1
|
Muhammad D, Xia W, Wang M, Sun Z, Zhang JZH. Molecular glue-augmented E2-ubiquitin recognition from a computational approach. Int J Biol Macromol 2025; 306:141454. [PMID: 40015413 DOI: 10.1016/j.ijbiomac.2025.141454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Ubiquitin (Ub) is a small regulatory protein that tags unwanted or misfolded proteins for degradation by the proteasome. Molecular glues as small molecules stabilizing and augmenting protein-protein interactions have gained increasing attention in ubiquitination. Highly efficient computational approaches for the investigation of thermodynamics of molecular glue (MG)-Ub-protease systems remain absent. In this work, we introduced a cost-effective computational framework for all-atom characterization of the thermodynamics driving force in the cooperativity or molecule glue-induced enhancement of Ub-E2 recognition. Based on the testing bed involving the CDC34A-Ub protein-protein system and 18 unique molecule glues, we illustrate that our method could satisfactorily decoding the interaction thermodynamics inside the multimeric system. Specifically, our method enables both the ranking the protein-ligand MG-(E2-Ub) affinity and qualitatively capture the MG-induced E2-Ub interaction strengthening, which are generally unachievable with standard methods such as MM/GBSA and commonly applied scoring functions (e.g., AutoDock Vina). We additionally explore the general picture of the interfacial interactions in the multimeric complex, identifying important residues in the binding of molecular glue to Ub-E2 complex and also in Ub-E2 binding. Our computational approach could facilitate high-throughput virtual screening of potent molecular glues in assisting protein-protein recognition and ubiquitination.
Collapse
Affiliation(s)
- Danial Muhammad
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xia
- New York University-East China Normal University Center for Computational Chemistry, School of Chemistry and Molecular Engineering, New York University Shanghai, 1555 Shiji Road, Pudong New Area, Shanghai 200124, China; Department of Chemistry, New York University, NY, New York 10003, United States
| | - Musheng Wang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoxi Sun
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - John Z H Zhang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; New York University-East China Normal University Center for Computational Chemistry, School of Chemistry and Molecular Engineering, New York University Shanghai, 1555 Shiji Road, Pudong New Area, Shanghai 200124, China; Department of Chemistry, New York University, NY, New York 10003, United States.
| |
Collapse
|
2
|
Wu Z, Li Y, Dong J, Qin JJ. An updated review on the role of small molecules in mediating protein degradation. Eur J Med Chem 2025; 287:117370. [PMID: 39933402 DOI: 10.1016/j.ejmech.2025.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Targeted protein degradation (TPD) technologies, inspired by physiological processes, have recently provided new directions for drug development. Unlike conventional drug development focusing on targeting the active sites of disease-related proteins, TPD can utilize any nook or cranny of a protein to drive degradation through the cell's inherent destruction mechanism. It offers various advantages such as stronger pharmacological effects, an expanded range of drug targets, and higher selectivity. Based on the ubiquitin-proteasome system and the lysosomal degradation pathway, a variety of TPD strategies have been developed including PROTAC, PROTAB, and AUTOTAC. These TPD strategies have continuously enriched the toolbox for targeted protein degradation and expanded the scope of application, providing new ideas for biological research and drug discovery. This review attempts to introduce up-to-date research progress in the TPD strategies, focusing mainly on their design concepts, advantages, potential applications, and challenges, which may provide some inspiration for drug design, drug discovery, and clinical application for biologists and chemists.
Collapse
Affiliation(s)
- Zumei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
3
|
An Q, Huang L, Wang C, Wang D, Tu Y. New strategies to enhance the efficiency and precision of drug discovery. Front Pharmacol 2025; 16:1550158. [PMID: 40008135 PMCID: PMC11850385 DOI: 10.3389/fphar.2025.1550158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Drug discovery plays a crucial role in medicinal chemistry, serving as the cornerstone for developing new treatments to address a wide range of diseases. This review emphasizes the significance of advanced strategies, such as Click Chemistry, Targeted Protein Degradation (TPD), DNA-Encoded Libraries (DELs), and Computer-Aided Drug Design (CADD), in boosting the drug discovery process. Click Chemistry streamlines the synthesis of diverse compound libraries, facilitating efficient hit discovery and lead optimization. TPD harnesses natural degradation pathways to target previously undruggable proteins, while DELs enable high-throughput screening of millions of compounds. CADD employs computational methods to refine candidate selection and reduce resource expenditure. To demonstrate the utility of these methodologies, we highlight exemplary small molecules discovered in the past decade, along with a summary of marketed drugs and investigational new drugs that exemplify their clinical impact. These examples illustrate how these techniques directly contribute to advancing medicinal chemistry from the bench to bedside. Looking ahead, Artificial Intelligence (AI) technologies and interdisciplinary collaboration are poised to address the growing complexity of drug discovery. By fostering a deeper understanding of these transformative strategies, this review aims to inspire innovative research directions and further advance the field of medicinal chemistry.
Collapse
Affiliation(s)
| | | | | | - Dongmei Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yalan Tu
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Lei K, Sheng Y, Li Y, Zhou Z, Zhu X, Huang K. Dynamic Detection of the E3-PROTAC-Target Protein Ternary Complex In Vitro and In Vivo via Bimolecular Fluorescence Complementation. ACS OMEGA 2024; 9:49739-49748. [PMID: 39713624 PMCID: PMC11656243 DOI: 10.1021/acsomega.4c08186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have played an important role in the development of protein-targeted degradation drugs. However, effective tools are urgently required for the further development and validation of PROTACs. We developed a high-potency reporter (AKT-PROTAC-Reporter; APR) for PROTACs that specifically targets AKT. The APR successfully detected the status and levels of the AKT-PROTAC-CRBN ternary complex in vivo and in vitro. The APR is based on a bimolecular fluorescence complementation system, where EGFP and luciferase were used as reporter signals for in vitro and in vivo experiments, respectively, with remarkable success. The absence of E3 ligase ubiquitin recruitment activity in the APR can significantly improve the reporting performance of the APR; however, this results in difficulties in the detection of the degradation efficiency of PROTAC target proteins. Our results show that the APR can sensitively, quickly, and effectively detect the presence of terpolymers. Furthermore, the APR can determine the specificity and degradation efficiency of the PROTAC via a fluorescence signal or bioluminescence signal intensity and can efficiently screen PROTACs for a certain target protein.
Collapse
Affiliation(s)
- Kunjian Lei
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Yilei Sheng
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Yishuang Li
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Zhihong Zhou
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xingen Zhu
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Kai Huang
- Department
of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Institute
of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| |
Collapse
|
5
|
Zhao M, Li J, Wang R, Mi L, Gu Y, Chen R, Li Y, Shi W, Zhang Y. Ubiquitination-Binding Enzyme 2C is Associated with Cancer Development and Prognosis and is a Potential Therapeutic Target. Onco Targets Ther 2024; 17:1159-1171. [PMID: 39678016 PMCID: PMC11637980 DOI: 10.2147/ott.s485053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
UBE2C (Ubiquitination-binding enzyme 2C), one of the E2 enzymes encoded in the human genome, is a component of the ubiquitin proteasome system and plays a pivotal role in regulating cell cycle progression. Moreover, UBE2C is highly expressed and may play a pivotal role in both high-incidence and high-mortality malignancies, including lung cancers, breast cancers, and esophageal cancers. UBE2C influences a number of key processes, including cell cycle progression, tumor invasion and metastasis, proliferation, and drug resistance. However, few articles have systematically summarized the role of UBE2C in cancer. The aim of this review is to describe the structure and function of UBE2C, focusing on the current status of UBE2C research in malignant tumors. Furthermore, this review presents the potential of UBE2C as a new therapeutic target and a diagnostic and prognostic biomarker. Finally, future research directions for UBE2C are proposed. It is of great value to explore the mechanism of action of UBE2C in the tumor microenvironment (TME). A comprehensive and coherent comprehension of UBE2C will undoubtedly facilitate its transition from fundamental research to clinical applications.
