleolar eIF6 is necessary for the biogenesis of 60S subunits. In mammals, cytoplasmic eIF6 is required for insulin and growth factor-stimulated translation. In contrast to other translation factors, eIF6 activity is not under mTOR control. The physiological significance of eIF6 impacts on cancer and on inherited Shwachman-Bodian-Diamond syndrome. eIF6 is overexpressed in specific human tumors. In a murine model of lymphomagenesis, eIF6 depletion leads to a striking increase of survival, without adverse effects. Shwachman-Bodian-Diamond syndrome is caused by loss of function of SBDS protein. In yeast, point mutations of Tif6, the yeast homolog of eIF6, rescue the quasi-lethal effect due to the loss of the SBDS homolog, Sdo1. We propose that eIF6 is a node regulator of ribosomal function and predict that prioritizing its pharmacological targeting will be of benefit in cancer and Shwachman-Bodian-Diamond syndrome. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Daniela Brina
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy
| | | | - Sara Ricciardi
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy; DISIT, Alessandria 15100, Italy
| | - Stefano Biffo
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy; DISIT, Alessandria 15100, Italy.
| |
Collapse
|
13
|
Scudiero R, Tussellino M, Carotenuto R. Identification and expression of an atypical isoform of metallothionein in the African clawed frog Xenopus laevis. C R Biol 2015; 338:314-20. [PMID: 25882350 DOI: 10.1016/j.crvi.2015.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/18/2022]
Abstract
Exploiting the annotation of the western clawed frog Silurana tropicalis genome, we identified a new metallothionein (MT) gene, exhibiting all the features to be considered an active gene, but with an atypical coding region, showing only 17 cysteine residues instead of the canonical 20 cysteines of vertebrate metallothioneins and two anomalous cysteine triplets. However, the presence of a gene in the genome does not ensure its effective expression. By using conventional and Real-Time PCR analyses, we demonstrated that this atypical MT is constitutively expressed throughout the life cycle of the African clawed frog Xenopus laevis; moreover, this gene is highly expressed in the adult liver, the major site of MT expression and synthesis in vertebrates. To our knowledge, the X. laevis MT described in this paper is the first sequence of a vertebrate MT showing only 17 cysteine residues, arranged in two Cys-Cys-Cys motifs. Phylogenetic analyses also demonstrated that the atypical X. laevis MT merges in the anuran clade, but is the most derived sequence among tetrapods MTs. Finally, Tajima's Relative Rate Test suggested a different evolutionary rate between the canonical X. laevis MT and this novel isoform.
Collapse
Affiliation(s)
- Rosaria Scudiero
- Dipartimento di Biologia, Università Federico II, via Mezzocannone 8, 80134 Napoli, Italy.
| | - Margherita Tussellino
- Dipartimento di Biologia, Università Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| | - Rosa Carotenuto
- Dipartimento di Biologia, Università Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
14
|
Yang SS, Tan JL, Liu DS, Loreni F, Peng X, Yang QQ, He WF, Yao ZH, Zhang XR, Dal Prà I, Luo GX, Wu J. eIF6 modulates myofibroblast differentiation at TGF-β1 transcription level via H2A.Z occupancy and Sp1 recruitment. J Cell Sci 2015; 128:3977-89. [PMID: 26395397 DOI: 10.1242/jcs.174870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/13/2015] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6) is a pivotal regulator of ribosomal function, participating in translational control. Previously our data suggest that eIF6 acts as a key binding protein of P311 (a hypertrophic scar-related protein). However, a comprehensive investigation of its functional role and the underlying mechanisms in modulation myofibroblast (a key effector of hypertrophic scar formation) differentiation remains unclear. Here, we identified that eIF6 is a novel regulator of the TGF-β1 expression at transcription level, which has a key role in myofibroblast differentiation. Mechanistically, this effect is associated with eIF6 altering the occupancy of the TGF-β1 promoter by H2A.Z and Sp1. Accordingly, modulation of eIF6 expression in myofibroblasts significantly affects their differentiation via the TGF-β/Smad signaling pathway, which was verified in vivo by the observation that heterozygote eIF6+/− mice exhibited enhanced TGF-β1 production coupled with increased α-SMA+ myofibroblasts after skin injury. Overall, our data reveal that a novel transcriptional regulatory mechanism of eIF6 that acts on facilitating Sp1 recruitment to TGF-β1 promoter via H2A.Z depletion and thus results in increased TGF-β1 transcription, which contributes to myofibroblast differentiation.
