1
|
De Silva MI, Gan HK, Bardy C. Repurposing trifluoperazine for glioblastoma treatment. Trends Pharmacol Sci 2025:S0165-6147(25)00045-8. [PMID: 40300936 DOI: 10.1016/j.tips.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Accepted: 03/16/2025] [Indexed: 05/01/2025]
Abstract
Glioblastoma (GBM) remains a therapeutic challenge due to its heterogeneity and plasticity, which drive treatment resistance, especially when compounded by interactions with the brain microenvironment. Recent preclinical evidence indicates that trifluoperazine (TFP) inhibits treatment-induced malignant reprogramming of tumour cells, potentially helping to reduce tumour plasticity. TFP targets calmodulin, dopamine receptors, and stress-responsive proteins (nuclear protein 1, NUPR1). Through these mechanisms, TFP has been shown to reduce tumour growth, sensitise tumours to chemoradiotherapy, and prolong survival in xenograft animal models. The clinical safety profile of TFP is well known from its use as an antipsychotic, and recent preclinical evidence further indicates that TFP has low toxicity to healthy neurons and glia despite transient functional effects on dopamine receptors. This Opinion explores TFP mechanisms of action and clinical activity to assess its suitability as a repurposed therapeutic option for GBM.
Collapse
Affiliation(s)
- Manam Inushi De Silva
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Hui K Gan
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Heidelberg, Melbourne, VIC, Australia; La Trobe University School of Cancer Medicine, and Department of Medicine, University of Melbourne, Heidelberg, Melbourne, VIC, Australia
| | - Cedric Bardy
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Wang P, Liao B, Gong S, Guo H, Zhao L, Liu J, Wu N. Temozolomide promotes glioblastoma stemness expression through senescence-associated reprogramming via HIF1α/HIF2α regulation. Cell Death Dis 2025; 16:317. [PMID: 40253386 PMCID: PMC12009364 DOI: 10.1038/s41419-025-07617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/15/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
A critical challenge in glioblastoma multiforme (GBM) treatment is that tumors recurring after temozolomide (TMZ) therapy become more malignant, exhibiting increased invasiveness and stemness compared to the primary tumor. However, the underlying mechanisms remain unclear. While the majority of GBM cells are eradicated by TMZ, a subset enters cell cycle arrest, adopts a senescence-associated secretory phenotype (SASP), and activates senescence-related signaling pathways. These cells eventually escape senescence, re-enter the cell cycle, and form aggregates exhibiting stem-like characteristics such as elevated stemness marker expression, enhanced colony formation, increased invasiveness, and resistance to chemotherapy. Furthermore, these aggregates promote the invasion and chemotherapy resistance of surrounding cells. Gene Set Enrichment Analysis (GSEA) and KEGG pathway analysis of miRNA and mRNA sequences revealed activation of hallmark hypoxia and HIF1 signaling pathways. The study demonstrated that HIF1α and HIF2α expression fluctuates during and after TMZ treatment. Knockout of HIF1α and HIF2α in GBM cells exposed to TMZ reduced the formation of senescent cells and stem-like aggregates. These findings challenge the efficacy of TMZ therapy by highlighting its role in inducing the process of cellular senescence, thereby contributing to the enhanced stemness and malignancy of recurrent GBM. The regulatory roles of HIF1α and HIF2α are emphasized, underscoring the necessity of preventing senescent cell formation and inhibiting HIF1α/HIF2α expression to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Pan Wang
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Bin Liao
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Sheng Gong
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - HaiYan Guo
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Lu Zhao
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Jie Liu
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Samanta P, Ghosh R, Pakhira S, Mondal M, Biswas S, Sarkar R, Bhowmik A, Saha P, Hajra S. Ribosome biogenesis and ribosomal proteins in cancer stem cells: a new therapeutic prospect. Mol Biol Rep 2024; 51:1016. [PMID: 39325314 DOI: 10.1007/s11033-024-09963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Ribosome has been considered as the fundamental macromolecular machine involved in protein synthesis in both prokaryotic and eukaryotic cells. This protein synthesis machinery consists of several rRNAs and numerous proteins. All of these factors are synthesized, translocated and assembled in a tightly regulated process known as ribosome biogenesis. Any impairment in this process causes development of several diseases like cancer. According to growing evidences, cancer cells display alteration of several ribosomal proteins. Besides, most of them are considered as key molecules involved in ribosome biogenesis, suggesting a correlation between those proteins and formation of ribosomes. Albeit, defective ribosome biogenesis in several cancers has gained prime importance, regulation of this process in cancer stem cells (CSCs) are still unrecognized. In this article, we aim to summarize the alteration of ribosome biogenesis and ribosomal proteins in CSCs. Moreover, we want to highlight the relation of ribosome biogenesis with hypoxia and drug resistance in CSCs based on the existing evidences. Lastly, this review wants to pay attention about the promising anti-cancer drugs which have potential to inhibit ribosome biogenesis in cancer cells as well as CSCs.