Collapse
Affiliation(s)
- Mengjie Zhao
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Jielong Li
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rui Wang
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Lida Mi
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Yan Gu
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rongjin Chen
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Yangyang Li
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Woda Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Yajun Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| |
Collapse
|
6
|
Park S, Park HW, Seo DB, Yoo DS, Bae S. In vitro hair growth-promoting effects of araliadiol via the p38/PPAR-γ signaling pathway in human hair follicle stem cells and dermal papilla cells. Front Pharmacol 2024; 15:1482898. [PMID: 39691387 PMCID: PMC11649413 DOI: 10.3389/fphar.2024.1482898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background Scalp hair plays a crucial role in social communication by expressing personal appearance and self-identity. Consequently, hair loss often leads to a perception of unattractiveness, negatively impacting an individual's life and mental health. Currently, the use of Food and Drug Administration (FDA)-approved drugs for hair loss is associated with several side effects, highlighting the need for identifying new drug candidates, such as plant-derived phytochemicals, to overcome these issues. Objective This study investigated the hair growth-promoting effects of araliadiol, a polyacetylene compound found in plants such as Centella asiatica. Methods We employed an in vitro model comprising human hair follicle stem cells (HHFSCs) and human dermal papilla cells (HDPCs) to evaluate the hair growth-promoting effects of araliadiol. The proliferation-stimulating effects of araliadiol were assessed using water-soluble tetrazolium salt assay, adenosine triphosphate content assay, and crystal violet staining assay. In addition, we performed luciferase reporter assay, polymerase chain reaction analysis, cell fractionation, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) to elucidate the mechanism underlying the hair growth-inductive effects of araliadiol. Results Araliadiol exhibited both proliferation- and hair growth-promoting effects in HHFSCs and HDPCs. Specifically, it increased the protein expression of cyclin B1 and Ki67. In HHFSCs, it elevated the expression of hair growth-promoting factors, including CD34, vascular endothelial growth factor (VEGF), and angiopoietin-like 4. Similarly, araliadiol increased the expression of hair growth-inductive proteins such as fibroblast growth factor 7, VEGF, noggin, and insulin-like growth factor 1 in HDPCs. Subsequent Western blot analysis and ELISA using inhibitors such as GW9662 and SB202190 confirmed that these hair growth-promoting effects were dependent on the p38/PPAR-γ signaling in both HHFSCs and HDPCs. Conclusion Araliadiol promotes hair growth through the p38/PPAR-γ signaling pathway in human hair follicle cells. Therefore, araliadiol can be considered a novel drug candidate for the treatment of alopecia.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | | | | | | | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
8
|
Mutlu M, Schmidt I, Morrison AI, Goretzki B, Freuler F, Begue D, Simic O, Pythoud N, Ahrne E, Kapps S, Roest S, Bonenfant D, Jeanpierre D, Tran TTT, Maher R, An S, Rietsch A, Nigsch F, Hofmann A, Reece-Hoyes J, Parker CN, Guerini D. Small molecule induced STING degradation facilitated by the HECT ligase HERC4. Nat Commun 2024; 15:4584. [PMID: 38811577 PMCID: PMC11137104 DOI: 10.1038/s41467-024-48922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Stimulator of interferon genes (STING) is a central component of the cytosolic nucleic acids sensing pathway and as such master regulator of the type I interferon response. Due to its critical role in physiology and its' involvement in a variety of diseases, STING has been a focus for drug discovery. Targeted protein degradation (TPD) has emerged as a promising pharmacology for targeting previously considered undruggable proteins by hijacking the cellular ubiquitin proteasome system (UPS) with small molecules. Here, we identify AK59 as a STING degrader leveraging HERC4, a HECT-domain E3 ligase. Additionally, our data reveals that AK59 is effective on the common pathological STING mutations, suggesting a potential clinical application of this mechanism. Thus, these findings introduce HERC4 to the fields of TPD and of compound-induced degradation of STING, suggesting potential therapeutic applications.
Collapse
Affiliation(s)
- Merve Mutlu
- Novartis BioMedical Research, Basel, Switzerland.
| | | | - Andrew I Morrison
- Novartis BioMedical Research, Basel, Switzerland
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands
| | | | | | - Damien Begue
- Novartis BioMedical Research, Basel, Switzerland
| | - Oliver Simic
- Novartis BioMedical Research, Basel, Switzerland
| | | | - Erik Ahrne
- Novartis BioMedical Research, Basel, Switzerland
| | - Sandra Kapps
- Novartis BioMedical Research, Basel, Switzerland
| | - Susan Roest
- Novartis BioMedical Research, Basel, Switzerland
| | - Debora Bonenfant
- Novartis BioMedical Research, Basel, Switzerland
- Monte Rosa Therapeutics, Basel, Switzerland
| | | | | | - Rob Maher
- Novartis BioMedical Research, Cambridge, MA, USA
| | - Shaojian An
- Novartis BioMedical Research, Cambridge, MA, USA
| | | | | | | | - John Reece-Hoyes
- Novartis BioMedical Research, Cambridge, MA, USA
- Vector Biology, Cambridge, MA, USA
| | | | | |
Collapse
|
9
|
Sui XY, Ma XY, Hou Y, Cao SW, Wang ZQ, Jia LJ, Fan L, Shao ZM, Zhang WJ. Elongin B promotes breast cancer progression by ubiquitinating tumor suppressor p14/ARF. Cell Biol Toxicol 2024; 40:24. [PMID: 38653919 PMCID: PMC11039524 DOI: 10.1007/s10565-024-09864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Elongin B (ELOB), a pivotal element in the ELOB/c-Cullin2/5-SOCS-box E3 ubiquitin-protein ligase complex, plays a significant role in catalyzing the ubiquitination and subsequent degradation of a broad spectrum of target proteins. Notably, it is documented to facilitate these processes. However, the regulatory role of ELOB in breast cancer remains ambiguous. In this study, through bio-informatic analysis of The Cancer Genome Atlas and Fudan University Shanghai Cancer Center database, we demonstrated that ELOB was over-expressed in breast cancer tissues and was related to unfavorable prognosis. Additionally, pathway enrichment analysis illustrated that high expression of ELOB was associated with multiple cancer promoting pathways, like cell cycle, DNA replication, proteasome and PI3K - Akt signaling pathway, indicating ELOB as a potential anticancer target. Then, we confirmed that both in vivo and in vitro, the proliferation of breast cancer cells could be significantly suppressed by the down-regulation of ELOB. Mechanically, immunoprecipitation and in vivo ubiquitination assays prompted that, as the core element of Cullin2-RBX1-ELOB E3 ligase (CRL2) complex, ELOB regulated the ubiquitination and the subsequent degradation of oncoprotein p14/ARF. Moreover, the anticancer efficacy of erasing ELOB could be rescued by simultaneous knockdown of p14/ARF. Finally, through analyzing breast cancer tissue microarrays and western blot of patient samples, we demonstrated that the expression of ELOB in tumor tissues was elevated in compared to adjacent normal tissues. In conclusion, ELOB is identified to be a promising innovative target for the drug development of breast cancer by promoting the ubiquitination and degradation of oncoprotein p14/ARF.
Collapse
Affiliation(s)
- Xin-Yi Sui
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, P.R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, P.R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yujin Hou
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuo-Wen Cao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, P.R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Qing Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, P.R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Jun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Fan
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, P.R. China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, P.R. China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wen-Juan Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, P.R. China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
McClement SE. Toward a holistic understanding of cancer cachexia: Application of the human response to illness model. Asia Pac J Oncol Nurs 2023; 10:100306. [PMID: 38197036 PMCID: PMC10772185 DOI: 10.1016/j.apjon.2023.100306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 01/11/2024] Open
Abstract
Cachexia is a commonly presenting multidimensional syndrome in individuals living with advanced cancer. Given its prevalence of between 50% and 80%, nurses are going to encounter individuals manifesting ongoing loss of skeletal muscle mass (with or without loss of fat mass) that can be partially but not entirely reversed by conventional nutritional support. Thus nurses require a comprehensive understanding of this complex clinical problem. Research suggests, however, that nurses receive minimal education about cachexia or its management. Limited understanding undermines the ability to confidently care for patients with cachexia and their families, thereby hampering effective practice. The human response to illness model provides nurses with an organizing framework to guide and make sense of their assessments in clinical practice when caring for patients with cancer cachexia and provides direction for appropriate intervention. This article illustrates the integration of the human response to illness model to clinical practice, thereby assisting nurses to develop a comprehensive understanding of the physiological, pathophysiological, behavioral, and experiential facets of cachexia in advanced cancer patients. Contemporary areas of further interest and research will be presented.
