1
|
Agadagba SK, Yau SY, Liang Y, Dalton K, Thompson B. Bidirectional causality of physical exercise in retinal neuroprotection. Neural Regen Res 2025; 20:3400-3415. [PMID: 39688575 PMCID: PMC11974656 DOI: 10.4103/nrr.nrr-d-24-00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/21/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Physical exercise is recognized as an effective intervention to improve mood, physical performance, and general well-being. It achieves these benefits through cellular and molecular mechanisms that promote the release of neuroprotective factors. Interestingly, reduced levels of physical exercise have been implicated in several central nervous system diseases, including ocular disorders. Emerging evidence has suggested that physical exercise levels are significantly lower in individuals with ocular diseases such as glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. Physical exercise may have a neuroprotective effect on the retina. Therefore, the association between reduced physical exercise and ocular diseases may involve a bidirectional causal relationship whereby visual impairment leads to reduced physical exercise and decreased exercise exacerbates the development of ocular disease. In this review, we summarize the evidence linking physical exercise to eye disease and identify potential mediators of physical exercise-induced retinal neuroprotection. Finally, we discuss future directions for preclinical and clinical research in exercise and eye health.
Collapse
Affiliation(s)
- Stephen K. Agadagba
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Suk-yu Yau
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ying Liang
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Kristine Dalton
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin Thompson
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Ye H, Feng Y, Xiang W, Lin Z, Li Y, Hu W, Liu K, Tao S, Shu Q, Wang J, Xu F, Xu Y, Wei Y, Huang J. Ferroptosis Contributes to Retinal Ganglion Cell Loss in GLAST Knockout Mouse Model of Normal Tension Glaucoma. Invest Ophthalmol Vis Sci 2025; 66:26. [PMID: 40402516 DOI: 10.1167/iovs.66.5.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Purpose Visual impairment from normal-tension glaucoma (NTG) poses an increasing burden, yet the underlying mechanism remains unclear. Investigating protective mechanisms for NTG is critical. We aimed to investigate the role of ferroptosis in retinal ganglion cell (RGC) damage in glutamate-aspartate transporter (GLAST) knockout (GLAST-/-) mice, a model for NTG, and also to determine whether inhibiting ferroptosis can provide neuroprotection. Methods GLAST-/- mice and a glutamate-induced excitotoxicity model in primary RGCs were used to investigate retinal and RGC damage. RNA sequencing identified ferroptosis-related pathways in GLAST-/- retinas. Oxidative stress, lipid peroxidation, and ferroptosis activation were assessed using western blotting and immunofluorescence. Immunohistochemistry (IHC) assessed lipid peroxidation and ferroptosis activation in human retinal tissue. Ferrostatin-1 (Fer-1) was administered to evaluate its neuroprotective effects on RGC survival, retinal thickness, and visual function. Results RNA sequencing revealed significant enrichment of ferroptosis-related pathways in GLAST-/- retinas. Both GLAST deletion and glutamate-induced excitotoxicity increased oxidative stress, lipid peroxidation, and ferroptosis activation in RGCs. IHC in human retinas confirmed elevated 4-hydroxynonenal (4-HNE) and acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) expression. Furthermore, Fer-1 treatment significantly reduced lipid peroxidation, thereby attenuating the ferroptosis pathways. This intervention ameliorated RGC loss associated with GLAST deletion, protected retinal structure and thickness, and improved amplitudes of the photopic negative response, a-wave, b-wave, and oscillatory potentials. Conclusions Ferroptosis significantly contributes to RGC and retinal damage in the GLAST-deletion NTG model. Inhibiting ferroptosis with Fer-1 presents a promising therapeutic strategy for protecting visual function in NTG.
Collapse
Affiliation(s)
- Huiwen Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wu Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zihao Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Li
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Wen Hu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Keyu Liu
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuya Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qinmeng Shu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Jiawei Wang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Xu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Key Laboratory of Eye Health and Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology and Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
3
|
Zhang G, Huang S, Wei M, Wu Y, Wang J. Excitatory Amino Acid Transporters as Therapeutic Targets in the Treatment of Neurological Disorders: Their Roles and Therapeutic Prospects. Neurochem Res 2025; 50:155. [PMID: 40299102 DOI: 10.1007/s11064-025-04400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Excitatory amino acid transporters (EAATs) are pivotal regulators of glutamate homeostasis in the central nervous system and orchestrate synaptic glutamate clearance through transmembrane transport and the glutamine‒glutamate cycle. The five EAAT subtypes (GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, and EAAT5) exhibit spatiotemporal-specific expression patterns in neurons and glial cells, and their dysfunction is implicated in diverse neurological pathologies, including epilepsy, amyotrophic lateral sclerosis (ALS), schizophrenia, depression, and retinal degeneration. Mechanistic studies revealed that astrocytic GLT-1 deficiency disrupts glutamate clearance in ALS motor neurons, whereas GLAST genetic variants are linked to both epilepsy susceptibility and glaucomatous retinal ganglion cell degeneration. Three major challenges persist in ongoing research: ① subtype-specific regulatory mechanisms remain unclear; ② compensatory functions of transporters vary significantly across disease models; and ③ clinical translation lacks standardized evaluation criteria. The interaction mechanisms and dynamic roles of EAATs in neurological disorders were systematically investigated in this study, and an integrated approach combining single-cell profiling, stem cell-based disease modeling, and drug screening platforms was proposed. These findings lay the groundwork for novel therapeutic strategies targeting glutamate homeostasis.
Collapse
Affiliation(s)
- Guirui Zhang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Shupeng Huang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Mingzhen Wei
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yongmo Wu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
- Department of Medical Oncology, Liuzhou Workers' Hospital, Liuzhou, 5450054, China.
- The Second Affiliated Hospital of Guangxi, University of Science and Technology, Guangxi Zhuang Autonomous Region, Liuzhou, 5450054, China.
| |
Collapse
|
4
|
Noro T, Guo X, Namekata K, Shinozaki Y, Hashimoto N, Moriya-Ito K, Harada C, Nakano T, Harada T. Valproic acid prevents NMDA-induced retinal degeneration in marmosets. Neurosci Lett 2025; 855:138197. [PMID: 40090511 DOI: 10.1016/j.neulet.2025.138197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Valproic acid (VPA) is a prescribed drug widely used for treatment of epilepsy, mood disorders, migraines and neuropathic pain. Accumulating evidence suggests that VPA possess neuroprotective properties. Glaucoma, one of the leading causes of vision loss in the world, is characterized by progressive degeneration of retinal ganglion cells (RGCs) and their axons. Intravitreal injection of N-methyl-D-aspartate (NMDA) is well studied in rodents as an acute model of RGC death. In the present study, we first investigated whether NMDA induced retinal degeneration in non-human primate common marmosets as the structure and function of the eye is similar to that of humans. We found that NMDA had no effects on intraocular pressure but induced retinal degeneration by using optical coherence tomography and multifocal electroretinogram, both of which are non-invasive methods. In addition, VPA treatment suppressed acute retinal degeneration and ameliorated visual impairment in marmosets. Our findings raise intriguing possibilities that VPA may be useful for preventing RGC death and suggest that the marmoset is a useful animal model for studying glaucoma.
Collapse
Affiliation(s)
- Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Nanako Hashimoto
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiko Moriya-Ito
- Developmental Neuroscience Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
5
|
Bourke L, O’Brien C. Fibrosis and Src Signalling in Glaucoma: From Molecular Pathways to Therapeutic Prospects. Int J Mol Sci 2025; 26:1009. [PMID: 39940776 PMCID: PMC11817269 DOI: 10.3390/ijms26031009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, is characterised by progressive optic nerve damage, with elevated intraocular pressure (IOP) and extracellular matrix (ECM) remodelling in the lamina cribrosa (LC) contributing to its pathophysiology. While current treatments focus on IOP reduction, they fail to address the underlying fibrotic changes that perpetuate neurodegeneration. The Src proto-oncogene, a non-receptor tyrosine kinase, has emerged as a key regulator of cellular processes, including fibroblast activation, ECM deposition, and metabolism, making it a promising target for glaucoma therapy. Beyond its well-established roles in cancer and fibrosis, Src influences pathways critical to trabecular meshwork function, aqueous humour outflow, and neurodegeneration. However, the complexity of Src signalling networks remains a challenge, necessitating further investigation into the role of Src in glaucoma pathogenesis. This paper explores the therapeutic potential of Src inhibition to mitigate fibrotic remodelling and elevated IOP in glaucoma, offering a novel approach to halting disease progression.