Collapse
Affiliation(s)
- Si-si Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jiang-lin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Dai-song Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Fabrizio Loreni
- Department of Biology, University ‘Tor Vergata’, Via Ricerca Scientifica, Roma 00133, Italy
| | - Xu Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qing-qing Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Wei-feng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhi-hui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Xiao-rong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Ilaria Dal Prà
- Histology and Embryology Section, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| | - Gao-xing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
15
|
Benelli D, Cialfi S, Pinzaglia M, Talora C, Londei P. The translation factor eIF6 is a Notch-dependent regulator of cell migration and invasion. PLoS One 2012; 7:e32047. [PMID: 22348144 PMCID: PMC3279413 DOI: 10.1371/journal.pone.0032047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/21/2012] [Indexed: 11/18/2022] Open
Abstract
A growing body of evidence indicates that protein factors controlling translation play an important role in tumorigenesis. The protein known as eIF6 is a ribosome anti-association factor that has been implicated in translational initiation and in ribosome synthesis. Over-expression of eIF6 is observed in many natural tumours, and causes developmental and differentiation defects in certain animal models. Here we show that the transcription of the gene encoding eIF6 is modulated by the receptor Notch-1, a protein involved in embryonic development and cell differentiation, as well as in many neoplasms. Inhibition of Notch-1 signalling by γ-secretase inhibitors slowed down cell-cycle progression and reduced the amount of eIF6 in lymphoblastoid and ovarian cancer cell lines. Cultured ovarian cancer cell lines engineered to stably over-expressing eIF6 did not show significant changes in proliferation rate, but displayed an enhanced motility and invasive capacity. Inhibition of Notch-1 signalling in the cells over-expressing eIF6 was effective in slowing down the cell cycle, but did not reduce cell migration and invasion. On the whole, the results suggest that eIF6 is one of the downstream effectors of Notch-1 in the pathway that controls cell motility and invasiveness.
Collapse
Affiliation(s)
- Dario Benelli
- Department of Cellular Biotechnologies and Haematology, University of Rome Sapienza, Rome, Italy
| | - Samantha Cialfi
- Department of Pediatrics and Infantile Neuropsychiatry, University of Rome Sapienza, Rome, Italy
| | - Michela Pinzaglia
- Department of Cellular Biotechnologies and Haematology, University of Rome Sapienza, Rome, Italy
| | - Claudio Talora
- Department of Molecular Medicine, University of Rome Sapienza, Rome, Italy
| | - Paola Londei
- Department of Cellular Biotechnologies and Haematology, University of Rome Sapienza, Rome, Italy
- * E-mail:
| |
Collapse
|
16
|
Wang J, Wang YY, Lin L, Gao Y, Hong HS, Wang DZ. Quantitative proteomic analysis of okadaic acid treated mouse small intestines reveals differentially expressed proteins involved in diarrhetic shellfish poisoning. J Proteomics 2012; 75:2038-52. [PMID: 22270013 DOI: 10.1016/j.jprot.2012.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 12/29/2011] [Accepted: 01/06/2012] [Indexed: 12/29/2022]
Abstract
Okadaic acid (OA) is a principal diarrhetic shellfish poisoning toxin produced by marine dinoflagellates. This study compared protein profiles of mice small intestines at four time points (0, 3, 6 and 24 h) after a single oral administration of 750 μg/kg OA, and identified the differentially expressed proteins using 2-D DIGE and MALDI-TOF-TOF mass spectrometry. The results showed that the toxin content of the intestines reached its peak 3h after oral administration and then decreased rapidly. OA remarkably inhibited the intestinal PP activity but it recovered to the normal levels within 6 to 24 h. Electron microscope revealed the collapse of the villous architecture and the intestinal microvilli fell off at 3 h, but were repaired within 24h. Notable damage to the intestinal ultrastructure was observed after oral administration. Comparison of the small intestine protein profiles at four time points revealed that 58 proteins were remarkably altered in abundance, and these proteins were involved in macromolecular metabolism, cytoskeleton reorganization, signal transduction, molecular chaperoning and oxidative stress, suggesting that OA toxicity in mouse intestines was complex and diverse, and that multiple proteins other than PP were involved in the diarrhetic process. Villin 1 and hnRNP F might be the key triggers inducing diarrhea in the mouse small intestines.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
17
|
De Marco N, Tussellino M, Vitale A, Campanella C. Eukaryotic initiation factor 6 (eif6) overexpression affects eye development in Xenopus laevis. Differentiation 2011; 82:108-15. [PMID: 21601348 DOI: 10.1016/j.diff.2011.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 01/13/2023]