Collapse
Affiliation(s)
- Susan E. McClement
- Rady Faculty of Health Sciences, College of Nursing, University of Manitoba, Winnipeg, Manitoba, Canada
- Helen Glass Centre for Nursing, The University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Domentean S, Paisana E, Cascão R, Faria CC. Role of UBE2C in Brain Cancer Invasion and Dissemination. Int J Mol Sci 2023; 24:15792. [PMID: 37958776 PMCID: PMC10650073 DOI: 10.3390/ijms242115792] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma (GB) and brain metastases (BM) are the most common brain tumors in adults and are invariably associated with a dismal outcome. These highly malignant tumors share common features including increased invasion and migration of the primary or metastatic brain cancer cells, whose triggering mechanisms are largely unknown. Emerging evidence has suggested that the ubiquitin-conjugating enzyme E2C (UBE2C), essential for controlling cell cycle progression, is overexpressed in diverse malignancies, including brain cancer. This review highlights the crucial role of UBE2C in brain tumorigenesis and its association with higher proliferative phenotype and histopathological grade, with autophagy and apoptosis suppression, epithelial-to-mesenchymal transition (EMT), invasion, migration, and dissemination. High expression of UBE2C has been associated with patients' poor prognosis and drug resistance. UBE2C has also been proven as a promising therapeutic target, despite the lack of specific inhibitors. Thus, there is a need to further explore the role of UBE2C in malignant brain cancer and to develop effective targeted therapies for patients with this deadly disease.
Collapse
Affiliation(s)
- Stefani Domentean
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Claudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
12
|
De Silva ARI, Page RC. Ubiquitination detection techniques. Exp Biol Med (Maywood) 2023; 248:1333-1346. [PMID: 37787047 PMCID: PMC10625345 DOI: 10.1177/15353702231191186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Ubiquitination is an intricately regulated post-translational modification that involves the covalent attachment of ubiquitin to a substrate protein. The complex dynamic nature of the ubiquitination process regulates diverse cellular functions including targeting proteins for degradation, cell cycle, deoxyribonucleic acid (DNA) damage repair, and numerous cell signaling pathways. Ubiquitination also serves as a crucial mechanism in protein quality control. Dysregulation in ubiquitination could result in lethal disease conditions such as cancers and neurodegenerative diseases. Therefore, the ubiquitination cascade has become an attractive target for therapeutic interventions. Enormous efforts have been made to detect ubiquitination involving different detection techniques to better grasp the underlying molecular mechanisms of ubiquitination. This review discusses a wide range of techniques stretching from the simplest assays to real-time assays. This includes western blotting/immunoblotting, fluorescence assays, chemiluminescence assays, spectrophotometric assays, and nanopore sensing assays. This review compares these applications, and the inherent advantages and limitations.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
13
|
Zhu H, Wang J, Zhang Q, Pan X, Zhang J. Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance. Pharmacol Ther 2023; 244:108371. [PMID: 36871783 DOI: 10.1016/j.pharmthera.2023.108371] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Targeted Protein Degradation is an emerging and rapidly developing technique for designing and treating new drugs. With the emergence of a promising class of pharmaceutical molecules, Heterobifunctional Proteolysis-targeting chimeras (PROTACs), TPD has become a powerful tool to completely tackle pathogenic proteins with traditional small molecule inhibitors. However, the conventional PROTACs have gradually exposed potential disadvantages of poor oral bioavailability and pharmacokinetic (PK) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics due to their larger molecular weight and more complex structure than the conventional small-molecule inhibitors. Therefore, 20 years after the concept of PROTAC was proposed, more and more scientists are committed to developing new TPD technology to overcome its defects. And several new technologies and means have been explored based on "PROTAC" to target "undruggable proteins". Here, we aim to comprehensively summarize and profoundly analyze the research progress of targeted protein degradation based on PROTAC targeting the degradation of "undruggable" targets. In order to clarify the significance of emerging and highly effective strategies based PROTACs in the treatment of various diseases especially in overcoming drug resistance in cancer, we will focus on the molecular structure, action mechanism, design concepts, development advantages and challenges of these emerging methods(e.g., aptamer-PROTAC conjugates, antibody-PROTACs and folate-PROTACs).
Collapse
Affiliation(s)
- Huanjie Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
14
|
Boghdeh NA, McGraw B, Barrera MD, Anderson C, Baha H, Risner KH, Ogungbe IV, Alem F, Narayanan A. Inhibitors of the Ubiquitin-Mediated Signaling Pathway Exhibit Broad-Spectrum Antiviral Activities against New World Alphaviruses. Viruses 2023; 15:v15030655. [PMID: 36992362 PMCID: PMC10059822 DOI: 10.3390/v15030655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
New World alphaviruses including Venezuelan Equine Encephalitis Virus (VEEV) and Eastern Equine Encephalitis Virus (EEEV) are mosquito-transmitted viruses that cause disease in humans and equines. There are currently no FDA-approved therapeutics or vaccines to treat or prevent exposure-associated encephalitic disease. The ubiquitin proteasome system (UPS)-associated signaling events are known to play an important role in the establishment of a productive infection for several acutely infectious viruses. The critical engagement of the UPS-associated signaling mechanisms by many viruses as host–pathogen interaction hubs led us to hypothesize that small molecule inhibitors that interfere with these signaling pathways will exert broad-spectrum inhibitory activity against alphaviruses. We queried eight inhibitors of the UPS signaling pathway for antiviral outcomes against VEEV. Three of the tested inhibitors, namely NSC697923 (NSC), bardoxolone methyl (BARM) and omaveloxolone (OMA) demonstrated broad-spectrum antiviral activity against VEEV and EEEV. Dose dependency and time of addition studies suggest that BARM and OMA exhibit intracellular and post-entry viral inhibition. Cumulatively, our studies indicate that inhibitors of the UPS-associated signaling pathways exert broad-spectrum antiviral outcomes in the context of VEEV and EEEV infection, supporting their translational application as therapeutic candidates to treat alphavirus infections.
Collapse
Affiliation(s)
- Niloufar A. Boghdeh
- Biomedical Research Laboratory, George Mason University, Manassas, VA 20110, USA
| | - Brittany McGraw
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110, USA
| | - Michael D. Barrera
- Biomedical Research Laboratory, George Mason University, Manassas, VA 20110, USA
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110, USA
| | - Carol Anderson
- Biomedical Research Laboratory, George Mason University, Manassas, VA 20110, USA
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110, USA
| | - Haseebullah Baha
- Biomedical Research Laboratory, George Mason University, Manassas, VA 20110, USA
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110, USA
| | - Kenneth H. Risner
- Biomedical Research Laboratory, George Mason University, Manassas, VA 20110, USA
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110, USA
| | - Ifedayo V. Ogungbe
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Farhang Alem
- Biomedical Research Laboratory, George Mason University, Manassas, VA 20110, USA
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110, USA
| | - Aarthi Narayanan
- Biomedical Research Laboratory, George Mason University, Manassas, VA 20110, USA
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
- Correspondence:
| |
Collapse
|
15
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
16
|
Ibrahim B, Akere TH, Chakraborty S, Valsami-Jones E, Ali-Boucetta H. Gold Nanoparticles Induced Size Dependent Cytotoxicity on Human Alveolar Adenocarcinoma Cells by Inhibiting the Ubiquitin Proteasome System. Pharmaceutics 2023; 15:pharmaceutics15020432. [PMID: 36839757 PMCID: PMC9961554 DOI: 10.3390/pharmaceutics15020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the UPS was investigated with a particular focus on deubiquitinating enzymes (DUBs) such as ubiquitin-specific proteases (USP) and ubiquitin carboxyl-terminal hydrolases (UCHL-1) in human alveolar epithelial adenocarcinoma (A549). It was found that all sizes of AuNPs reduced the percentage of viable A549 cells and increased lactate dehydrogenase (LDH) release, measured using the MTT and LDH assays, respectively. Furthermore, the 5 nm AuNPs were found to exhibit greater cytotoxicity than the 10 and 80 nm AuNPs. In addition, apoptosis and necrosis were activated through reactive oxygen species (ROS) generation due to AuNPs exposure. The internalisation of AuNPs in A549 cells increased with increasing particle size (80 > 10 > 5 nm). Interestingly, the expression of USP7, USP8, USP10, and UCHL-1 was significantly (p < 0.001) downregulated upon treatment with 5-30 µg/mL of all the AuNPs sizes compared to control cells. Moreover, the inhibition of these proteins triggered mitochondrial-related apoptosis through the upregulation of poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Collectively, these results indicate that AuNPs suppress the proliferation of A549 cells and can potentially be used as novel inhibitors of the proteasome.