Collapse
Affiliation(s)
- Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
4
|
Kundu P, Jain R, Kanuri NN, Arimappamagan A, Santosh V, Kondaiah P. DNA Methylation in Recurrent Glioblastomas: Increased TEM8 Expression Activates the Src/PI3K/AKT/GSK-3β/B-Catenin Pathway. Cancer Genomics Proteomics 2024; 21:485-501. [PMID: 39191501 PMCID: PMC11363927 DOI: 10.21873/cgp.20466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND/AIM Glioblastomas (GBM) are infiltrative malignant brain tumors which mostly recur within a year's time following surgical resection and chemo-radiation therapy. Studies on glioblastoma cells following radio-chemotherapy, have been demonstrated to induce trans-differentiation, cellular plasticity, activation of DNA damage response and stemness. As glioblastomas are heterogenous tumors that develop treatment resistance and plasticity, we investigated if there exist genome-wide DNA methylation changes in recurrent tumors. MATERIALS AND METHODS Utilizing genome-wide DNA methylation arrays, we compared the DNA methylation profile of 11 primary (first occurrence) tumors with 13 recurrent (relapsed) GBM, to delineate the contribution of epigenetic changes associated with therapy exposure, therapy resistance, and relapse of disease. RESULTS Our data revealed 1,224 hypermethylated- and 526 hypomethylated-probes in recurrent glioblastomas compared to primary disease. We found differential methylation of solute carrier and ion channel genes, interleukin receptor/ligand genes, tumor-suppressor genes and genes associated with metastasis. We functionally characterized one such hypomethylated-up-regulated gene, namely anthrax toxin receptor 1/tumor endothelial marker 8 (ANTXR1/TEM8), whose expression was validated to be significantly up-regulated in recurrent glioblastomas compared to primary tumors and confirmed by immunohistochemistry. Using overexpression and knockdown approaches, we showed that TEM8 induces proliferation, invasion, migration, and chemo-radioresistance in glioblastoma cells. Additionally, we demonstrated a novel mechanism of β-catenin stabilization and activation of the β-catenin transcriptional program due to TEM8 overexpression via a Src/PI3K/AKT/GSK3β/β-catenin pathway. CONCLUSION We report genome-wide DNA methylation changes in recurrent GBM and suggest involvement of the TEM8 gene in GBM recurrence and progression.
Collapse
Affiliation(s)
- Paramita Kundu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Breast Cancer Now Toby Robins Research Centre, Department of Breast Research, The Institute of Cancer Research, London, U.K
| | - Ruchi Jain
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Al Jalila Genomics Centre, Al Jalila Children's Hospital, Dubai, United Arab Emirates
| | - Nandaki Nag Kanuri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India;
| |
Collapse
|
5
|
Kan LK, Drill M, Jayakrishnan PC, Sequeira RP, Sanfilippo PG, McLean C, Hunn M, Williams DA, O'Brien TJ, Drummond KJ, Monif M. P2X7 receptor antagonism by AZ10606120 significantly depletes glioblastoma cancer stem cells in vitro. Brain Res Bull 2024; 215:110996. [PMID: 38857832 DOI: 10.1016/j.brainresbull.2024.110996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma is the most aggressive and lethal primary brain malignancy with limited treatment options and poor prognosis. Self-renewing glioblastoma cancer stem cells (GSCs) facilitate tumour progression, resistance to conventional treatment and tumour recurrence. GSCs are resistant to standard treatments. There is a need for novel treatment alternatives that effectively target GSCs. The purinergic P2X receptor 7 (P2X7R) is expressed in glioblastomas and has been implicated in disease pathogenesis. However, the roles of P2X7R have not been comprehensively elucidated in conventional treatment-resistant GSCs. This study characterised P2X7R channel and pore function and investigated the effect of pharmacological P2X7R inhibition in GSCs. Immunofluorescence and live cell fluorescent dye uptake experiments revealed P2X7R expression, and channel and pore function in GSCs. Treatment of GSCs with the P2X7R antagonist, AZ10606120 (AZ), for 72 hours significantly reduced GSC numbers, compared to untreated cells. When compared with the effect of the first-line conventional chemotherapy, temozolomide (TMZ), GSCs treated with AZ had significantly lower cell numbers than TMZ-treated cultures, while TMZ treatment alone did not significantly deplete GSC numbers compared to the control. AZ treatment also induced significant lactate dehydrogenase release by GSCs, indicative of treatment-induced cytotoxic cell death. There were no significant differences in the expression of apoptotic markers, Annexin V and cleaved caspase-3, between AZ-treated cells and the control. Collectively, this study reveals for the first time functional P2X7R channel and pore in GSCs and significant GSC depletion following P2X7R inhibition by AZ. These results indicate that P2X7R inhibition may be a novel therapeutic alternative for glioblastoma, with effectiveness against GSCs resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Liyen K Kan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Matthew Drill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Richard P Sequeira
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Paul G Sanfilippo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Catriona McLean
- Department of Pathology, The Alfred, Melbourne, Victoria, Australia
| | - Martin Hunn
- Department of Neurosurgery, The Alfred, Melbourne, Victoria, Australia
| | - David A Williams
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neurology, The Alfred, Melbourne, Victoria, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neurology, The Alfred, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Friess D, Brauer S, Pöysti A, Choudhury C, Harris L. Tools to study neural and glioma stem cell quiescence. Trends Neurosci 2024; 47:736-748. [PMID: 39191628 DOI: 10.1016/j.tins.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Quiescence is a prolonged but reversible state of cell-cycle arrest that is an adaptive feature of most adult stem cell populations. In the brain, quiescence helps to protect adult neural stem cells from stress and supports lifelong neurogenesis. Unfortunately however, entry into a quiescent or a slow-cycling state is also a malignant feature of brain cancer stem cells. In glioblastoma, where the process has been best characterised, quiescent glioma stem cells preferentially survive chemoradiation, and after therapy, reactivate to regrow the tumour and drive recurrence. In this Review, we discuss the in vitro and in vivo models that have been developed for studying neural stem cell quiescence and how these tools may be used to deepen biological understanding and to develop novel therapies targeting quiescent glioma stem cells.