Collapse
Affiliation(s)
- Liam Bourke
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | | |
Collapse
|
6
|
Choi S, Choi SH, Bastola T, Kim KY, Park S, Weinreb RN, Miller YI, Ju WK. AIBP Protects Müller Glial Cells Against Oxidative Stress-Induced Mitochondrial Dysfunction and Reduces Retinal Neuroinflammation. Antioxidants (Basel) 2024; 13:1252. [PMID: 39456505 PMCID: PMC11505583 DOI: 10.3390/antiox13101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma, an optic neuropathy with the loss of retinal ganglion cells (RGCs), is a leading cause of irreversible vision loss. Oxidative stress and mitochondrial dysfunction have a significant role in triggering glia-driven neuroinflammation and subsequent glaucomatous RGC degeneration in the context of glaucoma. It has previously been shown that apolipoprotein A-I binding protein (APOA1BP or AIBP) has an anti-inflammatory function. Moreover, Apoa1bp-/- mice are characterized by retinal neuroinflammation and RGC loss. In this study, we found that AIBP deficiency exacerbated the oxidative stress-induced disruption of mitochondrial dynamics and function in the retina, leading to a further decline in visual function. Mechanistically, AIBP deficiency-induced oxidative stress triggered a reduction in glycogen synthase kinase 3β and dynamin-related protein 1 phosphorylation, optic atrophy type 1 and mitofusin 1 and 2 expression, and oxidative phosphorylation, as well as the activation of mitogen-activated protein kinase (MAPK) in Müller glia dysfunction, leading to cell death and inflammatory responses. In vivo, the administration of recombinant AIBP (rAIBP) effectively protected the structural and functional integrity of retinal mitochondria under oxidative stress conditions and prevented vision loss. In vitro, incubation with rAIBP safeguarded the structural integrity and bioenergetic performance of mitochondria and concurrently suppressed MAPK activation, apoptotic cell death, and inflammatory response in Müller glia. These findings support the possibility that AIBP promotes RGC survival and restores visual function in glaucomatous mice by ameliorating glia-driven mitochondrial dysfunction and neuroinflammation.
Collapse
Affiliation(s)
- Seunghwan Choi
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA; (S.-H.C.); (Y.I.M.)
| | - Tonking Bastola
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92039, USA;
| | - Sungsik Park
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Robert N. Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| | - Yury I. Miller
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA; (S.-H.C.); (Y.I.M.)
| | - Won-Kyu Ju
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92039, USA; (S.C.); (T.B.); (S.P.); (R.N.W.)
| |
Collapse
|
7
|
Namekata K, Noro T, Nishijima E, Sotozono A, Guo X, Harada C, Shinozaki Y, Mitamura Y, Nakano T, Harada T. Drug combination of topical ripasudil and brimonidine enhances neuroprotection in a mouse model of optic nerve injury. J Pharmacol Sci 2024; 154:326-333. [PMID: 38485351 DOI: 10.1016/j.jphs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE To determine whether combination of topical ripasudil and brimonidine has more effective neuroprotection on retinal ganglion cells (RGCs) following injury to axons composing the optic nerve. METHODS Topical ripasudil, brimonidine, or mixture of both drugs were administered to adult mice after optic nerve injury (ONI). The influence of drug conditions on RGC health were evaluated by the quantifications of surviving RGCs, phosphorylated p38 mitogen-activated protein kinase (phospho-p38), and expressions of trophic factors and proinflammatory mediators in the retina. RESULTS Topical ripasudil and brimonidine suppressed ONI-induced RGC death respectively, and mixture of both drugs further stimulated RGC survival. Topical ripasudil and brimonidine suppressed ONI-induced phospho-p38 in the whole retina. In addition, topical ripasudil suppressed expression levels of TNFα, IL-1β and monocyte chemotactic protein-1 (MCP-1), whereas topical brimonidine increased the expression level of basic fibroblast growth factor (bFGF). CONCLUSIONS Combination of topical ripasudil and brimonidine may enhance RGC protection by modulating multiple signaling pathways in the retina.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akiko Sotozono
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
8
|
Bugara K, Pacwa A, Smedowski A. Molecular pathways in experimental glaucoma models. Front Neurosci 2024; 18:1363170. [PMID: 38562304 PMCID: PMC10982327 DOI: 10.3389/fnins.2024.1363170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Glaucoma is a complex and progressive disease that primarily affects the optic nerve axons, leading to irreversible vision loss. Although the exact molecular mechanisms underlying glaucoma pathogenesis are not fully understood, it is believed that except increased intraocular pressure, a combination of genetic and environmental factors play a role in the development of the disease. Animal models have been widely used in the study of glaucoma, allowing researchers to better understand the underlying mechanisms of the disease and test potential treatments. Several molecular pathways have been implicated in the pathogenesis of glaucoma, including oxidative stress, inflammation, and excitotoxic-induced neurodegeneration. This review summarizes the most important knowledge about molecular mechanisms involved in the glaucoma development. Although much research has been done to better understand the molecular mechanisms underlying this disease, there is still much to be learned to develop effective treatments and prevent vision loss in those affected by glaucoma.
Collapse
Affiliation(s)
- Klaudia Bugara
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co., Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
9
|
Agarwal R, Iezhitsa I. Genetic rodent models of glaucoma in representing disease phenotype and insights into the pathogenesis. Mol Aspects Med 2023; 94:101228. [PMID: 38016252 DOI: 10.1016/j.mam.2023.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Malaysia.
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Malaysia
| |
Collapse
|
10
|
Zhou ZX, Xu LJ, Wang HN, Cheng S, Li F, Miao Y, Lei B, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling mediated downregulation of glutamate transporter GLAST in Müller cells in an experimental glaucoma model. Glia 2023; 71:720-741. [PMID: 36416239 DOI: 10.1002/glia.24307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Deficiency of glutamate transporter GLAST in Müller cells may be culpable for excessive extracellular glutamate, which involves in retinal ganglion cell (RGC) damage in glaucoma. We elucidated how GLAST was regulated in rat chronic ocular hypertension (COH) model. Western blot and whole-cell patch-clamp recordings showed that GLAST proteins and GLAST-mediated current densities in Müller cells were downregulated at the early stages of COH. In normal rats, intravitreal injection of the ephrinA3 activator EphA4-Fc mimicked the changes of GLAST in COH retinas. In purified cultured Müller cells, EphA4-Fc treatment reduced GLAST expression at mRNA and protein levels, which was reversed by the tyrosine kinase inhibitor PP2 or transfection with ephrinA3-siRNA (Si-EFNA3), suggesting that EphA4/ephrinA3 reverse signaling mediated GLAST downregulation. EphA4/ephrinA3 reverse signaling-induced GLAST downregulation was mediated by inhibiting PI3K/Akt/NF-κB pathways since EphA4-Fc treatment of cultured Müller cells reduced the levels of p-Akt/Akt and NF-κB p65, which were reversed by transfecting Si-EFNA3. In Müller cells with ephrinA3 knockdown, the PI3K inhibitor LY294002 still decreased the protein levels of NF-κB p65 in the presence of EphA4-Fc, and the mRNA levels of GLAST were reduced by LY294002 and the NF-κB inhibitor SN50, respectively. Pre-injection of the PI3K/Akt pathway activator 740 Y-P reversed the GLAST downregulation in COH retinas. Western blot and TUNEL staining showed that transfecting of Si-EFNA3 reduced Müller cell gliosis and RGC apoptosis in COH retinas. Our results suggest that activated EphA4/ephrinA3 reverse signaling induces GLAST downregulation in Müller cells via inhibiting PI3K/Akt/NF-κB pathways, thus contributing to RGC damage in glaucoma.
Collapse
Affiliation(s)
- Zhi-Xin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Shen WC, Huang BQ, Yang J. Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural Regen Res 2023; 18:87-93. [PMID: 35799514 PMCID: PMC9241424 DOI: 10.4103/1673-5374.344831] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Normal tension glaucoma (NTG) is a multifactorial optic neuropathy characterized by normal intraocular pressure, progressive retinal ganglion cell (RGC) death, and glaucomatous visual field loss. Recent studies have described the mechanisms underlying the pathogenesis of NTG. In addition to controlling intraocular pressure, neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG. In this review, we summarized the main regulatory mechanisms of RGC death in NTG, including autophagy, glutamate neurotoxicity, oxidative stress, neuroinflammation, immunity, and vasoconstriction. Autophagy can be induced by retinal hypoxia and axonal damage. In this process, ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway. Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate, which occurs in RGCs and induces progressive glaucomatous optic neuropathy. Oxidative stress also participates in NTG-related glaucomatous optic neuropathy. It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway. Moreover, it increases inflammation and the immune response of RGCs. Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow, promoting vasospasm and glaucomatous optic neuropathy, as a result of NTG. In conclusion, we discussed research progress on potential options for the protection of RGCs, including TANK binding kinase 1 inhibitors regulating autophagy, N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity, ASK1 inhibitors regulating mitochondrial function, and antioxidants inhibiting oxidative stress. In NTG, RGC death is regulated by a network of mechanisms, while various potential targets protect RGCs. Collectively, these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.
Collapse
|
12
|
Ran J, Zhang Y, Zhang S, Li H, Zhang L, Li Q, Qin J, Li D, Sun L, Xie S, Zhang X, Liu L, Liu M, Zhou J. Targeting the HDAC6-Cilium Axis Ameliorates the Pathological Changes Associated with Retinopathy of Prematurity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105365. [PMID: 35619548 PMCID: PMC9313505 DOI: 10.1002/advs.202105365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Retinopathy of prematurity (ROP) is one of the leading causes of childhood visual impairment and blindness. However, there are still very few effective pharmacological interventions for ROP. Histone deacetylase 6 (HDAC6)-mediated disassembly of photoreceptor cilia has recently been implicated as an early event in the pathogenesis of ROP. Herein it is shown that enhanced expression of HDAC6 by intravitreal injection of adenoviruses encoding HDAC6 induces the typical pathological changes associated with ROP in mice, including disruption of the membranous disks of photoreceptor outer segments and a decrease in electroretinographic amplitudes. Hdac6 transgenic mice exhibit similar ROP-related defects in retinal structures and functions and disassembly of photoreceptor cilia, whereas Hdac6 knockout mice are resistant to oxygen change-induced retinal defects. It is further shown that blocking HDAC6-mediated cilium disassembly by intravitreal injection of small-molecule compounds protect mice from ROP-associated retinal defects. The findings indicate that pharmacological targeting of the HDAC6-cilium axis may represent a promising strategy for the prevention of ROP.