Collapse
Affiliation(s)
- Bashiru Ibrahim
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Taiwo Hassan Akere
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Swaroop Chakraborty
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (E.V.-J.); (H.A.-B.)
| | - Hanene Ali-Boucetta
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (E.V.-J.); (H.A.-B.)
| |
Collapse
|
17
|
Jolly LA, Kumar R, Penzes P, Piper M, Gecz J. The DUB Club: Deubiquitinating Enzymes and Neurodevelopmental Disorders. Biol Psychiatry 2022; 92:614-625. [PMID: 35662507 PMCID: PMC10084722 DOI: 10.1016/j.biopsych.2022.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Protein ubiquitination is a widespread, multifunctional, posttranslational protein modification, best known for its ability to direct protein degradation via the ubiquitin proteasome system (UPS). Ubiquitination is also reversible, and the human genome encodes over 90 deubiquitinating enzymes (DUBs), many of which appear to target specific subsets of ubiquitinated proteins. This review focuses on the roles of DUBs in neurodevelopmental disorders (NDDs). We present the current genetic evidence connecting 12 DUBs to a range of NDDs and the functional studies implicating at least 19 additional DUBs as candidate NDD genes. We highlight how the study of DUBs in NDDs offers critical insights into the role of protein degradation during brain development. Because one of the major known functions of a DUB is to antagonize the UPS, loss of function of DUB genes has been shown to culminate in loss of abundance of its protein substrates. The identification and study of NDD DUB substrates in the developing brain is revealing that they regulate networks of proteins that themselves are encoded by NDD genes. We describe the new technologies that are enabling the full resolution of DUB protein networks in the developing brain, with the view that this knowledge can direct the development of new therapeutic paradigms. The fact that the abundance of many NDD proteins is regulated by the UPS presents an exciting opportunity to combat NDDs caused by haploinsufficiency, because the loss of abundance of NDD proteins can be potentially rectified by antagonizing their UPS-based degradation.
Collapse
Affiliation(s)
- Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia.
| | - Raman Kumar
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael Piper
- School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Jozef Gecz
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Proteostasis Deregulation in Neurodegeneration and Its Link with Stress Granules: Focus on the Scaffold and Ribosomal Protein RACK1. Cells 2022; 11:cells11162590. [PMID: 36010666 PMCID: PMC9406587 DOI: 10.3390/cells11162590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC—all ribosome-related processes required for proteostasis regulation—can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer’s disease (AD), although some defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that, besides its well characterized function as a scaffold protein, it has an important role in translation and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.
Collapse
|
19
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Comprehensive omics studies of p53 mutants in human cancer. Brief Funct Genomics 2022; 22:97-108. [PMID: 35809339 DOI: 10.1093/bfgp/elac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
The p53 is the master regulator of the cell known for regulating a large array of cellular processes. Inactivation of p53 by missense mutations is one of the leading causes of cancer. Some of these mutations endow p53 with selective oncogenic functions to promote tumor progression. Due to the vast array of mutations found in p53, the experimental studies showing the role of different mutant p53 as an oncogene are also expanding. In this review, we discuss the oncogenic roles of different p53 mutants at the cellular level identified by multi-omics tools. We discuss some of the therapeutic studies to tackle p53 mutants and their downstream targets identified by omics. We also highlight the future prospective and scope of further studies of downstream p53 targets by omics.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
20
|
Lu F, Zhou J, Chen Q, Zhu J, Zheng X, Fang N, Qiao L. PSMA5 contributes to progression of lung adenocarcinoma in association with the JAK/STAT pathway. Carcinogenesis 2022; 43:624-634. [PMID: 35605971 DOI: 10.1093/carcin/bgac046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/29/2022] [Accepted: 05/21/2022] [Indexed: 11/12/2022] Open
Abstract
Proteasome dysregulation is a common feature of cancer and a critical risk for tumorigenesis. However, the characteristics of proteasome components in tumor development and metastasis are poorly understood. PSMA5, an α5 subunit of the 20S core proteasome, is associated with the degradation of intracellular proteins. Increasing evidence indicated it is involved in tumor development, but the underlying mechanism has remained unknown. Here, we show that PSMA5 is up-regulated in lung adenocarcinoma (LUAD) cells and clinical LUAD tissues. Moreover, its up-regulation is positively associated with lymph node metastasis and the poor prognosis of LUAD patients. PSMA5 knockdown inhibited the proliferation, invasion and metastasis of LUAD cells in vitro and in vivo, induced apoptosis of LUAD cells and sensitized LUAD cells to cisplatin. Further investigations revealed that PSMA5 overexpression inhibited cell apoptosis by activating the janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway in LUAD cells. In total, our results demonstrate that PSMA5 may function as a prognostic factor in LUAD. In addition, PSMA5 is a promising therapeutic target for LUAD, as its depletion induces cell apoptosis by inhibiting the JAK/STAT pathway.
Collapse
Affiliation(s)
- Feng Lu
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jing Zhou
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qing Chen
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaowei Zheng
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Department of Clinical Laboratory, Puyang Hospital of Traditional Chinese Medicine, Puyang, China
| | - Na Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ling Qiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
21
|
Ismawati, Romus I, Asni E, Purwanti RA, Fathurrahmah S. Effect of bortezomib on fatty liver in a rat model of atherosclerosis. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i2.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: Fatty liver is associated with atherosclerosis even though the exact mechanism remains unknown. Fatty liver and atherosclerosis correlate with inflammation. Interleukin 6 (IL-6) is recognized as an inflammatory marker. Bortezomib is a proteasome inhibitor that will inhibit the proteasome pathway and is expected to inhibit inflammation in atherosclerosis. The current research aimed to investigate the effect of bortezomib on the fatty liver of atherosclerosis rats and to analyze its correlation with serum IL-6 concentration.
Materials and Methods: Experimental subjects were 18 male Wistar rats (Rattus novergicus) divided into three treatment groups, namely atherosclerosis group (I), atherosclerosis + bortezomib group (II), and control group (III). Bortezomib (50 ?g/kg BW) was given twice intraperitoneally, on day 1 and day 3. The presence of fatty liver was evaluated using the percentage system. Serum IL-6 concentrations were measured using enzyme-linked immunosorbent assay kits.
Results: The highest amount of fatty liver was found in the atherosclerosis group (group I) (38.33%), while the lowest was in the control group (group III) (5.83%). There was a decreasing fatty liver percentage due to bortezomib administration (group II) (29.17%), and it was statistically significant. There is a significant correlation between the degree of fatty liver and serum IL-6 concentration.
Conclusion: The administration of bortezomib 50 ?g/kg BW in atherosclerosis model rats can reduce the occurrence of fatty liver by reducing the inflammatory process.