Collapse
Affiliation(s)
- Dana Friess
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia
| | - Stephanie Brauer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; Queensland University of Technology, School of Biomedical Sciences, QLD, 4059, Australia
| | - Anni Pöysti
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD London, UK
| | - Chandra Choudhury
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia
| | - Lachlan Harris
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia; The University of Queensland, Brisbane, School of Biomedical Sciences, QLD, 4067, Australia; Queensland University of Technology, School of Biomedical Sciences, QLD, 4059, Australia.
| |
Collapse
|
7
|
Zhu Y, Kim SN, Chen ZR, Will R, Zhong RD, Dammann P, Sure U. PDCD10 Is a Key Player in TMZ-Resistance and Tumor Cell Regrowth: Insights into Its Underlying Mechanism in Glioblastoma Cells. Cells 2024; 13:1442. [PMID: 39273014 PMCID: PMC11394141 DOI: 10.3390/cells13171442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Overcoming temozolomide (TMZ)-resistance is a major challenge in glioblastoma therapy. Therefore, identifying the key molecular player in chemo-resistance becomes urgent. We previously reported the downregulation of PDCD10 in primary glioblastoma patients and its tumor suppressor-like function in glioblastoma cells. Here, we demonstrate that the loss of PDCD10 causes a significant TMZ-resistance during treatment and promotes a rapid regrowth of tumor cells after treatment. PDCD10 knockdown upregulated MGMT, a key enzyme mediating chemo-resistance in glioblastoma, accompanied by increased expression of DNA mismatch repair genes, and enabled tumor cells to evade TMZ-induced cell-cycle arrest. These findings were confirmed in independent models of PDCD10 overexpressing cells. Furthermore, PDCD10 downregulation led to the dedifferentiation of glioblastoma cells, as evidenced by increased clonogenic growth, the upregulation of glioblastoma stem cell (GSC) markers, and enhanced neurosphere formation capacity. GSCs derived from PDCD10 knockdown cells displayed stronger TMZ-resistance and regrowth potency, compared to their parental counterparts, indicating that PDCD10-induced stemness may independently contribute to tumor malignancy. These data provide evidence for a dual role of PDCD10 in tumor suppression by controlling both chemo-resistance and dedifferentiation, and highlight PDCD10 as a potential prognostic marker and target for combination therapy with TMZ in glioblastoma.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Su Na Kim
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Zhong-Rong Chen
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rainer Will
- Core Facility Cellular Tools, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Rong-De Zhong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (S.N.K.); (Z.-R.C.); (R.-D.Z.); (P.D.); (U.S.)
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
8
|
Hwang YK, Lee DH, Lee EC, Oh JS. Importance of Autophagy Regulation in Glioblastoma with Temozolomide Resistance. Cells 2024; 13:1332. [PMID: 39195222 PMCID: PMC11353125 DOI: 10.3390/cells13161332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common malignant and CNS tumor, accounting for 47.7% of total cases. Glioblastoma has an incidence rate of 3.21 cases per 100,000 people. The regulation of autophagy, a conserved cellular process involved in the degradation and recycling of cellular components, has been found to play an important role in GBM pathogenesis and response to therapy. Autophagy plays a dual role in promoting tumor survival and apoptosis, and here we discuss the complex interplay between autophagy and GBM. We summarize the mechanisms underlying autophagy dysregulation in GBM, including PI3K/AKT/mTOR signaling, which is most active in brain tumors, and EGFR and mutant EGFRvIII. We also review potential therapeutic strategies that target autophagy for the treatment of GBM, such as autophagy inhibitors used in combination with the standard of care, TMZ. We discuss our current understanding of how autophagy is involved in TMZ resistance and its role in glioblastoma development and survival.
Collapse
Affiliation(s)
- Young Keun Hwang
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.K.H.); (E.C.L.)
| | - Dong-Hun Lee
- Industry-Academic Cooperation Foundation, The Catholic University of Korea, 222, Banpo-daro, Seocho-gu, Seoul 06591, Republic of Korea;
| | - Eun Chae Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.K.H.); (E.C.L.)
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
Smadja DM. Hyperthermia for Targeting Cancer and Cancer Stem Cells: Insights from Novel Cellular and Clinical Approaches. Stem Cell Rev Rep 2024; 20:1532-1539. [PMID: 38795304 DOI: 10.1007/s12015-024-10736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 05/27/2024]
Abstract
The Cellular Heat Shock Response and in particular heat shock protein activation are vital stress reactions observed in both healthy and cancer cells. Hyperthermia (HT) has been proposed for several years as an advancing non-invasive cancer therapy. It selectively targets cancer cells through mechanisms influenced by temperature and temperature variations. This article delves into the impact of HT on cancer cells, especially cancer stem cells (CSCs), essential contributors to cancer recurrence and metastasis. HT has shown promise in eliminating CSCs, sensitizing them to conventional treatments and modulating the tumor microenvironment. The exploration extends to mesenchymal stem cells (MSCs), which exhibit both pro-tumorigenic and anti-tumorigenic effects. HT's potential in recruiting therapeutic MSCs for targeted delivery of antitumoral agents is also discussed. Furthermore, the article introduces Brain Thermodynamics-guided Hyperthermia (BTGH) technology, a breakthrough in temperature control and modulation of heat transfer under different conditions. This non-invasive method leverages the brain-eyelid thermal tunnel (BTT) to monitor and regulate internal brain temperature. BTGH technology, with its precision and noninvasive continuous monitoring capabilities, is under clinical investigation for applications in neurological disorders and cancer. The innovative three-phase approach involves whole-body HT, targeted brain HT, and organ-specific HT. In conclusion, the exploration of localized or whole-body HT offers promising avenues for cancer, psychiatric and neurological diseases. The ongoing clinical investigations and potential applications underscore the significance of understanding and harnessing heat's responses to enhance human health.