Collapse
Affiliation(s)
- Jie Ran
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Yao Zhang
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Sai Zhang
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Haixia Li
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Liang Zhang
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Qingchao Li
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Lei Sun
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Songbo Xie
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and DiseasesEye Institute and School of OptometryTianjin Medical University Eye HospitalTianjin300384China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Min Liu
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Jun Zhou
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| |
Collapse
|
13
|
Qin Q, Yu N, Gu Y, Ke W, Zhang Q, Liu X, Wang K, Chen M. Inhibiting multiple forms of cell death optimizes ganglion cells survival after retinal ischemia reperfusion injury. Cell Death Dis 2022; 13:507. [PMID: 35637215 PMCID: PMC9151775 DOI: 10.1038/s41419-022-04911-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Progressive retinal ganglion cells (RGCs) death that triggered by retinal ischemia reperfusion (IR), leads to irreversible visual impairment and blindness, but our knowledge of post-IR neuronal death and related mechanisms is limited. In this study, we first demonstrated that apart from necroptosis, which occurs before apoptosis, ferroptosis, which is characterized by iron deposition and lipid peroxidation, is involved in the whole course of retinal IR in mice. Correspondingly, all three types of RGCs death were found in retina samples from human glaucoma donors. Further, inhibitors of apoptosis, necroptosis, and ferroptosis (z-VAD-FMK, Necrostatin-1, and Ferrostatin-1, respectively) all exhibited marked RGC protection against IR both in mice and primary cultured RGCs, with Ferrostatin-1 conferring the best therapeutic effect, suggesting ferroptosis plays a more prominent role in the process of RGC death. We also found that activated microglia, Müller cells, immune responses, and intracellular reactive oxygen species accumulation following IR were significantly mitigated after each inhibitor treatment, albeit to varying degrees. Moreover, Ferrostatin-1 in combination with z-VAD-FMK and Necrostatin-1 prevented IR-induced RGC death better than any inhibitor alone. These findings stand to advance our knowledge of the post-IR RGC death cascade and guide future therapy for RGC protection.
Collapse
Affiliation(s)
- Qiyu Qin
- grid.13402.340000 0004 1759 700XEye Center, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province China
| | - Naiji Yu
- grid.13402.340000 0004 1759 700XEye Center, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province China
| | - Yuxiang Gu
- grid.13402.340000 0004 1759 700XEye Center, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province China
| | - Weishaer Ke
- grid.13402.340000 0004 1759 700XEye Center, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province China
| | - Qi Zhang
- grid.13402.340000 0004 1759 700XEye Center, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province China
| | - Xin Liu
- grid.13402.340000 0004 1759 700XEye Center, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province China
| | - Kaijun Wang
- grid.13402.340000 0004 1759 700XEye Center, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province China
| | - Min Chen
- grid.13402.340000 0004 1759 700XEye Center, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province China
| |
Collapse
|
14
|
Kang EYC, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK, Tsai RK. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants (Basel) 2021; 10:1948. [PMID: 34943051 PMCID: PMC8750806 DOI: 10.3390/antiox10121948] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Ocular diseases associated with retinal ganglion cell (RGC) degeneration is the most common neurodegenerative disorder that causes irreversible blindness worldwide. It is characterized by visual field defects and progressive optic nerve atrophy. The underlying pathophysiology and mechanisms of RGC degeneration in several ocular diseases remain largely unknown. RGCs are a population of central nervous system neurons, with their soma located in the retina and long axons that extend through the optic nerve to form distal terminals and connections in the brain. Because of this unique cytoarchitecture and highly compartmentalized energy demand, RGCs are highly mitochondrial-dependent for adenosine triphosphate (ATP) production. Recently, oxidative stress and mitochondrial dysfunction have been found to be the principal mechanisms in RGC degeneration as well as in other neurodegenerative disorders. Here, we review the role of oxidative stress in several ocular diseases associated with RGC degenerations, including glaucoma, hereditary optic atrophy, inflammatory optic neuritis, ischemic optic neuropathy, traumatic optic neuropathy, and drug toxicity. We also review experimental approaches using cell and animal models for research on the underlying mechanisms of RGC degeneration. Lastly, we discuss the application of antioxidants as a potential future therapy for the ocular diseases associated with RGC degenerations.
Collapse
Affiliation(s)
- Eugene Yu-Chuan Kang
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80424, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Sarah R. Levi
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97403, Taiwan
| |
Collapse
|
15
|
Dammak A, Huete-Toral F, Carpena-Torres C, Martin-Gil A, Pastrana C, Carracedo G. From Oxidative Stress to Inflammation in the Posterior Ocular Diseases: Diagnosis and Treatment. Pharmaceutics 2021; 13:1376. [PMID: 34575451 PMCID: PMC8467715 DOI: 10.3390/pharmaceutics13091376] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Most irreversible blindness observed with glaucoma and retina-related ocular diseases, including age-related macular degeneration and diabetic retinopathy, have their origin in the posterior segment of the eye, making their physiopathology both complex and interconnected. In addition to the age factor, these diseases share the same mechanism disorder based essentially on oxidative stress. In this context, the imbalance between the production of reactive oxygen species (ROS) mainly by mitochondria and their elimination by protective mechanisms leads to chronic inflammation. Oxidative stress and inflammation share a close pathophysiological process, appearing simultaneously and suggesting a relationship between both mechanisms. The biochemical end point of these two biological alarming systems is the release of different biomarkers that can be used in the diagnosis. Furthermore, oxidative stress, initiating in the vulnerable tissue of the posterior segment, is closely related to mitochondrial dysfunction, apoptosis, autophagy dysfunction, and inflammation, which are involved in each disease progression. In this review, we have analyzed (1) the oxidative stress and inflammatory processes in the back of the eye, (2) the importance of biomarkers, detected in systemic or ocular fluids, for the diagnosis of eye diseases based on recent studies, and (3) the treatment of posterior ocular diseases, based on long-term clinical studies.
Collapse
Affiliation(s)
- Azza Dammak
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Fernando Huete-Toral
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Carlos Carpena-Torres
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Alba Martin-Gil
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Cristina Pastrana
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Gonzalo Carracedo
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
- Department of Optometry and Vsiion, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain
| |
Collapse
|
16
|
Suppression of Oxidative Stress as Potential Therapeutic Approach for Normal Tension Glaucoma. Antioxidants (Basel) 2020; 9:antiox9090874. [PMID: 32947996 PMCID: PMC7554707 DOI: 10.3390/antiox9090874] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a neurodegenerative disease of the eye, which involves degeneration of retinal ganglion cells (RGCs): the output neurons of the retina to the brain, which with their axons comprise the optic nerve. Recent studies have shown the possible involvement of oxidative stress in the pathogenesis of glaucoma, especially in the subtype of normal tension glaucoma. Basic experiments utilizing rodent and primate models of glaucoma revealed that antioxidants protect RGCs under various pathological conditions including glutamate neurotoxicity and optic nerve injury. These results suggested that existing drugs and food factors may be useful for prevention and hence therapy of glaucoma. In this review, we highlight some therapeutic candidates, particularly those with antioxidant properties, and discuss the therapeutic potential of RGC protection by modulating gene expressions that prevent and ameliorate glaucoma.
Collapse
|
17
|
Choi SH, Kim KY, Perkins GA, Phan S, Edwards G, Xia Y, Kim J, Skowronska-Krawczyk D, Weinreb RN, Ellisman MH, Miller YI, Ju WK. AIBP protects retinal ganglion cells against neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration. Redox Biol 2020; 37:101703. [PMID: 32896719 PMCID: PMC7484594 DOI: 10.1016/j.redox.2020.101703] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 01/10/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide in individuals 60 years of age and older. Despite its high prevalence, the factors contributing to glaucoma progression are currently not well characterized. Glia-driven neuroinflammation and mitochondrial dysfunction play critical roles in glaucomatous neurodegeneration. Here, we demonstrated that elevated intraocular pressure (IOP) significantly decreased apolipoprotein A-I binding protein (AIBP; gene name Apoa1bp) in retinal ganglion cells (RGCs), but resulted in upregulation of TLR4 and IL-1β expression in Müller glia endfeet. Apoa1bp-/- mice had impaired visual function and Müller glia characterized by upregulated TLR4 activity, impaired mitochondrial network and function, increased oxidative stress and induced inflammatory responses. We also found that AIBP deficiency compromised mitochondrial network and function in RGCs and exacerbated RGC vulnerability to elevated IOP. Administration of recombinant AIBP prevented RGC death and inhibited inflammatory responses and cytokine production in Müller glia in vivo. These findings indicate that AIBP protects RGCs against glia-driven neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration and suggest that recombinant AIBP may be a potential therapeutic agent for glaucoma.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Genea Edwards
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yining Xia
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology, Biophysics & Ophthalmology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Ran J, Liu M, Feng J, Li H, Ma H, Song T, Cao Y, Zhou P, Wu Y, Yang Y, Yang Y, Yu F, Guo H, Zhang L, Xie S, Li D, Gao J, Zhang X, Zhu X, Zhou J. ASK1-Mediated Phosphorylation Blocks HDAC6 Ubiquitination and Degradation to Drive the Disassembly of Photoreceptor Connecting Cilia. Dev Cell 2020; 53:287-299.e5. [PMID: 32275885 DOI: 10.1016/j.devcel.2020.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 01/20/2020] [Accepted: 03/12/2020] [Indexed: 01/08/2023]
Abstract
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. However, the pathogenesis and molecular mechanisms underlying ROP remain elusive. Herein, using the oxygen-induced retinopathy (OIR) mouse model of ROP, we demonstrate that disassembly of photoreceptor connecting cilia is an early event in response to oxygen changes. Histone deacetylase 6 (HDAC6) is upregulated in the retina of OIR mice and accumulates in the transition zone of connecting cilia. We also show that in response to oxygen changes, apoptosis signal-regulating kinase 1 (ASK1) is activated and phosphorylates HDAC6, blocking its ubiquitination by von Hippel-Lindau and subsequent degradation by the proteasome. Moreover, depletion of HDAC6 or inhibition of the ASK1/HDAC6 axis protects mice from oxygen-change-induced pathological changes of photoreceptors. These findings reveal a critical role for ASK1/HDAC6-mediated connecting cilium disassembly in the OIR mouse model of ROP and suggest a potential value of ASK1/HDAC6-targeted agents for prevention of this disease.