Collapse
|
22
|
Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 2022; 7:113. [PMID: 35379777 PMCID: PMC8977435 DOI: 10.1038/s41392-022-00966-4] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Traditional drug discovery mainly focuses on direct regulation of protein activity. The development and application of protein activity modulators, particularly inhibitors, has been the mainstream in drug development. In recent years, PROteolysis TArgeting Chimeras (PROTAC) technology has emerged as one of the most promising approaches to remove specific disease-associated proteins by exploiting cells’ own destruction machinery. In addition to PROTAC, many different targeted protein degradation (TPD) strategies including, but not limited to, molecular glue, Lysosome-Targeting Chimaera (LYTAC), and Antibody-based PROTAC (AbTAC), are emerging. These technologies have not only greatly expanded the scope of TPD, but also provided fresh insights into drug discovery. Here, we summarize recent advances of major TPD technologies, discuss their potential applications, and hope to provide a prime for both biologists and chemists who are interested in this vibrant field.
Collapse
|
23
|
Upregulated Proteasome Subunits in COVID-19 Patients: A Link with Hypoxemia, Lymphopenia and Inflammation. Biomolecules 2022; 12:biom12030442. [PMID: 35327634 PMCID: PMC8946050 DOI: 10.3390/biom12030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Severe COVID-19 disease leads to hypoxemia, inflammation and lymphopenia. Viral infection induces cellular stress and causes the activation of the innate immune response. The ubiquitin-proteasome system (UPS) is highly implicated in viral immune response regulation. The main function of the proteasome is protein degradation in its active form, which recognises and binds to ubiquitylated proteins. Some proteasome subunits have been reported to be upregulated under hypoxic and hyperinflammatory conditions. Here, we conducted a prospective cohort study of COVID-19 patients (n = 44) and age-and sex-matched controls (n = 20). In this study, we suggested that hypoxia could induce the overexpression of certain genes encoding for subunits from the α and β core of the 20S proteasome and from regulatory particles (19S and 11S) in COVID-19 patients. Furthermore, the gene expression of proteasome subunits was associated with lymphocyte count reduction and positively correlated with inflammatory molecular and clinical markers. Given the importance of the proteasome in maintaining cellular homeostasis, including the regulation of the apoptotic and pyroptotic pathways, these results provide a potential link between COVID-19 complications and proteasome gene expression.
Collapse
|
24
|
Ding P, Ma Z, Fan Y, Feng Y, Shao C, Pan M, Zhang Y, Huang D, Han J, Hu Y, Yan X. Emerging role of ubiquitination/deubiquitination modification of PD-1/PD-L1 in cancer immunotherapy. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
26
|
Videira NB, Dias MMG, Terra MF, de Oliveira VM, García-Arévalo M, Avelino TM, Torres FR, Batista FAH, Figueira ACM. PPAR Modulation Through Posttranslational Modification Control. NUCLEAR RECEPTORS 2021:537-611. [DOI: 10.1007/978-3-030-78315-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res 2020; 43:1144-1161. [PMID: 33165832 PMCID: PMC7651821 DOI: 10.1007/s12272-020-01281-8] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in the cellular processes for protein quality control and homeostasis. Dysregulation of the UPS has been implicated in numerous diseases, including cancer. Indeed, components of UPS are frequently mutated or abnormally expressed in various cancers. Since Bortezomib, a proteasome inhibitor, received FDA approval for the treatment of multiple myeloma and mantle cell lymphoma, increasing numbers of researchers have been seeking drugs targeting the UPS as a cancer therapeutic strategy. Here, we introduce the essential component of UPS, including ubiquitinating enzymes, deubiquitinating enzymes and 26S proteasome, and we summarize their targets and mechanisms that are crucial for tumorigenesis. In addition, we briefly discuss some UPS inhibitors, which are currently in clinical trials as cancer therapeutics.
Collapse
|
28
|
Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, Li HY, Lin HK. The Skp2 Pathway: A Critical Target for Cancer Therapy. Semin Cancer Biol 2020; 67:16-33. [PMID: 32014608 DOI: 10.1016/j.semcancer.2020.01.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
Strictly regulated protein degradation by ubiquitin-proteasome system (UPS) is essential for various cellular processes whose dysregulation is linked to serious diseases including cancer. Skp2, a well characterized component of Skp2-SCF E3 ligase complex, is able to conjugate both K48-linked ubiquitin chains and K63-linked ubiquitin chains on its diverse substrates, inducing proteasome mediated proteolysis or modulating the function of tagged substrates respectively. Overexpression of Skp2 is observed in various human cancers associated with poor survival and adverse therapeutic outcomes, which in turn suggests that Skp2 engages in tumorigenic activity. To that end, the oncogenic properties of Skp2 are demonstrated by various genetic mouse models, highlighting the potential of Skp2 as a target for tackling cancer. In this article, we will describe the downstream substrates of Skp2 as well as upstream regulators for Skp2-SCF complex activity. We will further summarize the comprehensive oncogenic functions of Skp2 while describing diverse strategies and therapeutic platforms currently available for developing Skp2 inhibitors.
Collapse
Affiliation(s)
- Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| | - Asad Moten
- National Capital Consortium, Department of Defense, Washington DC, 20307, USA; Institute for Complex Systems, HealthNovations International, Houston, TX, 77089, USA; Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20814, USA; Center on Genomics, Vulnerable Populations, and Health Disparities, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Rajeshkumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
29
|
Song Y, Lin M, Liu Y, Wang ZW, Zhu X. Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers. Stem Cell Res Ther 2019; 10:124. [PMID: 30999935 PMCID: PMC6472071 DOI: 10.1186/s13287-019-1222-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence shows that epithelial-mesenchymal transition (EMT) plays a crucial role in tumor invasion, metastasis, cancer stem cells, and drug resistance. Data obtained thus far have revealed that F-box proteins are critically involved in the regulation of the EMT process and stem cell differentiation in human cancers. In this review, we will briefly describe the role of EMT and stem cells in cell metastasis and drug resistance. We will also highlight how numerous F-box proteins govern the EMT process and stem cell survival by controlling their downstream targets. Additionally, we will discuss whether F-box proteins involved in drug resistance are associated with EMT and cancer stem cells. Targeting these F-box proteins might be a potential therapeutic strategy to reverse EMT and inhibit cancer stem cells and thus overcome drug resistance in human cancers.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
30
|
Gan J, Leestemaker Y, Sapmaz A, Ovaa H. Highlighting the Proteasome: Using Fluorescence to Visualize Proteasome Activity and Distribution. Front Mol Biosci 2019; 6:14. [PMID: 30968028 PMCID: PMC6438883 DOI: 10.3389/fmolb.2019.00014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022] Open
Abstract
Proteasomes are critical proteases in the cell responsible for the turnover of many cytoplasmic and nuclear proteins. They are essential for many cellular processes and various diseases are associated with their malfunctioning. Proteasome activity depends on the nature of the catalytic subunits, as well as the interaction with associated proteasome regulators. Here we describe various fluorescence-based methods to study proteasome function, highlighting the use of activity-based probes to study proteasome localization, dynamics, and activity in living cells.
Collapse
Affiliation(s)
- Jin Gan
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| | - Yves Leestemaker
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| | - Aysegul Sapmaz
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
31
|
Long MJC, Lawson AP, Baggio R, Qian Y, Rozhansky L, Fasci D, El Oualid F, Weerapana E, Hedstrom L. Diarylcarbonates are a new class of deubiquitinating enzyme inhibitor. Bioorg Med Chem Lett 2018; 29:204-211. [PMID: 30528168 DOI: 10.1016/j.bmcl.2018.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
Promiscuous inhibitors of tyrosine protein kinases, proteases and phosphatases are useful reagents for probing regulatory pathways and stabilizing lysates as well as starting points for the design of more selective agents. Ubiquitination regulates many critical cellular processes, and promiscuous inhibitors of deubiquitinases (DUBs) would be similarly valuable. The currently available promiscuous DUB inhibitors are highly reactive electrophilic compounds that can crosslink proteins. Herein we introduce diarylcarbonate esters as a novel class of promiscuous DUB inhibitors that do not have the liabilities associated with the previously reported compounds. Diarylcarbonates stabilize the high molecular weight ubiquitin pools in cells and lysates. They also elicit cellular phenotypes associated with DUB inhibition, demonstrating their utility in ubiquitin discovery. Diarylcarbonates may also be a useful scaffold for the development of specific DUB inhibitors.