Collapse
Affiliation(s)
- David M Smadja
- Paris Cité University, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, 20 rue Leblanc, Paris, F-75015, France.
| |
Collapse
|
10
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
11
|
Kubelt C, Gilles L, Hellmold D, Blumenbecker T, Peschke E, Will O, Ahmeti H, Hövener JB, Jansen O, Lucius R, Synowitz M, Held-Feindt J. Temporal and regional expression changes and co-staining patterns of metabolic and stemness-related markers during glioblastoma progression. Eur J Neurosci 2024; 60:3572-3596. [PMID: 38708527 DOI: 10.1111/ejn.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Glioblastomas (GBMs) are characterized by high heterogeneity, involving diverse cell types, including those with stem-like features contributing to GBM's malignancy. Moreover, metabolic alterations promote growth and therapeutic resistance of GBM. Depending on the metabolic state, antimetabolic treatments could be an effective strategy. Against this background, we investigated temporal and regional expression changes and co-staining patterns of selected metabolic markers [pyruvate kinase muscle isozyme 1/2 (PKM1/2), glucose transporter 1 (GLUT1), monocarboxylate transporter 1/4 (MCT1/4)] in a rodent model and patient-derived samples of GBM. To understand the cellular sources of marker expression, we also examined the connection of metabolic markers to markers related to stemness [Nestin, Krüppel-like factor 4 (KLF4)] in a regional and temporal context. Rat tumour biopsies revealed a temporally increasing expression of GLUT1, higher expression of MCT1/4, Nestin and KLF4, and lower expression of PKM1 compared to the contralateral hemisphere. Patient-derived tumours showed a higher expression of PKM2 and Nestin in the tumour centre vs. edge. Whereas rare co-staining of GLUT1/Nestin was found in tumour biopsies, PKM1/2 and MCT1/4 showed a more distinct co-staining with Nestin in rats and humans. KLF4 was mainly co-stained with GLUT1, MCT1 and PKM1/2 in rat and human tumours. All metabolic markers yielded individual co-staining patterns among themselves. Co-staining mainly occurred later in tumour progression and was more pronounced in tumour centres. Also, positive correlations were found amongst markers that showed co-staining. Our results highlight a link between metabolic alterations and stemness in GBM progression, with complex distinctions depending on studied markers, time points and regions.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lea Gilles
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tjorven Blumenbecker
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Hajrullah Ahmeti
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
12
|
Suita Y, Bright H, Pu Y, Toruner MD, Idehen J, Tapinos N, Singh R. Machine learning on multiple epigenetic features reveals H3K27Ac as a driver of gene expression prediction across patients with glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600585. [PMID: 38979226 PMCID: PMC11230286 DOI: 10.1101/2024.06.25.600585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cancer cells show remarkable plasticity and can switch lineages in response to the tumor microenvironment. Cellular plasticity drives invasiveness and metastasis and helps cancer cells to evade therapy by developing resistance to radiation and cytotoxic chemotherapy. Increased understanding of cell fate determination through epigenetic reprogramming is critical to discover how cancer cells achieve transcriptomic and phenotypic plasticity. Glioblastoma is a perfect example of cancer evolution where cells retain an inherent level of plasticity through activation or maintenance of progenitor developmental programs. However, the principles governing epigenetic drivers of cellular plasticity in glioblastoma remain poorly understood. Here, using machine learning (ML) we employ cross-patient prediction of transcript expression using a combination of epigenetic features (ATAC-seq, CTCF ChIP-seq, RNAPII ChIP-seq, H3K27Ac ChIP-seq, and RNA-seq) of glioblastoma stem cells (GSCs). We investigate different ML and deep learning (DL) models for this task and build our final pipeline using XGBoost. The model trained on one patient generalizes to another one suggesting that the epigenetic signals governing gene transcription are consistent across patients even if GSCs can be very different. We demonstrate that H3K27Ac is the epigenetic feature providing the most significant contribution to cross-patient prediction of gene expression. In addition, using H3K27Ac signals from patients-derived GSCs, we can predict gene expression of human neural crest stem cells suggesting a shared developmental epigenetic trajectory between subpopulations of these malignant and benign stem cells. Our cross-patient ML/DL models determine weighted patterns of influence of epigenetic marks on gene expression across patients with glioblastoma and between GSCs and neural crest stem cells. We propose that broader application of this analysis could reshape our view of glioblastoma tumor evolution and inform the design of new epigenetic targeting therapies.
Collapse
Affiliation(s)
- Yusuke Suita
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI 02903, USA
| | - Hardy Bright
- Data Science Institute, Brown University, Providence, RI 02903, USA
| | - Yuan Pu
- Center for Computational Molecular Biology, Brown University, Providence, RI 02903, USA
| | - Merih Deniz Toruner
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02903, USA
| | - Jordan Idehen
- Department of Computer Science, Brown University, Providence, RI 02903, USA
| | - Nikos Tapinos
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI 02903, USA
- Brown RNA Center, Brown University, Providence, RI 02903, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02903, USA
| |
Collapse
|
13
|
Xu X, Zheng Y, Luo L, You Z, Chen H, Wang J, Zhang F, Liu Y, Ke Y. Glioblastoma stem cells deliver ABCB4 transcribed by ATF3 via exosomes conferring glioblastoma resistance to temozolomide. Cell Death Dis 2024; 15:318. [PMID: 38710703 PMCID: PMC11074105 DOI: 10.1038/s41419-024-06695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.