Collapse
Affiliation(s)
- Jie Ran
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Jie Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haixia Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Huixian Ma
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ting Song
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yu Cao
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Peng Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yuhan Wu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Heng Guo
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liang Zhang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaomin Zhang
- Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Nogo-A-targeting antibody promotes visual recovery and inhibits neuroinflammation after retinal injury. Cell Death Dis 2020; 11:101. [PMID: 32029703 PMCID: PMC7005317 DOI: 10.1038/s41419-020-2302-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
N-Methyl-D-aspartate (NMDA)-induced neuronal cell death is involved in a large spectrum of diseases affecting the brain and the retina such as Alzheimer’s disease and diabetic retinopathy. Associated neurological impairments may result from the inhibition of neuronal plasticity by Nogo-A. The objective of the current study was to determine the contribution of Nogo-A to NMDA excitotoxicity in the mouse retina. We observed that Nogo-A is upregulated in the mouse vitreous during NMDA-induced inflammation. Intraocular injection of a function-blocking antibody specific to Nogo-A (11C7) was carried out 2 days after NMDA-induced injury. This treatment significantly enhanced visual function recovery in injured animals. Strikingly, the expression of potent pro-inflammatory molecules was downregulated by 11C7, among which TNFα was the most durably decreased cytokine in microglia/macrophages. Additional analyses suggest that TNFα downregulation may stem from cofilin inactivation in microglia/macrophages. 11C7 also limited gliosis presumably via P.Stat3 downregulation. Diabetic retinopathy was associated with increased levels of Nogo-A in the eyes of donors. In summary, our results reveal that Nogo-A-targeting antibody can stimulate visual recovery after retinal injury and that Nogo-A is a potent modulator of excitotoxicity-induced neuroinflammation. These data may be used to design treatments against inflammatory eye diseases.
Collapse
|
20
|
Song YJ, Shi Y, Cui MM, Li M, Wen XR, Zhou XY, Lou HQ, Wang YL, Qi DS, Tang M, Zhang XB. H 2S attenuates injury after ischemic stroke by diminishing the assembly of CaMKII with ASK1-MKK3-p38 signaling module. Behav Brain Res 2020; 384:112520. [PMID: 32006563 DOI: 10.1016/j.bbr.2020.112520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a leading cause of learning and memory dysfunction. Hydrogen sulfide (H2S) has been shown to confer neuroprotection in various neurodegenerative diseases, including cerebral I/R-induced hippocampal CA1 injury. However, the underlying mechanisms have not been completely understood. In the present study, rats were pretreated with SAM/NaHS (SAM, an H2S agonist, and NaHS, an H2S donor) only or SAM/NaHS combined with CaM (an activator of CaMKII) prior to cerebral ischemia. The Morris water maze test demonstrated that SAM/NaHS could alleviate learning and memory impairment induced by cerebral I/R injury. Cresyl violet staining was used to show the survival of hippocampal CA1 pyramidal neurons. SAM/NaHS significantly increased the number of surviving cells, whereas CaM weakened the protection induced by SAM/NaHS. The immunohistochemistry results indicated that the number of Iba1-positive microglia significantly increased after cerebral I/R. Compared with the I/R group, the number of Iba1-positive microglia in the SAM/NaHS groups significantly decreased. Co-Immunoprecipitation and immunoblotting were conducted to demonstrate that SAM/NaHS suppressed the assembly of CaMKII with the ASK1-MKK3-p38 signal module after cerebral I/R, which decreased the phosphorylation of p38. In contrast, CaM significantly inhibited the effects of SAM/NaHS. Taken together, the results suggested that SAM/NaHS could suppress cerebral I/R injury by downregulating p38 phosphorylation via decreasing the assembly of CaMKII with the ASK1-MKK3-p38 signal module.
Collapse
Affiliation(s)
- Yuan-Jian Song
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Yue Shi
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Miao-Miao Cui
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Man Li
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xiang-Ru Wen
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xiao-Yan Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - He-Qing Lou
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Yu-Lan Wang
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Da-Shi Qi
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Man Tang
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| | - Xun-Bao Zhang
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China; School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
21
|
Baig MH, Baker A, Ashraf GM, Dong JJ. ASK1 and its role in cardiovascular and other disorders: available treatments and future prospects. Expert Rev Proteomics 2019; 16:857-870. [DOI: 10.1080/14789450.2019.1676735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Abu Baker
- Nanobiotechnology and nanomedicine lab, Department of Biosciences, Integral University, Lucknow, India
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
22
|
Normal tension glaucoma-like degeneration of the visual system in aged marmosets. Sci Rep 2019; 9:14852. [PMID: 31619716 PMCID: PMC6795850 DOI: 10.1038/s41598-019-51281-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/27/2019] [Indexed: 01/25/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a non-human primate that provides valuable models for neuroscience and aging research due to its anatomical similarities to humans and relatively short lifespan. This study was carried out to examine whether aged marmosets develop glaucoma, as seen in humans. We found that 11% of the aged marmosets presented with glaucoma-like characteristics; this incident rate is very similar to that in humans. Magnetic resonance imaging showed a significant volume loss in the visual cortex, and histological analyses confirmed the degeneration of the lateral geniculate nuclei and visual cortex in the affected marmosets. These marmosets did not have elevated intraocular pressure, but showed an increased oxidative stress level, low cerebrospinal fluid (CSF) pressure, and low brain-derived neurotrophic factor (BDNF) and TrkB expression in the retina, optic nerve head and CSF. Our findings suggest that marmosets have potential to provide useful information for the research of eye and the visual system.
Collapse
|
23
|
Honda S, Namekata K, Kimura A, Guo X, Harada C, Murakami A, Matsuda A, Harada T. Survival of Alpha and Intrinsically Photosensitive Retinal Ganglion Cells in NMDA-Induced Neurotoxicity and a Mouse Model of Normal Tension Glaucoma. ACTA ACUST UNITED AC 2019; 60:3696-3707. [DOI: 10.1167/iovs.19-27145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sari Honda
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
24
|
Huang J, Zhao Q, Li M, Duan Q, Zhao Y, Zhang H. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model. FASEB J 2019; 33:11194-11209. [PMID: 31295013 DOI: 10.1096/fj.201900756r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Vascular factors play a substantial role in the pathogenesis of glaucoma. Expressed in the vascular endothelium, cytochrome P450 (CYP) 2J2 is one of the CYP epoxygenases that metabolize arachidonic acid to produce epoxyeicosatrienoic acids and exert pleiotropic protective effects on the vasculature. In the present study, we investigated whether endothelium-specific overexpression of CYP2J2 (tie2-CYP2J2-Tr) protects against retinal ganglion cell (RGC) loss induced by glaucoma and in what way retinal vessels are involved in this process. We used a glaucoma model of retinal ischemia-reperfusion (I/R) injury in rats and found that endothelium-specific overexpression of CYP2J2 attenuated RGC loss induced by retinal I/R. Moreover, retinal I/R triggered retinal vascular senescence, indicated by up-regulated senescence-related proteins p53, p16, and β-galactosidase activity. The senescent endothelial cells resulted in pericyte loss and increased endothelial secretion of matrix metallopeptidase 9, which further contributed to RGC loss. CYP2J2 overexpression alleviated vascular senescence, pericyte loss, and matrix metallopeptidase 9 secretion. CYP2J2 suppressed endothelial senescence by down-regulating senescence-associated proteins p53 and p16. These 2 proteins were positively regulated by microRNA-128-3p, which was inhibited by CYP2J2. These results suggest that CYP2J2 protects against endothelial senescence and RGC loss in glaucoma, a discovery that may lead to the development of a potential treatment strategy for glaucoma.-Huang, J., Zhao, Q., Li, M., Duan, Q., Zhao, Y., Zhang, H. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model.