Collapse
Affiliation(s)
- Marcus J C Long
- Graduate Program in Biochemistry and Biophysics Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Ann P Lawson
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Rick Baggio
- Graduate Program in Biochemistry and Biophysics Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Yu Qian
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Lior Rozhansky
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Domenico Fasci
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Farid El Oualid
- UbiQ Bio BV, Science Park 408, 1098 XH Amsterdam, the Netherlands
| | - Eranthie Weerapana
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA; Department of Chemistry(3), Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
32
|
Koszela J, Pham NT, Evans D, Mann S, Perez-Pi I, Shave S, Ceccarelli DFJ, Sicheri F, Tyers M, Auer M. Real-time tracking of complex ubiquitination cascades using a fluorescent confocal on-bead assay. BMC Biol 2018; 16:88. [PMID: 30097011 PMCID: PMC6086040 DOI: 10.1186/s12915-018-0554-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/24/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) controls the stability, localization and/or activity of the proteome. However, the identification and characterization of complex individual ubiquitination cascades and their modulators remains a challenge. Here, we report a broadly applicable, multiplexed, miniaturized on-bead technique for real-time monitoring of various ubiquitination-related enzymatic activities. The assay, termed UPS-confocal fluorescence nanoscanning (UPS-CONA), employs a substrate of interest immobilized on a micro-bead and a fluorescently labeled ubiquitin which, upon enzymatic conjugation to the substrate, is quantitatively detected on the bead periphery by confocal imaging. RESULTS UPS-CONA is suitable for studying individual enzymatic activities, including various E1, E2, and HECT-type E3 enzymes, and for monitoring multi-step reactions within ubiquitination cascades in a single experimental compartment. We demonstrate the power of the UPS-CONA technique by simultaneously following ubiquitin transfer from Ube1 through Ube2L3 to E6AP. We applied this multi-step setup to investigate the selectivity of five ubiquitination inhibitors reportedly targeting different classes of ubiquitination enzymes. Using UPS-CONA, we have identified a new activity of a small molecule E2 inhibitor, BAY 11-7082, and of a HECT E3 inhibitor, heclin, towards the Ube1 enzyme. CONCLUSIONS As a sensitive, quantitative, flexible, and reagent-efficient method with a straightforward protocol, UPS-CONA constitutes a powerful tool for interrogation of ubiquitination-related enzymatic pathways and their chemical modulators, and is readily scalable for large experiments.
Collapse
Affiliation(s)
- Joanna Koszela
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Nhan T. Pham
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - David Evans
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Stefan Mann
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Irene Perez-Pi
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Steven Shave
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Derek F. J. Ceccarelli
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 1090, Toronto, Ontario M5G 1X5 Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 1090, Toronto, Ontario M5G 1X5 Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3C 3J7 Canada
| | - Manfred Auer
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
- Biomedical Sciences, Medical School, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| |
Collapse
|
33
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
34
|
Chen X, Yang Q, Xiao L, Tang D, Dou QP, Liu J. Metal-based proteasomal deubiquitinase inhibitors as potential anticancer agents. Cancer Metastasis Rev 2018; 36:655-668. [PMID: 29039082 PMCID: PMC5721122 DOI: 10.1007/s10555-017-9701-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deubiquitinases (DUBs) play an important role in protein quality control in eukaryotic cells due to their ability to specifically remove ubiquitin from substrate proteins. Therefore, recent findings have focused on the relevance of DUBs to cancer development, and pharmacological intervention on these enzymes has become a promising strategy for cancer therapy. In particular, several DUBs are physically and/or functionally associated with the proteasome and are attractive targets for the development of novel anticancer drugs. The successful clinical application of cisplatin in cancer treatment has prompted researchers to develop various metal-based anticancer agents with new properties. Recently, we have reported that several metal-based drugs, such as the antirheumatic gold agent auranofin (AF), the antifouling paint biocides copper pyrithione (CuPT) and zinc pyrithione (ZnPT), and also our two synthesized complexes platinum pyrithione (PtPT) and nickel pyrithione (NiPT), can target the proteasomal DUBs UCHL5 and USP14. In this review, we summarize the recently reported small molecule inhibitors of proteasomal DUBs, with a focus on discussion of the unique nature of metal-based proteasomal DUB inhibitors and their anticancer activity.
Collapse
Affiliation(s)
- Xin Chen
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Xiao
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Q Ping Dou
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.,The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, USA.,Department of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI, 48201-2013, USA
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Gupta I, Singh K, Varshney NK, Khan S. Delineating Crosstalk Mechanisms of the Ubiquitin Proteasome System That Regulate Apoptosis. Front Cell Dev Biol 2018; 6:11. [PMID: 29479529 PMCID: PMC5811474 DOI: 10.3389/fcell.2018.00011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/26/2018] [Indexed: 01/10/2023] Open
Abstract
Regulatory functions of the ubiquitin-proteasome system (UPS) are exercised mainly by the ubiquitin ligases and deubiquitinating enzymes. Degradation of apoptotic proteins by UPS is central to the maintenance of cell health, and deregulation of this process is associated with several diseases including tumors, neurodegenerative disorders, diabetes, and inflammation. Therefore, it is the view that interrogating protein turnover in cells can offer a strategy for delineating disease-causing mechanistic perturbations and facilitate identification of drug targets. In this review, we are summarizing an overview to elucidate the updated knowledge on the molecular interplay between the apoptosis and UPS pathways. We have condensed around 100 enzymes of UPS machinery from the literature that ubiquitinates or deubiquitinates the apoptotic proteins and regulates the cell fate. We have also provided a detailed insight into how the UPS proteins are able to fine-tune the intrinsic, extrinsic, and p53-mediated apoptotic pathways to regulate cell survival or cell death. This review provides a comprehensive overview of the potential of UPS players as a drug target for cancer and other human disorders.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Kanika Singh
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant K Varshney
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Sameena Khan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
36
|
Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Prog Neurobiol 2017; 159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
37
|
Upadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, Prasad A, Mishra A. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front Mol Neurosci 2017; 10:151. [PMID: 28579943 PMCID: PMC5437216 DOI: 10.3389/fnmol.2017.00151] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old or damaged proteins. Deposition of various aberrant proteins in specific brain regions leads to neurodegeneration and aging. The cellular protein quality control system develop various defense mechanisms against the accumulation of misfolded and aggregated proteins. The mechanisms underlying the selective recognition of specific crucial protein or misfolded proteins are majorly governed by quality control E3 ubiquitin ligases mediated through ubiquitin-proteasome system. Few known E3 ubiquitin ligases have shown prominent neurodevelopmental functions, but their interactions with different developmental proteins play critical roles in neurodevelopmental disorders. Several questions are yet to be understood properly. How E3 ubiquitin ligases determine the specificity and regulate degradation of a particular substrate involved in neuronal proliferation and differentiation is certainly the one, which needs detailed investigations. Another important question is how neurodevelopmental E3 ubiquitin ligases specifically differentiate between their versatile range of substrates and timing of their functional modulations during different phases of development. The premise of this article is to understand how few E3 ubiquitin ligases sense major molecular events, which are crucial for human brain development from its early embryonic stages to throughout adolescence period. A better understanding of these few E3 ubiquitin ligases and their interactions with other potential proteins will provide invaluable insight into disease mechanisms to approach toward therapeutic interventions.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Naina Arora
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
38
|
Ciechanover A, Kwon YT. Protein Quality Control by Molecular Chaperones in Neurodegeneration. Front Neurosci 2017; 11:185. [PMID: 28428740 PMCID: PMC5382173 DOI: 10.3389/fnins.2017.00185] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis (proteostasis) requires the timely degradation of misfolded proteins and their aggregates by protein quality control (PQC), of which molecular chaperones are an essential component. Compared with other cell types, PQC in neurons is particularly challenging because they have a unique cellular structure with long extensions. Making it worse, neurons are postmitotic, i.e., cannot dilute toxic substances by division, and, thus, are highly sensitive to misfolded proteins, especially as they age. Failure in PQC is often associated with neurodegenerative diseases, such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), and prion disease. In fact, many neurodegenerative diseases are considered to be protein misfolding disorders. To prevent the accumulation of disease-causing aggregates, neurons utilize a repertoire of chaperones that recognize misfolded proteins through exposed hydrophobic surfaces and assist their refolding. If such an effort fails, chaperones can facilitate the degradation of terminally misfolded proteins through either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). If soluble, the substrates associated with chaperones, such as Hsp70, are ubiquitinated by Ub ligases and degraded through the proteasome complex. Some misfolded proteins carrying the KFERQ motif are recognized by the chaperone Hsc70 and delivered to the lysosomal lumen through a process called, chaperone-mediated autophagy (CMA). Aggregation-prone misfolded proteins that remain unprocessed are directed to macroautophagy in which cargoes are collected by adaptors, such as p62/SQSTM-1/Sequestosome-1, and delivered to the autophagosome for lysosomal degradation. The aggregates that have survived all these refolding/degradative processes can still be directly dissolved, i.e., disaggregated by chaperones. Studies have shown that molecular chaperones alleviate the pathogenic symptoms by neurodegeneration-causing protein aggregates. Chaperone-inducing drugs and anti-aggregation drugs are actively exploited for beneficial effects on symptoms of disease. Here, we discuss how chaperones protect misfolded proteins from aggregation and mediate the degradation of terminally misfolded proteins in collaboration with cellular degradative machinery. The topics also include therapeutic approaches to improve the expression and turnover of molecular chaperones and to develop anti-aggregation drugs.