Collapse
Affiliation(s)
- Xiangdong Xu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Yaofeng Zheng
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Linting Luo
- Department of Neurology, Liwan Central Hospital of Guangzhou, Guangzhou, PR China
| | - Zhongsheng You
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Huajian Chen
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Jihui Wang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Fabing Zhang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Yang Liu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Yiquan Ke
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| |
Collapse
|
14
|
Yabo YA, Heiland DH. Understanding glioblastoma at the single-cell level: Recent advances and future challenges. PLoS Biol 2024; 22:e3002640. [PMID: 38814900 PMCID: PMC11139343 DOI: 10.1371/journal.pbio.3002640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Glioblastoma, the most aggressive and prevalent form of primary brain tumor, is characterized by rapid growth, diffuse infiltration, and resistance to therapies. Intrinsic heterogeneity and cellular plasticity contribute to its rapid progression under therapy; therefore, there is a need to fully understand these tumors at a single-cell level. Over the past decade, single-cell transcriptomics has enabled the molecular characterization of individual cells within glioblastomas, providing previously unattainable insights into the genetic and molecular features that drive tumorigenesis, disease progression, and therapy resistance. However, despite advances in single-cell technologies, challenges such as high costs, complex data analysis and interpretation, and difficulties in translating findings into clinical practice persist. As single-cell technologies are developed further, more insights into the cellular and molecular heterogeneity of glioblastomas are expected, which will help guide the development of personalized and effective therapies, thereby improving prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Yahaya A Yabo
- Translational Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Microenvironment and Immunology Research Laboratory, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dieter Henrik Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Microenvironment and Immunology Research Laboratory, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- German Cancer Consortium (DKTK) partner site, Freiburg, Germany
| |
Collapse
|
15
|
Abu-Serie MM, Osuka S, Heikal LA, Teleb M, Barakat A, Dudeja V. Diethyldithiocarbamate-ferrous oxide nanoparticles inhibit human and mouse glioblastoma stemness: aldehyde dehydrogenase 1A1 suppression and ferroptosis induction. Front Pharmacol 2024; 15:1363511. [PMID: 38720782 PMCID: PMC11076782 DOI: 10.3389/fphar.2024.1363511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
The development of effective therapy for eradicating glioblastoma stem cells remains a major challenge due to their aggressive growth, chemoresistance and radioresistance which are mainly conferred by aldehyde dehydrogenase (ALDH)1A1. The latter is the main stemness mediator via enhancing signaling pathways of Wnt/β-catenin, phosphatidylinositol 3-kinase/AKT, and hypoxia. Furthermore, ALDH1A1 mediates therapeutic resistance by inactivating drugs, stimulating the expression of drug efflux transporters, and detoxifying reactive radical species, thereby apoptosis arresting. Recent reports disclosed the potent and broad-spectrum anticancer activities of the unique nanocomplexes of diethyldithiocarbamate (DE, ALDH1A1 inhibitor) with ferrous oxide nanoparticles (FeO NPs) mainly conferred by inducing lipid peroxidation-dependent non-apoptotic pathways (iron accumulation-triggered ferroptosis), was reported. Accordingly, the anti-stemness activity of nanocomplexes (DE-FeO NPs) was investigated against human and mouse glioma stem cells (GSCs) and radioresistant GSCs (GSCs-RR). DE-FeO NPs exhibited the strongest growth inhibition effect on the treated human GSCs (MGG18 and JX39P), mouse GSCs (GS and PDGF-GSC) and their radioresistant cells (IC50 ≤ 70 and 161 μg/mL, respectively). DE-FeO NPs also revealed a higher inhibitory impact than standard chemotherapy (temozolomide, TMZ) on self-renewal, cancer repopulation, chemoresistance, and radioresistance potentials. Besides, DE-FeO NPs surpassed TMZ regarding the effect on relative expression of all studied stemness genes, as well as relative p-AKT/AKT ratio in the treated MGG18, GS and their radioresistant (MGG18-RR and GS-RR). This potent anti-stemness influence is primarily attributed to ALDH1A1 inhibition and ferroptosis induction, as confirmed by significant elevation of cellular reactive oxygen species and lipid peroxidation with significant depletion of glutathione and glutathione peroxidase 4. DE-FeO NPs recorded the optimal LogP value for crossing the blood brain barrier. This in vitro novel study declared the potency of DE-FeO NPs for collapsing GSCs and GSCs-RR with improving their sensitivity to chemotherapy and radiotherapy, indicating that DE-FeO NPs may be a promising remedy for GBM. Glioma animal models will be needed for in-depth studies on its safe effectiveness.
Collapse
Affiliation(s)
- Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Satoru Osuka
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Lamiaa A. Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
16
|
Raveendran S, Giram A, Elmi M, Ray S, Ireson C, Alavijeh M, Savina IN. Combinatorial Therapy: Targeting CD133+ Glioma Stem-like Cells with a Polysaccharide-Prodrug Complex Functionalised Gold Nanocages. Biomedicines 2024; 12:934. [PMID: 38790896 PMCID: PMC11117750 DOI: 10.3390/biomedicines12050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer treatments are advancing to harness the body's immune system against tumours, aiming for lasting effects. This progress involves combining potent chemotherapy drugs with immunogens to kill cancer cells and trigger lasting immunity. Developing new prodrugs that integrate both chemotherapy and immune-boosting elements could significantly improve anticancer outcomes by activating multiple mechanisms to kill cancer cells. While bacterial polysaccharides are typically not used in therapy due to their immune-stimulating properties, we propose a safe application of an extremophilic bacterial polysaccharide, Mauran (MR), modified with the anticancer drug 5-fluorouracil (5FU) to create a novel prodrug. This obtained prodrug, chloracetyl-MR-5FU, is specifically targeted using gold nanocages to CD133+ glioma cells. Test results have shown a high encapsulation efficiency of the drug during the polysaccharide modification process; its anticancer activity was demonstrated in vitro and the release of the prodrug was demonstrated in ex vivo studies.