Collapse
Affiliation(s)
- Jingqiu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinshuo Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, California, USA
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Ophthalmology, University of California-San Francisco (UCSF), San Francisco, California, USA
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Liu H, Wang W, Li X, Huang C, Zhang Z, Yuan M, Li X. High hydrostatic pressure induces apoptosis of retinal ganglion cells via regulation of the NGF signalling pathway. Mol Med Rep 2019; 19:5321-5334. [PMID: 31059045 PMCID: PMC6522898 DOI: 10.3892/mmr.2019.10206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/02/2019] [Indexed: 12/23/2022] Open
Abstract
High pressure is the most important factor inducing retinal ganglion cell (RGC) apoptosis. However, the underlying mechanisms remain obscure. The present study investigated the effects of different levels of hydrostatic pressure (HP) on RGCs and the potential mechanisms involved. Primary cultured rat RGCs were exposed to five levels of HP (0, 20, 40, 60 and 80 mmHg) for 24 h. Morphological changes in RGCs were observed. The viability and apoptosis rate of RGCs were detected using a Cell Counting Kit‑8 assay and Annexin V‑fluorescein isothiocyanate/propidium iodide flow cytometry, respectively. Western blotting, reverse transcription‑quantitative polymerase chain reaction and immunofluorescence were used to detect the expression and mRNA levels of nerve growth factor (NGF), protein kinase B (AKT), apoptosis signal‑regulating kinase 1 (ASK1), forkhead box O1 (FoxO1) and cAMP response element binding protein (CREB). In the 0‑ and 20‑mmHg groups, there were no apoptotic morphological changes. In the 40 mmHg group, parts of the cell were shrunken or disrupted. In the 60 mmHg group, neurite extension was weakened and parts of the cells were disintegrating or dying. In the 80 mmHg group, the internal structures of the cells were not visible at all. The apoptosis rates of RGCs were significantly higher and the viability rates significantly lower under 40, 60 and 80 mmHg compared with under 0 or 20 mmHg (all P<0.01). The expression and mRNA levels of NGF, AKT and CREB decreased in a dose‑dependent manner in the 40‑, 60‑ and 80‑mmHg groups (all P<0.05), but those of ASK1 and FoxO1 increased in a dose‑dependent manner (all P<0.05). Interestingly, the alterations to the expression and mRNA levels of CREB were significantly larger compared with the changes in ASK1 or FoxO1 in the 40‑, 60‑ and 80‑mmHg groups (all P<0.01). The results of the present study demonstrate that elevated HP of 40, 60 or 80 mmHg reduces viability and induces apoptosis in RGCs, which may occur through effects on the NGF/ASK1/FoxO1 and NGF/AKT/CREB pathways, of which the latter is more strongly affected.
Collapse
Affiliation(s)
- Hongji Liu
- College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Wei Wang
- Department of Ophthalmology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan 646000, P.R. China
| | - Xiang Li
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Chao Huang
- Central Laboratory, Shenzhen Bao'an People's Hospital Affiliated to Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Zongduan Zhang
- Department of Ophthalmology, The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Mingyue Yuan
- College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiangyu Li
- College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
26
|
Dey A, Manthey AL, Chiu K, Do CW. Methods to Induce Chronic Ocular Hypertension: Reliable Rodent Models as a Platform for Cell Transplantation and Other Therapies. Cell Transplant 2019; 27:213-229. [PMID: 29637819 PMCID: PMC5898687 DOI: 10.1177/0963689717724793] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glaucoma, a form of progressive optic neuropathy, is the second leading cause of blindness worldwide. Being a prominent disease affecting vision, substantial efforts are being made to better understand glaucoma pathogenesis and to develop novel treatment options including neuroprotective and neuroregenerative approaches. Cell transplantation has the potential to play a neuroprotective and/or neuroregenerative role for various ocular cell types (e.g., retinal cells, trabecular meshwork). Notably, glaucoma is often associated with elevated intraocular pressure, and over the past 2 decades, several rodent models of chronic ocular hypertension (COH) have been developed that reflect these changes in pressure. However, the underlying pathophysiology of glaucoma in these models and how they compare to the human condition remains unclear. This limitation is the primary barrier for using rodent models to develop novel therapies to manage glaucoma and glaucoma-related blindness. Here, we review the current techniques used to induce COH-related glaucoma in various rodent models, focusing on the strengths and weaknesses of the each, in order to provide a more complete understanding of how these models can be best utilized. To so do, we have separated them based on the target tissue (pre-trabecular, trabecular, and post-trabecular) in order to provide the reader with an encompassing reference describing the most appropriate rodent COH models for their research. We begin with an initial overview of the current use of these models in the evaluation of cell transplantation therapies.
Collapse
Affiliation(s)
- Ashim Dey
- 1 School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Abby L Manthey
- 2 Laboratory of Retina Brain Research, Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- 2 Laboratory of Retina Brain Research, Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,3 Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China.,4 State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Chi-Wai Do
- 1 School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
Sano H, Namekata K, Kimura A, Shitara H, Guo X, Harada C, Mitamura Y, Harada T. Differential effects of N-acetylcysteine on retinal degeneration in two mouse models of normal tension glaucoma. Cell Death Dis 2019; 10:75. [PMID: 30692515 PMCID: PMC6349904 DOI: 10.1038/s41419-019-1365-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/17/2018] [Accepted: 01/14/2019] [Indexed: 12/24/2022]
Abstract
N-acetylcysteine (NAC) is widely used as a mucolytic agent and as an antidote to paracetamol overdose. NAC serves as a precursor of cysteine and stimulates the synthesis of glutathione in neural cells. Suppressing oxidative stress in the retina may be an effective therapeutic strategy for glaucoma, a chronic neurodegenerative disease of the retinal ganglion cells (RGCs) and optic nerves. Here we examined the therapeutic potential of NAC in two mouse models of normal tension glaucoma, in which excitatory amino-acid carrier 1 (EAAC1) or glutamate/aspartate transporter (GLAST) gene was deleted. EAAC1 is expressed in retinal neurons including RGCs, whereas GLAST is mainly expressed in Müller glial cells. Intraperitoneal administration of NAC prevented RGC degeneration and visual impairment in EAAC1-deficient (knockout; KO) mice, but not in GLAST KO mice. In EAAC1 KO mice, oxidative stress and autophagy were suppressed with increased glutathione levels by NAC treatment. Our findings suggest a possibility that systemic administration of NAC may be available for some types of glaucoma patients.
Collapse
Affiliation(s)
- Hiroki Sano
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
28
|
Abstract
Many diseases are related to age, among these neurodegeneration is particularly important. Alzheimer's disease Parkinson's and Glaucoma have many common pathogenic events including oxidative damage, Mitochondrial dysfunction, endothelial alterations and changes in the visual field. These are well known in the case of glaucoma, less in the case of neurodegeneration of the brain. Many other molecular aspects are common, such as the role of endoplasmic reticulum autophagy and neuronal apoptosis while others have been neglected due to lack of space such as inflammatory cytokine or miRNA. Moreover, the loss of specific neuronal populations, the induction of similar mechanisms of cell injury and the deposition of protein aggregates in specific anatomical areas are very similar events between these diseases. Intracellular and/or extracellular accumulation of protein aggregates is a key feature of many neurodegenerative disorders. The existence of abnormal protein aggregates has been documented in the RGCs of glaucomatous patients such as the anomalous Tau protein or the β-amyloid accumulations. Intra-cell catabolic processes also appear to be common in both glaucoma and neurodegeneration. They also help us to understand how the basis between these diseases is common and how the visual aspects can be a serious problem for those who are affected.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Science, University of Genoa, Policlinico San Martino Hospital, Eye Clinic Genoa, Genoa, Italy
| | - Tommaso Rossi
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy
| |
Collapse
|
29
|
Trivli A, Koliarakis I, Terzidou C, Goulielmos GN, Siganos CS, Spandidos DA, Dalianis G, Detorakis ET. Normal-tension glaucoma: Pathogenesis and genetics. Exp Ther Med 2018; 17:563-574. [PMID: 30651837 PMCID: PMC6307418 DOI: 10.3892/etm.2018.7011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022] Open
Abstract
Normal-tension glaucoma (NTG) is a multifactorial optic neuropathy which, similar to open-angle glaucomas, is characterized by progressive retinal ganglion cell death and glaucomatous visual field loss. The major distinction of NTG from open-angle glaucomas is that the intraocular pressure (IOP) does not exceed the normal range. Missing the major risk factor and target of therapy, the elevated IOP, NTG poses a clinical challenge. Several insightful reviews have been published on the pathophysiology of NTG describing the possible underlying mechanisms. The current literature available also suggests that a significant percentage of patients with NTG (as high as 21%) have a family history of glaucoma, indicating a genetic predisposition to the disease. These facts strengthen the indication that NTG remains an enigmatic process. The aim of this review was to summarize the vascular, mechanical and genetic components considered to be responsible for NTG development and to discuss the mechanisms through which they are involved in the pathogenesis of NTG.
Collapse
Affiliation(s)
- Alexandra Trivli
- Department of Ophthalmology, Konstantopouleio-Patission General Hospital, 14233 Athens, Greece.,Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Chryssa Terzidou
- Department of Ophthalmology, Konstantopouleio-Patission General Hospital, 14233 Athens, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Charalambos S Siganos
- Department of Ophthalmology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Georgios Dalianis
- Department of Ophthalmology, Konstantopouleio-Patission General Hospital, 14233 Athens, Greece
| | | |
Collapse
|
30
|
Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina. Int J Mol Sci 2018; 19:ijms19113362. [PMID: 30373222 PMCID: PMC6274960 DOI: 10.3390/ijms19113362] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
The significance of oxidative stress in the development of chronic neurodegenerative diseases of the retina has become increasingly apparent in recent years. Reactive oxygen species (ROS) are free radicals produced at low levels as a result of normal cellular metabolism that are ultimately metabolized and detoxified by endogenous and exogenous mechanisms. In the presence of oxidative cellular stress, ROS are produced in excess, resulting in cellular injury and death and ultimately leading to tissue and organ dysfunction. Recent studies have investigated the role of excess ROS in the pathogenesis and development of chronic neurodegenerative diseases of the retina including glaucoma, diabetic retinopathy, and age-related macular degeneration. Findings from these studies are promising insofar as they provide clear rationales for innovative treatment and prevention strategies of these prevalent and disabling diseases where currently therapeutic options are limited. Here, we briefly outline recent developments that have contributed to our understanding of the role of ROS in the pathogenesis of chronic neurodegenerative diseases of the retina. We then examine and analyze the peer-reviewed evidence in support of ROS as targets for therapy development in the area of chronic neurodegeneration of the retina.