Collapse
Affiliation(s)
- Aaron Ciechanover
- Department of Biomedical Sciences, Protein Metabolism Medical Research Center, College of Medicine, Seoul National UniversitySeoul, South Korea.,Technion Integrated Cancer Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of TechnologyHaifa, Israel
| | - Yong Tae Kwon
- Department of Biomedical Sciences, Protein Metabolism Medical Research Center, College of Medicine, Seoul National UniversitySeoul, South Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
39
|
Ito M, Migita K, Matsumoto S, Wakatsuki K, Tanaka T, Kunishige T, Nakade H, Nakatani M, Nakajima Y. Overexpression of E3 ubiquitin ligase tripartite motif 32 correlates with a poor prognosis in patients with gastric cancer. Oncol Lett 2017; 13:3131-3138. [PMID: 28521418 DOI: 10.3892/ol.2017.5806] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/06/2017] [Indexed: 12/24/2022] Open
Abstract
Tripartite motif protein (TRIM) 32 belongs to the TRIM family, which is composed of RING finger, B-box and coiled-coil domains. TRIM32 has been reported to function as an enzyme 3 ubiquitin ligase and is overexpressed in numerous types of cancer. The present study evaluated the clinical significance of TRIM32 expression levels in gastric cancer. The current study also investigated the TRIM32 expression levels in 142 patients with gastric cancer using immunohistochemistry and examined its clinical importance and potential as a prognostic marker. Furthermore, the function of TRIM32 was examined in vitro. High TRIM32 expression levels were detected in gastric cancer tissues. The postoperative overall and relapse-free survival rates were significantly reduced in patients with tumors with high levels of TRIM32 expression compared with those with tumors expressing low levels of TRIM32. Tumors expressing high levels of TRIM32 were associated with an increased risk of postoperative recurrence, particularly hematogenous recurrence. Multivariate analysis identified TRIM32 status as an independent prognostic factor. Furthermore, TRIM32 gene silencing induced apoptosis and inhibited the proliferation of gastric cancer cells in vitro. Therefore, TRIM32 expression levels may be of potential prognostic value in gastric cancer.
Collapse
Affiliation(s)
- Masahiro Ito
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazuhiro Migita
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Sohei Matsumoto
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kohei Wakatsuki
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Tetsuya Tanaka
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Tomohiro Kunishige
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroshi Nakade
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Mitsuhiro Nakatani
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yoshiyuki Nakajima
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
40
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
41
|
Xi H, Li L, Du J, An R, Fan R, Lu J, Wu YX, Wu SX, Hou J, Zhao LM. hsa-miR-631 resensitizes bortezomib-resistant multiple myeloma cell lines by inhibiting UbcH10. Oncol Rep 2016; 37:961-968. [DOI: 10.3892/or.2016.5318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022] Open
|
42
|
Hou F, Liu RX, Yin CH. Arkadia: Characteristics, function and role in development of human diseases. Shijie Huaren Xiaohua Zazhi 2016; 24:3963-3969. [DOI: 10.11569/wcjd.v24.i28.3963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination of proteins is a post-translational modification that involves targeting and degrading misfolded or unwanted proteins by the proteasome. Arkadia, a RING-type E3 ubiquitin ligase also known as RNF111, confers the substrate specificity for ubiquitination and has a pivotal role in catalyzing the degradation of key signaling molecules. Recent research reveals that Arkadia plays a pivotal role in the transforming growth factor-β1 signaling pathway by catalyzing the degradation of key signaling molecules. In this review, we highlight the recent progress in understanding the characteristics, function and the role of Arkadia in the development of human diseases.
Collapse
|
43
|
Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A. A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging? Front Mol Neurosci 2016; 9:93. [PMID: 27757073 PMCID: PMC5047891 DOI: 10.3389/fnmol.2016.00093] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity and aging. CHIP targets misfolded proteins for their degradation through proteasome, as well as autophagy; simultaneously, with the help of chaperones, it also regulates folding attempts for misfolded proteins. The broad range of CHIP substrates and their associations with multiple pathologies make it a key molecule to work upon and focus for future therapeutic interventions. E3 ubiquitin ligase CHIP interacts and degrades many protein inclusions formed in neurodegenerative diseases. The presence of CHIP at various nodes of cellular protein-protein interaction network presents this molecule as a potential candidate for further research. In this review, we have explored a wide range of functionality of CHIP inside cells by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases. We have also raised many unexplored but expected fundamental questions regarding CHIP functions, which generate hopes for its future applications in research, as well as drug discovery.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore Madhya Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| |
Collapse
|
44
|
Zheng N, Dai X, Wang Z, Wei W. A new layer of degradation mechanism for PR-Set7/Set8 during cell cycle. Cell Cycle 2016; 15:3042-3047. [PMID: 27649746 DOI: 10.1080/15384101.2016.1234552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Set8 is critically involved in transcription regulation, cell cycle progression and genomic stability. Emerging evidence has revealed that E3 ubiquitin ligases such as CRL4cdt2 and SCFSkp2 regulate Set8 protein abundance. However, it is unclear whether other E3 ligase(s) could govern Set8 level for proper cell cycle progression in response to genotoxic stress such as UV irradiation. Recently, we report that the SCFβ-TRCP complex regulates Set8 protein stability by targeting it for ubiquitination and subsequent degradation. Notably, Set8 interacts with the SCFβ-TRCP E3 ligase complex. We further revealed a critical role of CKI in SCFβ-TRCP-mediated degradation of Set8. Mechanistically, CKI-mediated phosphorylation of Set8 at the S253 site promotes its destruction by SCFβ-TRCP. Importantly, SCFβ-TRCP-dependent Set8 destruction also contributes to the tight control of cell proliferation and cell cycle progression, in response to UV irradiation. Here, we summarize our new findings regarding the crucial role of β-TRCP in CKI-mediated Set8 degradation, which could provide new evidence to support that dysregulation of a tight regulatory network of Set8 could lead to aberrant cell cycle process.