Collapse
Affiliation(s)
- Sreejith Raveendran
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK
| | - Amit Giram
- Pharmidex Pharmaceutical Services Limited, 167-169 Great Portland Street, Fifth Floor, London W1W 5PF, UK
| | - Mehrnaz Elmi
- Pharmidex Pharmaceutical Services Limited, 167-169 Great Portland Street, Fifth Floor, London W1W 5PF, UK
| | - Santanu Ray
- School of Environmental Sciences, University of Brighton, Moulsecoomb, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK
| | - Christopher Ireson
- Pharmidex Pharmaceutical Services Limited, 167-169 Great Portland Street, Fifth Floor, London W1W 5PF, UK
| | - Mo Alavijeh
- Pharmidex Pharmaceutical Services Limited, 167-169 Great Portland Street, Fifth Floor, London W1W 5PF, UK
| | - Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK
| |
Collapse
|
17
|
Casciati A, Taddei AR, Rampazzo E, Persano L, Viola G, Cani A, Bresolin S, Cesi V, Antonelli F, Mancuso M, Merla C, Tanori M. Involvement of Mitochondria in the Selective Response to Microsecond Pulsed Electric Fields on Healthy and Cancer Stem Cells in the Brain. Int J Mol Sci 2024; 25:2233. [PMID: 38396911 PMCID: PMC10889160 DOI: 10.3390/ijms25042233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In the last few years, pulsed electric fields have emerged as promising clinical tools for tumor treatments. This study highlights the distinct impact of a specific pulsed electric field protocol, PEF-5 (0.3 MV/m, 40 μs, 5 pulses), on astrocytes (NHA) and medulloblastoma (D283) and glioblastoma (U87 NS) cancer stem-like cells (CSCs). We pursued this goal by performing ultrastructural analyses corroborated by molecular/omics approaches to understand the vulnerability or resistance mechanisms triggered by PEF-5 exposure in the different cell types. Electron microscopic analyses showed that, independently of exposed cells, the main targets of PEF-5 were the cell membrane and the cytoskeleton, causing membrane filopodium-like protrusion disappearance on the cell surface, here observed for the first time, accompanied by rapid cell swelling. PEF-5 induced different modifications in cell mitochondria. A complete mitochondrial dysfunction was demonstrated in D283, while a mild or negligible perturbation was observed in mitochondria of U87 NS cells and NHAs, respectively, not sufficient to impair their cell functions. Altogether, these results suggest the possibility of using PEF-based technology as a novel strategy to target selectively mitochondria of brain CSCs, preserving healthy cells.
Collapse
Affiliation(s)
- Arianna Casciati
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Anna Rita Taddei
- Great Equipment Center-Section of Electron Microscopy, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Elena Rampazzo
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Giampietro Viola
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Alice Cani
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Silvia Bresolin
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Vincenzo Cesi
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Francesca Antonelli
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Caterina Merla
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Mirella Tanori
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| |
Collapse
|
18
|
Wang SSY. Advancing biomarker development for diagnostics and therapeutics using solid tumour cancer stem cell models. TUMORI JOURNAL 2024; 110:10-24. [PMID: 36964664 DOI: 10.1177/03008916231158411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The cancer stem cell model hopes to explain solid tumour carcinogenesis, tumour progression and treatment failure in cancers. However, the cancer stem cell model has led to minimal clinical translation to cancer stem cell biomarkers and targeted therapies in solid tumours. Many reasons underlie the challenges, one being the imperfect understanding of the cancer stem cell model. This review hopes to spur further research into clinically translatable cancer stem cell biomarkers through first defining cancer stem cells and their associated models. With a better understanding of these models there would be a development of more accurate biomarkers. Making the clinical translation of biomarkers into diagnostic tools and therapeutic agents more feasible.
Collapse
|
19
|
De Maria L, Panciani PP, Zeppieri M, Ius T, Serioli S, Piazza A, Di Giovanni E, Fontanella MM, Agosti E. A Systematic Review of the Metabolism of High-Grade Gliomas: Current Targeted Therapies and Future Perspectives. Int J Mol Sci 2024; 25:724. [PMID: 38255798 PMCID: PMC10815583 DOI: 10.3390/ijms25020724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
High-grade glial tumors (HGGs) exhibit aggressive growth patterns and high recurrence rates. The prevailing treatment approach comprises radiation therapy (RT), chemotherapy (CMT), and surgical resection. Despite the progress made in traditional treatments, the outlook for patients with HGGs remains bleak. Tumor metabolism is emerging as a potential target for glioma therapies, a promising approach that harnesses the metabolism to target tumor cells. However, the efficacy of therapies targeting the metabolism of HGGs remains unclear, compelling a comprehensive review. This study aimed to assess the outcome of present trials on HGG therapies targeting metabolism. A comprehensive search of PubMed, Ovid MEDLINE, and Ovid EMBASE was conducted until November 2023. The search method used pertinent Medical Subject Heading (MeSH) terminologies and keywords referring to "high-grade gliomas", "metabolism", "target therapies", "monoclonal antibodies", "overall survival", and "progression-free survival". The review analyzed studies that focused on therapies targeting the metabolism of HGGs in human subjects. These studies included both randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs). Out of 284 articles identified, 23 trials met the inclusion criteria and were thoroughly analyzed. Phase II trials were the most numerous (62%). Targeted metabolic therapies were predominantly used for recurrent HGGs (67%). The most common targeted pathways were the vascular endothelial growth factor (VEGF, 43%), the human epidermal growth factor receptor (HER, 22%), the platelet-derived growth factor (PDGF, 17%), and the mammalian target of rapamycin (mTOR, 17%). In 39% of studies, the subject treatment was combined with CMT (22%), RT (4%), or both (13%). The median OS widely ranged from 4 to 26.3 months, while the median PFS ranged from 1.5 to 13 months. This systematic literature review offers a thorough exploration of the present state of metabolic therapies for HGGs. The multitude of targeted pathways underscores the intricate nature of addressing the metabolic aspects of these tumors. Despite existing challenges, these findings provide valuable insights, guiding future research endeavors. The results serve as a foundation for refining treatment strategies and enhancing patient outcomes within the complex landscape of HGGs.