Collapse
|
31
|
Harada C, Kimura A, Guo X, Namekata K, Harada T. Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. Br J Ophthalmol 2018; 103:161-166. [PMID: 30366949 PMCID: PMC6362806 DOI: 10.1136/bjophthalmol-2018-312724] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 12/18/2022]
Abstract
Glaucoma is one of the leading causes of vision loss in the world. Currently, pharmacological intervention for glaucoma therapy is limited to eye drops that reduce intraocular pressure (IOP). Recent studies have shown that various factors as well as IOP are involved in the pathogenesis of glaucoma, especially in the subtype of normal tension glaucoma. To date, various animal models of glaucoma have been established, including glutamate/aspartate transporter knockout (KO) mice, excitatory amino acid carrier 1 KO mice, optineurin E50K knock-in mice, DBA/2J mice and experimentally induced models. These animal models are very useful for elucidating the pathogenesis of glaucoma and for identifying potential therapeutic targets. However, each model represents only some aspects of glaucoma, never the whole disease. This review will summarise the benefits and limitations of using disease models of glaucoma and recent basic research in retinal protection using existing drugs.
Collapse
Affiliation(s)
- Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
32
|
Adeghate J, Rahmatnejad K, Waisbourd M, Katz LJ. Intraocular pressure-independent management of normal tension glaucoma. Surv Ophthalmol 2018; 64:101-110. [PMID: 30300625 DOI: 10.1016/j.survophthal.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Jennifer Adeghate
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Weill Cornell Medical College, Department of Ophthalmology, New York, New York, USA
| | - Kamran Rahmatnejad
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA
| | - Michael Waisbourd
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA; Tel-Aviv University Medical Center, Glaucoma Research Center, Tel-Aviv, Israel
| | - L Jay Katz
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
33
|
Role of neuritin in retinal ganglion cell death in adult mice following optic nerve injury. Sci Rep 2018; 8:10132. [PMID: 29973613 PMCID: PMC6031618 DOI: 10.1038/s41598-018-28425-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Neuritin is a small extracellular protein that plays important roles in the process of neural development, synaptic plasticity, and neural cell survival. Here we investigated the function of neuritin in a mouse model of optic nerve injury (ONI). ONI induced upregulation of neuritin mRNA in the retina of WT mice. The retinal structure and the number of retinal ganglion cells (RGCs) were normal in adult neuritin knockout (KO) mice. In vivo retinal imaging and histopathological analyses demonstrated that RGC death and inner retinal degeneration following ONI were more severe in neuritin KO mice. Immunoblot analyses revealed that ONI-induced phosphorylation of Akt and ERK were suppressed in neuritin KO mice. Our findings suggest that neuritin has neuroprotective effects following ONI and may be useful for treatment of posttraumatic complication.
Collapse
|
34
|
Liu C, Liu X, Qi J, Pant OP, Lu CW, Hao J. DJ-1 in Ocular Diseases: A Review. Int J Med Sci 2018; 15:430-435. [PMID: 29559831 PMCID: PMC5859765 DOI: 10.7150/ijms.23428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
Protein deglycase DJ-1 (Parkinson disease protein 7) is a 20 kDa protein encoded by PARK7 gene. It is also known as a redox-sensitive chaperone and sensor that protect cells against oxidative stress-induced cell death in many human diseases. Though increasing evidence implicates that DJ-1 may also participate in ocular diseases, the overview of DJ-1 in ocular diseases remains elusive. In this review, we discuss the role as well as the underlying molecular mechanisms of DJ-1 in ocular diseases, including Fuchs endothelial corneal dystrophy (FECD), age-related macular degeneration (AMD), cataracts, and ocular neurodegenerative diseases, highlighting that DJ-1 may serve as a very striking therapeutic target for ocular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Cheng-wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Jilong Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
35
|
Livne-Bar I, Wei J, Liu HH, Alqawlaq S, Won GJ, Tuccitto A, Gronert K, Flanagan JG, Sivak JM. Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury. J Clin Invest 2017; 127:4403-4414. [PMID: 29106385 PMCID: PMC5707141 DOI: 10.1172/jci77398] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Astrocytes perform critical non-cell autonomous roles following CNS injury that involve either neurotoxic or neuroprotective effects. Yet the nature of potential prosurvival cues has remained unclear. In the current study, we utilized the close interaction between astrocytes and retinal ganglion cells (RGCs) in the eye to characterize a secreted neuroprotective signal present in retinal astrocyte conditioned medium (ACM). Rather than a conventional peptide neurotrophic factor, we identified a prominent lipid component of the neuroprotective signal through metabolomics screening. The lipoxins LXA4 and LXB4 are small lipid mediators that act locally to dampen inflammation, but they have not been linked directly to neuronal actions. Here, we determined that LXA4 and LXB4 are synthesized in the inner retina, but their levels are reduced following injury. Injection of either lipoxin was sufficient for neuroprotection following acute injury, while inhibition of key lipoxin pathway components exacerbated injury-induced damage. Although LXA4 signaling has been extensively investigated, LXB4, the less studied lipoxin, emerged to be more potent in protection. Moreover, LXB4 neuroprotection was different from that of established LXA4 signaling, and therapeutic LXB4 treatment was efficacious in a chronic model of the common neurodegenerative disease glaucoma. Together, these results identify a potential paracrine mechanism that coordinates neuronal homeostasis and inflammation in the CNS.
Collapse
Affiliation(s)
- Izhar Livne-Bar
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Wei
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - Hsin-Hua Liu
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - Samih Alqawlaq
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gah-Jone Won
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - John G. Flanagan
- Vision Science Program, School of Optometry, University of California at Berkeley, Berkeley, California, USA
| | - Jeremy M. Sivak
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Guo X, Namekata K, Kimura A, Harada C, Harada T. The Renin-Angiotensin System Regulates Neurodegeneration in a Mouse Model of Optic Neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2876-2885. [PMID: 28919108 DOI: 10.1016/j.ajpath.2017.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 01/13/2023]
Abstract
The major role of the renin-angiotensin system (RAS), including that of angiotensin II (Ang II), the principal effector molecule, in the cardiovascular system is well known. Increasing evidence suggests that the RAS also plays a role in the development of autoimmune diseases. Optic neuritis (ie, inflammation of the optic nerve, with retinal ganglion cell loss) is strongly associated with multiple sclerosis. We investigated the effects of candesartan, an Ang II receptor antagonist, on optic neuritis in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. The Ang II concentration was increased in the early phase of EAE. Oral administration of candesartan markedly attenuated demyelination of the optic nerve and spinal cord and reduced retinal ganglion cell loss and visual impairment in mice with EAE. In vitro analyses revealed that Ang II up-regulated the expression of Toll-like receptor (TLR)-4 in astrocytes via the NF-κB pathway. In addition, Ang II treatment enhanced lipopolysaccharide-induced production of monocyte chemoattractant protein 1 in astrocytes, and pretreatment with candesartan or SN50, an NF-κB inhibitor, suppressed the effects of Ang II. The novel pathway of RAS-NF-κB-TLR4 in glial cells identified in the present study may be a valid therapeutic target for neurodegeneration in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
37
|
Guo X, Namekata K, Kimura A, Harada C, Harada T. ASK1 in neurodegeneration. Adv Biol Regul 2017; 66:63-71. [PMID: 28882588 DOI: 10.1016/j.jbior.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs) such as glaucoma, multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are characterized by the progressive loss of neurons, causing irreversible damage to patients. Longer lifespans may be leading to an increase in the number of people affected by NDDs worldwide. Among the pathways strongly impacting the pathogenesis of NDDs, oxidative stress, a condition that occurs because of an imbalance in oxidant and antioxidant levels, has been known to play a vital role in the pathophysiology of NDDs. One of the molecules activated by oxidative stress is apoptosis signal-regulating kinase 1 (ASK1), which has been shown to play a role in NDDs. ASK1 activation is regulated by multiple steps, including oligomerization, phosphorylation, and protein-protein interactions. In the oxidative stress state, reactive oxygen species (ROS) induce the dissociation of thioredoxin, a protein regulating cellular reduction and oxidation (redox), from the N-terminal region of ASK1, and ASK1 is subsequently activated by the oligomerization and phosphorylation of a critical threonine residue, leading to cell death. Here, we review experimental evidence that links ASK1 signaling with the pathogenesis of several NDDs. We propose that ASK1 may be a new point of therapeutic intervention to prevent or treat NDDs.
Collapse
Affiliation(s)
- Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
38
|
Akaiwa K, Namekata K, Azuchi Y, Guo X, Kimura A, Harada C, Mitamura Y, Harada T. Edaravone suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma. Cell Death Dis 2017; 8:e2934. [PMID: 28703795 PMCID: PMC5550882 DOI: 10.1038/cddis.2017.341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/06/2017] [Accepted: 06/19/2017] [Indexed: 01/16/2023]
Abstract
Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs. Loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP) and exhibits glaucomatous pathology including glutamate neurotoxicity and oxidative stress. In the present study, we found that edaravone, a free radical scavenger that is used for treatment of acute brain infarction and amyotrophic lateral sclerosis (ALS), reduces oxidative stress and prevents RGC death and thinning of the inner retinal layer in EAAC1-deficient (KO) mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment in EAAC1 KO mice was ameliorated with edaravone treatment, clearly establishing that edaravone beneficially affects both histological and functional aspects of the glaucomatous retina. Our findings raise intriguing possibilities for the management of glaucoma by utilizing a widely prescribed drug for the treatment of acute brain infarction and ALS, edaravone, in combination with conventional treatments to lower IOP.