Collapse
Affiliation(s)
- Nana Zheng
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University , Suzhou , P. R. China
| | - Xiangpeng Dai
- b Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Zhiwei Wang
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University , Suzhou , P. R. China
| | - Wenyi Wei
- b Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
45
|
Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 2016; 20:1392-407. [PMID: 27028664 PMCID: PMC4929298 DOI: 10.1111/jcmm.12817] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Ashutosh Ahire
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Rohit Pardeshi
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Krishan Thakur
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Cristiana Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alexandru Istrate
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Mangala Lahkar
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Dafin F Muresanu
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Maria Balea
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
46
|
Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, Dalla E, Rajkowska K, Gaweda-Walerych K, Ingallina E, Tonelli C, Morelli MJ, Amato A, Eterno V, Zambelli A, Rosato A, Amati B, Wiśniewski JR, Del Sal G. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol 2016; 18:897-909. [PMID: 27347849 DOI: 10.1038/ncb3380] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/25/2016] [Indexed: 12/17/2022]
Abstract
In cancer, the tumour suppressor gene TP53 undergoes frequent missense mutations that endow mutant p53 proteins with oncogenic properties. Until now, a universal mutant p53 gain-of-function program has not been defined. By means of multi-omics: proteome, DNA interactome (chromatin immunoprecipitation followed by sequencing) and transcriptome (RNA sequencing/microarray) analyses, we identified the proteasome machinery as a common target of p53 missense mutants. The mutant p53-proteasome axis globally affects protein homeostasis, inhibiting multiple tumour-suppressive pathways, including the anti-oncogenic KSRP-microRNA pathway. In cancer cells, p53 missense mutants cooperate with Nrf2 (NFE2L2) to activate proteasome gene transcription, resulting in resistance to the proteasome inhibitor carfilzomib. Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53.
Collapse
Affiliation(s)
- Dawid Walerych
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste 34149, Italy
| | - Kamil Lisek
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Dipartimento di Scienze della Vita-Università degli Studi di Trieste, Trieste 34127, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35128, Italy
| | - Silvano Piazza
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste 34149, Italy
| | - Yari Ciani
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste 34149, Italy
| | - Emiliano Dalla
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste 34149, Italy
| | - Katarzyna Rajkowska
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste 34149, Italy
| | - Katarzyna Gaweda-Walerych
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw 02106, Poland
| | - Eleonora Ingallina
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Dipartimento di Scienze della Vita-Università degli Studi di Trieste, Trieste 34127, Italy
| | - Claudia Tonelli
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20141, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Angela Amato
- Laboratory of Experimental Oncology and Pharmacogenomics, IRCCS 'Salvatore Maugeri' Foundation, Pavia 27100, Italy
| | - Vincenzo Eterno
- Laboratory of Experimental Oncology and Pharmacogenomics, IRCCS 'Salvatore Maugeri' Foundation, Pavia 27100, Italy
| | - Alberto Zambelli
- Laboratory of Experimental Oncology and Pharmacogenomics, IRCCS 'Salvatore Maugeri' Foundation, Pavia 27100, Italy.,Unit of Medical Oncology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo 24127, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35128, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova 35128, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20141, Italy.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried D82152, Germany
| | - Giannino Del Sal
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Dipartimento di Scienze della Vita-Università degli Studi di Trieste, Trieste 34127, Italy
| |
Collapse
|
47
|
Semren N, Welk V, Korfei M, Keller IE, Fernandez IE, Adler H, Günther A, Eickelberg O, Meiners S. Regulation of 26S Proteasome Activity in Pulmonary Fibrosis. Am J Respir Crit Care Med 2016. [PMID: 26207697 DOI: 10.1164/rccm.201412-2270oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The ubiquitin-proteasome system is critical for maintenance of protein homeostasis by degrading polyubiquitinated proteins in a spatially and temporally controlled manner. Cell and protein homeostasis are altered upon pathological tissue remodeling. Dysregulation of the proteasome has been reported for several chronic diseases of the heart, brain, and lung. We hypothesized that proteasome function is altered upon fibrotic lung remodeling, thereby contributing to the pathogenesis of idiopathic pulmonary fibrosis (IPF). OBJECTIVES To investigate proteasome function during myofibroblast differentiation. METHODS We treated lung fibroblasts with transforming growth factor (TGF)-β and examined proteasome composition and activity. For in vivo analysis, we used mouse models of lung fibrosis and fibrotic human lung tissue. MEASUREMENTS AND MAIN RESULTS We demonstrate that induction of myofibroblast differentiation by TGF-β involves activation of the 26S proteasome, which is critically dependent on the regulatory subunit Rpn6. Silencing of Rpn6 in primary human lung fibroblasts counteracted TGF-β-induced myofibroblast differentiation. Activation of the 26S proteasome and increased expression of Rpn6 were detected during bleomycin-induced lung remodeling and fibrosis. Importantly, Rpn6 is overexpressed in myofibroblasts and basal cells of the bronchiolar epithelium in lungs of patients with IPF, which is accompanied by enhanced protein polyubiquitination. CONCLUSIONS We identified Rpn6-dependent 26S proteasome activation as an essential feature of myofibroblast differentiation in vitro and in vivo, and our results suggest it has an important role in IPF pathogenesis.
Collapse
Affiliation(s)
- Nora Semren
- 1 Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians University (LMU), LMU, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Vanessa Welk
- 1 Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians University (LMU), LMU, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martina Korfei
- 2 Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Member of the DZL, Giessen, Germany
| | - Ilona E Keller
- 1 Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians University (LMU), LMU, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Isis E Fernandez
- 1 Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians University (LMU), LMU, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Heiko Adler
- 3 Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Andreas Günther
- 2 Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Member of the DZL, Giessen, Germany.,4 Agaplesion Lung Clinic Waldhof Elgershausen, Greifenstein, Germany; and.,5 European IPF Network and European IPF Registry, Giessen, Germany
| | - Oliver Eickelberg
- 1 Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians University (LMU), LMU, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- 1 Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians University (LMU), LMU, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
48
|
Tessier SN, Storey KB. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling. Biomol Concepts 2016; 7:69-92. [DOI: 10.1515/bmc-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
AbstractStriated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.
Collapse
Affiliation(s)
- Shannon N. Tessier
- 1Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Building 114 16th Street, Charlestown, MA 02129, USA
| | - Kenneth B. Storey
- 2Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| |
Collapse
|
49
|
Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int J Biochem Cell Biol 2016; 73:99-110. [PMID: 26860958 PMCID: PMC4798898 DOI: 10.1016/j.biocel.2016.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|
50
|
Boland K, Flanagan L, McCawley N, Pabari R, Kay EW, McNamara DA, Murray F, Byrne AT, Ramtoola Z, Concannon CG, Prehn JHM. Targeting the 19S proteasomal subunit, Rpt4, for the treatment of colon cancer. Eur J Pharmacol 2016; 780:53-64. [PMID: 26997367 DOI: 10.1016/j.ejphar.2016.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022]
Abstract
Deregulation of the ubiquitin-proteasome pathway has been frequently observed in a number of malignancies. Using quantitative Western blotting of normal and matched tumour tissue, we here identified a significant increase in the 19S proteasome subunit Rpt4 in response to chemoradiation in locally advanced rectal cancer patients with unfavourable outcome. We therefore explored the potential of Rpt4 reduction as a therapeutic strategy in colorectal cancer (CRC). Utilizing siRNA to down regulate Rpt4 expression, we show that silencing of Rpt4 reduced proteasomal activity and induced endoplasmic reticulum stress. Gene silencing of Rpt4 also inhibited cell proliferation, reduced clonogenic survival and induced apoptosis in HCT-116 colon cancer cells. We next developed a cell penetrating peptide-based nanoparticle delivery system to achieve in vivo gene silencing of Rpt4. Administration of Rpt4 siRNA nanoparticles reduced tumour growth and improved survival in a HCT-116 colon cancer xenograft tumour model in vivo. Collectively, our data suggest that inhibition of Rpt4 represents a novel strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Karen Boland
- Centre for Systems Medicine and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland; Department of Gastroenterology, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Lorna Flanagan
- Centre for Systems Medicine and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Niamh McCawley
- Centre for Systems Medicine and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland; Department of Surgery, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Ritesh Pabari
- School of Pharmacy, Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | | | - Frank Murray
- Department of Gastroenterology, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Annette T Byrne
- Centre for Systems Medicine and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Zebunnissa Ramtoola
- School of Pharmacy, Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland
| | - Caoimhín G Concannon
- Centre for Systems Medicine and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|