Collapse
Affiliation(s)
- Lucio De Maria
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals (HUG), Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Simona Serioli
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
| | - Amedeo Piazza
- Department of Neurosurgery, “Sapienza” University, 00185 Rome, Italy
| | - Emanuele Di Giovanni
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals (HUG), Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
| | - Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy or (L.D.M.); (E.A.)
| |
Collapse
|
20
|
Sharma R, Malviya R. Cancer Stem Cells in Carcinogenesis and Potential Role in Pancreatic Cancer. Curr Stem Cell Res Ther 2024; 19:1185-1194. [PMID: 37711007 DOI: 10.2174/1574888x19666230914103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
A poor prognosis is associated with pancreatic cancer because of resistance during treatment and early distant metastases. The discovery of cancer stem cells has opened up novel avenues for research into the biology and treatment of cancer. Many investigations have pointed out the role of these types of stem cells in the oncogenesis and progression of hematologic and solid malignancies, specifically. Due to the existence of cancer stem cells in the proliferation and preservation of pancreatic tumors, such malignancies could be difficult to eradicate using conventional treatment techniques like chemotherapy and radiotherapy. It is hypothesized that pancreatic malignancies originate from a limited population of aberrant cancer stem cells to promote carcinogenesis, tumour metastasis, and therapeutic resistance. This review examines the role of pancreatic cancer stem cells in this disease and their significance in carcinogenesis, as well as the signals which modulate them, and also examines the ongoing clinical studies that are now being conducted with pancreatic stem cells.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
21
|
Chai K, Wang C, Zhou J, Mu W, Gao M, Fan Z, Lv G. Quenching thirst with poison? Paradoxical effect of anticancer drugs. Pharmacol Res 2023; 198:106987. [PMID: 37949332 DOI: 10.1016/j.phrs.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Anticancer drugs have been developed with expectations to provide long-term or at least short-term survival benefits for patients with cancer. Unfortunately, drug therapy tends to provoke malignant biological and clinical behaviours of cancer cells relating not only to the evolution of resistance to specific drugs but also to the enhancement of their proliferation and metastasis abilities. Thus, drug therapy is suspected to impair long-term survival in treated patients under certain circumstances. The paradoxical therapeutic effects could be described as 'quenching thirst with poison', where temporary relief is sought regardless of the consequences. Understanding the underlying mechanisms by which tumours react on drug-induced stress to maintain viability is crucial to develop rational targeting approaches which may optimize survival in patients with cancer. In this review, we describe the paradoxical adverse effects of anticancer drugs, in particular how cancer cells complete resistance evolution, enhance proliferation, escape from immune surveillance and metastasize efficiently when encountered with drug therapy. We also describe an integrative therapeutic framework that may diminish such paradoxical effects, consisting of four main strategies: (1) targeting endogenous stress response pathways, (2) targeting new identities of cancer cells, (3) adaptive therapy- exploiting subclonal competition of cancer cells, and (4) targeting tumour microenvironment.
Collapse
Affiliation(s)
- Kaiyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
22
|
Li S, Chen Y, Xie Y, Zhan H, Zeng Y, Zeng K, Wang L, Zhan Z, Li C, Zhao L, Chen X, Tan Y, Wang Z, Bu J, Song Y, Deng F, Zhou A. FBXO7 Confers Mesenchymal Properties and Chemoresistance in Glioblastoma by Controlling Rbfox2-Mediated Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303561. [PMID: 37822160 PMCID: PMC10667838 DOI: 10.1002/advs.202303561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Mesenchymal glioblastoma (GBM) is highly resistant to radio-and chemotherapy and correlates with worse survival outcomes in GBM patients; however, the underlying mechanism determining the mesenchymal phenotype remains largely unclear. Herein, it is revealed that FBXO7, a substrate-recognition component of the SCF complex implicated in the pathogenesis of Parkinson's disease, confers mesenchymal properties and chemoresistance in GBM by controlling Rbfox2-mediated alternative splicing. Specifically, FBXO7 ubiquitinates Rbfox2 Lys249 through K63-linked ubiquitin chains upon arginine dimethylation at Arg341 and Arg441 by PRMT5, leading to Rbfox2 stabilization. FBXO7 controls Rbfox2-mediated splicing of mesenchymal genes, including FoxM1, Mta1, and Postn. FBXO7-induced exon Va inclusion of FoxM1 promotes FoxM1 phosphorylation by MEK1 and nuclear translocation, thereby upregulates CD44, CD9, and ID1 levels, resulting in GBM stem cell self-renewal and mesenchymal transformation. Moreover, FBXO7 is stabilized by temozolomide, and FBXO7 depletion sensitizes tumor xenografts in mice to chemotherapy. The findings demonstrate that the FBXO7-Rbfox2 axis-mediated splicing contributes to mesenchymal transformation and tumorigenesis, and targeting FBXO7 represents a potential strategy for GBM treatment.