Abstract
The translation initiation factor eif6 has been implicated as a regulator of ribosome assembly, selective mRNA translation and apoptosis. Many of these activities depend upon the phosphorylation of eif6 serine 235 by PKC. Previous data showed that eif6 binds to the 60S ribosomal subunit when unphosphorylated, inhibiting assembly with the 40S subunit. Phosphorylation of Ser235 releases eif6 from the 60S subunit and allows assembly. eif6 acts as an anti-apoptotic factor via regulation of the bcl2/bax balance and acts selectively upstream of bcl2. This activity also depends upon phosphorylation of eif6 Ser235. One of the consequences of eif6 overexpression in Xenopus embryos is aberrant eye development. Here we evaluate the eye phenotype and show that it is transient. We show that the whole eye, particularly the retina layers, of the embryos injected with eif6-encoding mRNA recover by stage 42. Embryos over-expressing eif6 have normal expression of anterior- and brain-specific markers, indicating that outside the eye field, other neural regions appear unaffected by the eif6 injection. No eye defect was detected when morpholinos were used to reduce eif6 protein synthesis. We tested how two known pathways of eif6 function with respect to alteration of eye development. We found that injection of bcl2 did not produce the eye phenotype and eif6-bax co-injection did not rescue the eye defect, suggesting that the eye phenotype is not bearing on the anti-apoptotic role played by eif6 is not linked to its role as an anti-apoptotic factor. We also determined that PKC-dependant phosphorylation of Ser235 in eif6 is not required to produce defective eye development. These results indicate that the aberrant eye phenotype, produced by eif6 overexpression, is not directly linked to the PKC-regulated effects of eif6 on translation and ribosomal subunit interaction or on eif6 anti-apoptotic properties.
Collapse
Affiliation(s)
- N De Marco
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy.
| | | | | | | |
Collapse
|
18
|
Tsuchiya Y, Yamashita S. Anti-apoptotic activity and proteasome-mediated degradation of Xenopus Mcl-1 protein in egg extracts. J Biol Chem 2011; 286:15806-14. [PMID: 21454490 DOI: 10.1074/jbc.m110.175927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Xenopus egg extracts execute spontaneous apoptosis without the requirement of transcription and translation, and this intrinsic mechanism is supposed to be involved in the physiological elimination of aged eggs. Although apoptosis in this system is carried out by maternally stockpiled materials, the endogenous apoptosis regulators present in egg extracts are still poorly characterized. Here we examined the mRNA expression profiles and apoptosis-regulating functions of 13 Xenopus Bcl-2 family proteins in egg extracts. Among these, we found that endogenous Xenopus Mcl-1 (xMcl-1) physiologically inhibited apoptosis by counteracting the pro-apoptotic activity of endogenous Xenopus Bid in egg extracts. Exogenously added recombinant xMcl-1 was rapidly degraded by proteasome in egg extracts, and we identified the destabilizing region in the N terminus of xMcl-1. Our results suggest that the proteolytic decay of xMcl-1 may change the functional balance between pro- and anti-apoptotic activities of Bcl-2 family proteins, thereby regulating the timing of cytochrome c release in egg extracts.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
19
|
In X. laevis embryos high levels of the anti-apoptotic factor p27BBP/eIF6 are stage-dependently found in BrdU and TUNEL-reactive territories. ZYGOTE 2010; 19:157-63. [PMID: 20663234 DOI: 10.1017/s0967199410000213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
p27BBP/eIF6 (β4 binding protein/eukaryotic initiation factor 6) is a highly conserved protein necessary for cell life. In adult eIF6 mice, a 50% decrease in the protein levels in all tissues is accompanied by a reduction in cell proliferation only in the liver, fat cells and cultured fibroblasts. During X. laevis embryogenesis expression of p27BBP/eIF6 is abundant in high proliferative territories. However, in Xenopus cell proliferation appears unaffected following p27BBP/eIF6 over-expression or down-regulation. Indeed, p27BBP/eIF6 is an anti-apoptotic factor acting upstream of Bcl2 that reduces endogenous apoptosis. We studied p27BBP/eIF6 protein localization in wild type embryos and compared it to proliferation and apoptosis. At the beginning of embryogenesis, high levels of p27BBP/eIF6, proliferation and apoptosis overlap. In later development stages high proliferation levels are present in the same regions where higher p27BBP/eIF6 expression is observed, while apoptosis does not appear specifically concentrated in the same sites. The higher presence of p27BBP/eIF6 would appear related to an increased need of apoptosis control in the regions where cell death is essential for normal development.
Collapse
|