Collapse
Affiliation(s)
- Kei Akaiwa
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuriko Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
39
|
Targeting Oxidative Stress for Treatment of Glaucoma and Optic Neuritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2817252. [PMID: 28270908 PMCID: PMC5320364 DOI: 10.1155/2017/2817252] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
Glaucoma is a neurodegenerative disease of the eye and it is one of the leading causes of blindness. Glaucoma is characterized by progressive degeneration of retinal ganglion cells (RGCs) and their axons, namely, the optic nerve, usually associated with elevated intraocular pressure (IOP). Current glaucoma therapies target reduction of IOP, but since RGC death is the cause of irreversible vision loss, neuroprotection may be an effective strategy for glaucoma treatment. One of the risk factors for glaucoma is increased oxidative stress, and drugs with antioxidative properties including valproic acid and spermidine, as well as inhibition of apoptosis signal-regulating kinase 1, an enzyme that is involved in oxidative stress, have been reported to prevent glaucomatous retinal degeneration in mouse models of glaucoma. Optic neuritis is a demyelinating inflammation of the optic nerve that presents with visual impairment and it is commonly associated with multiple sclerosis, a chronic demyelinating disease of the central nervous system. Although steroids are commonly used for treatment of optic neuritis, reduction of oxidative stress by approaches such as gene therapy is effective in ameliorating optic nerve demyelination in preclinical studies. In this review, we discuss oxidative stress as a therapeutic target for glaucoma and optic neuritis.
Collapse
|
40
|
Dong Z, Shinmei Y, Dong Y, Inafuku S, Fukuhara J, Ando R, Kitaichi N, Kanda A, Tanaka K, Noda K, Harada T, Chin S, Ishida S. Effect of geranylgeranylacetone on the protection of retinal ganglion cells in a mouse model of normal tension glaucoma. Heliyon 2016; 2:e00191. [PMID: 27861646 PMCID: PMC5103079 DOI: 10.1016/j.heliyon.2016.e00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/28/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is characterized by axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies, and lowering intraocular pressure is associated with an attenuation of progressive optic nerve damage. Nevertheless, intraocular pressure (IOP) reduction alone was not enough to inhibit the progression of disease, which suggests the contribution of other factors to the glaucoma pathogenesis. In this study, we investigated the cytoprotective effect of geranylgeranylacetone (GGA) on RGCs degeneration using a normal tension glaucoma (NTG) mouse model, which lacks glutamate/aspartate transporter (GLAST) and demonstrates spontaneous RGC and optic nerve degeneration without elevated intraocular pressure (IOP). Three-week-old GLAST+/− mice were given oral administration of GGA at 100, 300, or 600 mg/kg/day or vehicle alone, and littermate control mice were given vehicle alone for 14 days, respectively. At 5 weeks after birth, the number of RGCs was counted in paraffin sections of retinal tissues stained with hematoxylin and eosin. In addition, retrograde labeling technique was also used to quantify the number of RGC. Expression and localization of heat shock protein 70 (HSP70) in retinas were evaluated by reverse transcription polymerase chain reaction and immunohistochemistry, respectively. Activities of caspase-9 and -3 in retinas were also assessed. The number of RGCs of GLAST+/− mice significantly decreased, as compared to that of control mice. RGC loss was significantly suppressed by administration of GGA at 600 mg/kg/day, compared with vehicle alone. Following GGA administration, HSP70 was significantly upregulated together with reduction in the activities of caspase-9 and -3. Our studies highlight HSP70 induction in the retina is available to suppress RGC degeneration, and thus GGA may be applicable for NTG as a promising therapy.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Shinmei
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoko Dong
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saori Inafuku
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junichi Fukuhara
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ryo Ando
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuyoshi Kitaichi
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Ophthalmology, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Atsuhiro Kanda
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Noda
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takayuki Harada
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinki Chin
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Susumu Ishida
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
41
|
Livne-Bar I, Lam S, Chan D, Guo X, Askar I, Nahirnyj A, Flanagan JG, Sivak JM. Pharmacologic inhibition of reactive gliosis blocks TNF-α-mediated neuronal apoptosis. Cell Death Dis 2016; 7:e2386. [PMID: 27685630 PMCID: PMC5059876 DOI: 10.1038/cddis.2016.277] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 01/03/2023]
Abstract
Reactive gliosis is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remain poorly understood. Normally astrocytes maintain a critical homeostatic balance. After stress or injury they undergo rapid parainflammatory activation, characterized by hypertrophy, and increased polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein and vimentin. However, the consequences of IF dynamics in the adult CNS remains unclear, and no pharmacologic tools have been available to target this mechanism in vivo. The mammalian retina is an accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal homeostasis. In particular, our work and others have implicated p38 mitogen-activated protein kinase (MAPK) signaling as a key regulator of glutamate recycling, antioxidant activity and cytokine secretion by astrocytes and related Müller glia, with potent influences on neighboring neurons. Here we report experiments with the small molecule inhibitor, withaferin A (WFA), to specifically block type III IF dynamics in vivo. WFA was administered in a model of metabolic retinal injury induced by kainic acid, and in combination with a recent model of debridement-induced astrocyte reactivity. We show that WFA specifically targets IFs and reduces astrocyte and Müller glial reactivity in vivo. Inhibition of glial IF polymerization blocked p38 MAPK-dependent secretion of TNF-α, resulting in markedly reduced neuronal apoptosis. To our knowledge this is the first study to demonstrate that pharmacologic inhibition of IF dynamics in reactive glia protects neurons in vivo.
Collapse
Affiliation(s)
- Izhar Livne-Bar
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,School of Optometry, University of California at Berkeley, Berkeley, CA, USA
| | - Susy Lam
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Darren Chan
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxin Guo
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Idil Askar
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adrian Nahirnyj
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - John G Flanagan
- School of Optometry, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Guo X, Kimura A, Azuchi Y, Akiyama G, Noro T, Harada C, Namekata K, Harada T. Caloric restriction promotes cell survival in a mouse model of normal tension glaucoma. Sci Rep 2016; 6:33950. [PMID: 27669894 PMCID: PMC5037377 DOI: 10.1038/srep33950] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is characterized by progressive degeneration of retinal ganglion cells (RGCs) and their axons. We previously reported that loss of glutamate transporters (EAAC1 or GLAST) in mice leads to RGC degeneration that is similar to normal tension glaucoma and these animal models are useful in examining potential therapeutic strategies. Caloric restriction has been reported to increase longevity and has potential benefits in injury and disease. Here we investigated the effects of every-other-day fasting (EODF), a form of caloric restriction, on glaucomatous pathology in EAAC1−/− mice. EODF suppressed RGC death and retinal degeneration without altering intraocular pressure. Moreover, visual impairment was ameliorated with EODF, indicating the functional significance of the neuroprotective effect of EODF. Several mechanisms associated with this neuroprotection were explored. We found that EODF upregulated blood β-hydroxybutyrate levels and increased histone acetylation in the retina. Furthermore, it elevated retinal mRNA expression levels of neurotrophic factors and catalase, whereas it decreased oxidative stress levels in the retina. Our findings suggest that EODF, a safe, non-invasive, and low-cost treatment, may be available for glaucoma therapy.
Collapse
Affiliation(s)
- Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuriko Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Goichi Akiyama
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
43
|
Kimura A, Namekata K, Guo X, Harada C, Harada T. Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration. Int J Mol Sci 2016; 17:ijms17091584. [PMID: 27657046 PMCID: PMC5037849 DOI: 10.3390/ijms17091584] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Neurotrophic factors play key roles in the development and survival of neurons. The potent neuroprotective effects of neurotrophic factors, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF), suggest that they are good therapeutic candidates for neurodegenerative diseases. Glaucoma is a neurodegenerative disease of the eye that causes irreversible blindness. It is characterized by damage to the optic nerve, usually due to high intraocular pressure (IOP), and progressive degeneration of retinal neurons called retinal ganglion cells (RGCs). Current therapy for glaucoma focuses on reduction of IOP, but neuroprotection may also be beneficial. BDNF is a powerful neuroprotective agent especially for RGCs. Exogenous application of BDNF to the retina and increased BDNF expression in retinal neurons using viral vector systems are both effective in protecting RGCs from damage. Furthermore, induction of BDNF expression by agents such as valproic acid has also been beneficial in promoting RGC survival. In this review, we discuss the therapeutic potential of neurotrophic factors in retinal diseases and focus on the differential roles of glial and neuronal TrkB in neuroprotection. We also discuss the role of neurotrophic factors in neuroregeneration.
Collapse
Affiliation(s)
- Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
44
|
Chen Z, Wang R, Wu J, Xia F, Sun Q, Xu J, Liu L. Low-dose carbon monoxide inhalation protects neuronal cells from apoptosis after optic nerve crush. Biochem Biophys Res Commun 2015; 469:809-15. [PMID: 26707638 DOI: 10.1016/j.bbrc.2015.12.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 12/31/2022]
Abstract
Glaucomatous optic neuropathy, including axonal degeneration and apoptotic death of retinal ganglion cells (RGCs), eventually leads to irreversible visual impairment. Carbon monoxide (CO) acts as a therapeutic agent against neural injury via its anti-apoptotic effect. Here we hypothesized that low-dose CO inhalation can protect RGCs in a rat model of optic nerve crush (ONC). ONC was performed on adult male Sprague Dawley rats to imitate glaucomatous optic damage. Low-dose CO (250 ppm) or air was inhaled for 1 h immediately after ONC, and all the tests were carried out 2 weeks later. Flash visual evoked potentials (FVEP) and pupil light relax (PLR) were recorded for the assessment of visual function. RGC density was evaluated by hematoxylin and eosin staining and Fluorogold labeling. Retinal apoptotic process was assessed by TUNEL staining and caspase-3 activity measurement. Low-dose CO treatment significantly ameliorated the abnormalities of FVEP and PLR induced by ONC. As expected, the RGC density was increased remarkably by CO inhalation after the glaucomatous optic nerve insult. Moreover, CO treatment after ONC significantly decreased the number of TUNEL-positive cells in ganglion cell layer and attenuated the retinal caspase-3 activity. Low-dose CO inhalation protects RGCs from optic nerve injury via inhibiting caspase-3 dependent apoptosis.
Collapse
Affiliation(s)
- Zeli Chen
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Anatomy, Second Military Medical University, Shanghai, China
| | - Ruobing Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangchun Wu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Anatomy, Second Military Medical University, Shanghai, China
| | - Fangzhou Xia
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Anatomy, Second Military Medical University, Shanghai, China
| | - Qinglei Sun
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Anatomy, Second Military Medical University, Shanghai, China
| | - Jiajun Xu
- Department of Anatomy, Second Military Medical University, Shanghai, China.
| | - Lin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
45
|
Harada C, Azuchi Y, Noro T, Guo X, Kimura A, Namekata K, Harada T. TrkB Signaling in Retinal Glia Stimulates Neuroprotection after Optic Nerve Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3238-47. [PMID: 26476348 DOI: 10.1016/j.ajpath.2015.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/13/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates neural cell survival mainly by activating TrkB receptors. Several lines of evidence support a key role for BDNF-TrkB signaling in survival of adult retinal ganglion cells in animal models of optic nerve injury (ONI), but the neuroprotective effect of exogenous BDNF is transient. Glial cells have recently attracted considerable attention as mediators of neural cell survival, and TrkB expression in retinal glia suggests its role in neuroprotection. To elucidate this point directly, we examined the effect of ONI on TrkB(flox/flox):glial fibrillary acidic protein (GFAP)-Cre+ (TrkB(GFAP)) knockout (KO) mice, in which TrkB is deleted in retinal glial cells. ONI markedly increased mRNA expression levels of basic fibroblast growth factor (bFGF) in wild-type (WT) mice but not in TrkB(GFAP) KO mice. Immunohistochemical analysis at 7 days after ONI (d7) revealed bFGF up-regulation mainly occurred in Müller glia. ONI-induced retinal ganglion cell loss in WT mice was consistently mild compared with TrkB(GFAP) KO mice at d7. On the other hand, ONI severely decreased TrkB expression in both WT and TrkB(GFAP) KO mice after d7, and the severity of retinal degeneration was comparable with TrkB(GFAP) KO mice at d14. Our data provide direct evidence that glial TrkB signaling plays an important role in the early stage of neural protection after traumatic injury.
Collapse
Affiliation(s)
- Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuriko Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
46
|
Mastropasqua R, Fasanella V, Agnifili L, Fresina M, Di Staso S, Di Gregorio A, Marchini G, Ciancaglini M. Advance in the pathogenesis and treatment of normal-tension glaucoma. PROGRESS IN BRAIN RESEARCH 2015; 221:213-32. [PMID: 26518080 DOI: 10.1016/bs.pbr.2015.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Normal-tension glaucoma (NTG) is a multifactorial disease where mechanical stresses and vascular alterations to the optic nerve head probably represent the key pathogenic moments. Although intraocular pressure (IOP) plays a crucial role in the retinal ganglion cell loss, the IOP reduction does not necessarily reduces the disease progression. Therefore, several IOP-independent factors such as glutamate toxicity, oxidative stress, autoimmunity, and vascular dysregulation have been considered in the pathogenesis of NTG. Numerous evidences documented an impairment of the ocular blood flow, involved both in the onset and progression of the disease. The IOP reduction remains the main strategy to reduce the damage progression in NTG. Recently, new treatment strategies have been proposed to improve the control of the disease. Neuroprotection is a rapidly expanding area of research, which represents a promising tool. In the present review, we summarize the recent scientific advancements in the pathogenesis and treatment of NTG.
Collapse
Affiliation(s)
- Rodolfo Mastropasqua
- Ophthalmology Unit Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Fasanella
- Department of Medicine and Aging Science, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Luca Agnifili
- Department of Medicine and Aging Science, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Michela Fresina
- Department of Specialist, Diagnostics and Experimental Medicine (DIMES), Ophthalmology Service, University of Bologna, Bologna, Italy
| | - Silvio Di Staso
- Ophthalmic Clinic Department of Surgical Science, Eye Clinic, University of L'Aquila, L'Aquila, Italy
| | - Angela Di Gregorio
- Ophthalmic Clinic Department of Surgical Science, Eye Clinic, University of L'Aquila, L'Aquila, Italy
| | - Giorgio Marchini
- Ophthalmology Unit Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Ciancaglini
- Ophthalmic Clinic Department of Surgical Science, Eye Clinic, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
47
|
Levkovitch-Verbin H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms. PROGRESS IN BRAIN RESEARCH 2015; 220:37-57. [PMID: 26497784 DOI: 10.1016/bs.pbr.2015.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Apoptosis of retinal ganglion cells (RGCs) in glaucoma causes progressive visual field loss, making it the primary cause of irreversible blindness worldwide. Elevated intraocular pressure and aging, the main risk factors for glaucoma, accelerate RGC apoptosis. Numerous pathways and mechanisms were found to be involved in RGC death in glaucoma. Neurotrophic factors deprivation is an early event. Oxidative stress, mitochondrial dysfunction, inflammation, glial cell dysfunction, and activation of apoptotic pathways and prosurvival pathways play a significant role in RGC death in glaucoma. The most important among the involved pathways are the MAP-kinase pathway, PI-3 kinase/Akt pathway, Bcl-2 family, caspase family, and IAP family.
Collapse
Affiliation(s)
- Hani Levkovitch-Verbin
- Glaucoma Service, Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel.
| |
Collapse
|
48
|
Abstract
Glaucoma is a group of progressive optic neuropathies, characterized by the degeneration of retinal ganglion cells related to the level of intraocular pressure and other factors. The exact pathogenesis of glaucoma is not known, and current therapeutic options are not sufficient to prevent or recover vision loss in glaucoma patients. Functional, repeatable, and easy-to-use animal models are therefore needed. Because of their inherent advantages, rodent animals, including mice and rats, have been widely developed as models to study various aspects of glaucoma and to evaluate possible novel therapies. However, no single model has been shown to emulate all aspects of glaucoma. In this review, we discuss currently available rodent animal models of glaucoma, their strengths and weaknesses, and the possible implications for current glaucoma research.
Collapse
Affiliation(s)
- Shida Chen
- From the Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
49
|
Experimentally Induced Mammalian Models of Glaucoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:281214. [PMID: 26064891 PMCID: PMC4433635 DOI: 10.1155/2015/281214] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022]
Abstract
A wide variety of animal models have been used to study glaucoma. Although these models provide valuable information about the disease, there is still no ideal model for studying glaucoma due to its complex pathogenesis. Animal models for glaucoma are pivotal for clarifying glaucoma etiology and for developing novel therapeutic strategies to halt disease progression. In this review paper, we summarize some of the major findings obtained in various glaucoma models and examine the strengths and limitations of these models.
Collapse
|
50
|
Noro T, Namekata K, Kimura A, Guo X, Azuchi Y, Harada C, Nakano T, Tsuneoka H, Harada T. Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury. Cell Death Dis 2015; 6:e1720. [PMID: 25880087 PMCID: PMC4650557 DOI: 10.1038/cddis.2015.93] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
Spermidine acts as an endogenous free radical scavenger and inhibits the action of reactive oxygen species. In this study, we examined the effects of spermidine on retinal ganglion cell (RGC) death in a mouse model of optic nerve injury (ONI). Daily ingestion of spermidine reduced RGC death following ONI and sequential in vivo retinal imaging revealed that spermidine effectively prevented retinal degeneration. Apoptosis signal-regulating kinase-1 (ASK1) is an evolutionarily conserved mitogen-activated protein kinase kinase kinase and has an important role in ONI-induced RGC apoptosis. We demonstrated that spermidine suppresses ONI-induced activation of the ASK1-p38 mitogen-activated protein kinase pathway. Moreover, production of chemokines important for microglia recruitment was decreased with spermidine treatment and, consequently, accumulation of retinal microglia is reduced. In addition, the ONI-induced expression of inducible nitric oxide synthase in the retina was inhibited with spermidine treatment, particularly in microglia. Furthermore, daily spermidine intake enhanced optic nerve regeneration in vivo. Our findings indicate that spermidine stimulates neuroprotection as well as neuroregeneration, and may be useful for treatment of various neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- T Noro
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - K Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - A Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - X Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - C Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - H Tsuneoka
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - T Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|