Collapse
Affiliation(s)
- Shangbiao Li
- Department of Radiation OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Yanwen Chen
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Yuxin Xie
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Hongchao Zhan
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Yu Zeng
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Kunlin Zeng
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Li Wang
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Ziling Zhan
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Cuiying Li
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Liqian Zhao
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xiaoxia Chen
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Yujing Tan
- Department of Radiation OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Zhongyong Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhou215004China
| | - Junguo Bu
- Department of Radiation OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Ye Song
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Fan Deng
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Aidong Zhou
- Department of Radiation OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
- Guangdong Province Key Laboratory of Molecular Tumor PathologySouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
23
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
24
|
Krajcer A, Grzywna E, Lewandowska-Łańcucka J. Strategies increasing the effectiveness of temozolomide at various levels of anti-GBL therapy. Biomed Pharmacother 2023; 165:115174. [PMID: 37459661 DOI: 10.1016/j.biopha.2023.115174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Glioblastoma (GBL) is the most common (60-70% of primary brain tumours) and the most malignant of the glial tumours. Although current therapies remain palliative, they have been proven to prolong overall survival. Within an optimal treatment regimen (incl. surgical resection, radiation therapy, and chemotherapy) temozolomide as the current anti-GBL first-line chemotherapeutic has increased the median overall survival to 14-15 months, and the percentage of patients alive at two years has been reported to rise from 10.4% to 26.5%. Though, the effectiveness of temozolomide chemotherapy is limited by the serious systemic, dose-related side effects. Therefore, the ponderation regarding novel treatment methods along with innovative formulations is crucial to emerging the therapeutic potential of the widely used drug simultaneously reducing the drawbacks of its use. Herein the complex temozolomide application restrictions present at different levels of therapy as well as, the currently proposed strategies aimed at reducing those limitations are demonstrated. Approaches increasing the efficacy of anti-GBL treatment are addressed. Our paper is focused on the most recent developments in the field of nano/biomaterials-based systems for temozolomide delivery and their functionalization towards more effective blood-brain-barrier crossing and/or tumour targeting. Appropriate designing accounting for the physical and chemical features of formulations along with distinct routes of administration is also discussed. In addition, considering the multiple resistance mechanisms, the molecular heterogeneity and the evolution of tumour the purposely selected delivery methods, the combined therapeutic approaches and specifically focused on GBL cells therapies are reviewed.
Collapse
Affiliation(s)
- Aleksandra Krajcer
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Ewelina Grzywna
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Św. Anny 12, 31-008 Kraków, Poland
| | | |
Collapse
|
25
|
Guo S, Ramar V, Guo AA, Saafir T, Akpobiyeri H, Hudson B, Li J, Liu M. TRPM7 transactivates the FOSL1 gene through STAT3 and enhances glioma stemness. Cell Mol Life Sci 2023; 80:270. [PMID: 37642779 PMCID: PMC10465393 DOI: 10.1007/s00018-023-04921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION We previously reported that TRPM7 regulates glioma cells' stemness through STAT3. In addition, we demonstrated that FOSL1 is a response gene for TRPM7, and the FOSL1 gene serves as an oncogene to promote glioma proliferation and invasion. METHODS In the present study, we determined the effects of FOSL1 on glioma stem cell (GSC) markers CD133 and ALDH1 by flow cytometry, and the maintenance of stem cell activity by extreme limiting dilution assays (ELDA). To further gain insight into the mechanism by which TRPM7 activates transcription of the FOSL1 gene to contribute to glioma stemness, we constructed a FOSL1 promoter and its GAS mutants followed by luciferase reporter assays and ChIP-qPCR in a glioma cell line and glioma patient-derived xenoline. We further examined GSC markers ALDH1 and TRPM7 as well as FOSL1 by immunohistochemistry staining (IHC) in brain tissue microarray (TMA) of glioma patients. RESULTS We revealed that FOSL1 knockdown reduces the expression of GSC markers CD133 and ALDH1, and FOSL1 is required to maintain stem cell activity in glioma cells. The experiments also showed that mutations of - 328 to - 336 and - 378 to - 386 GAS elements markedly reduced FOSL1 promoter activity. Constitutively active STAT3 increased while dominant-negative STAT3 decreased FOSL1 promoter activity. Furthermore, overexpression of TRPM7 enhanced while silencing of TRPM7 reduced FOSL1 promoter activity. ChIP-qPCR assays revealed that STAT3, present in nuclear lysates of glioma cells stimulated by constitutively activated STAT3, can bind to two GAS elements, respectively. We demonstrated that deacetylation of FOSL1 at the Lys-116 residue located within its DNA binding domain led to an increase in FOSL1 transcriptional activity. We found that the expression of TRPM7, ALDH1, and FOSL1 protein is associated with grades of malignant glioma, and TRPM7 protein expression correlates to the expression of ALDH1 and FOSL1 in glioma patients. CONCLUSIONS These combined results demonstrated that TRPM7 induced FOSL1 transcriptional activation, which is mediated by the action of STAT3, a mechanism shown to be important in glioma stemness. These results indicated that FOSL1, similar to GSC markers ALDH1 and TRPM7, is a diagnostic marker and potential drug target for glioma patients.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr, New Orleans, LA, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Alyssa A Guo
- University of South Carolina SOM Greenville, Greenville, SC, USA
| | - Talib Saafir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Hannah Akpobiyeri
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Breanna Hudson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Jason Li
- Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA.
| |
Collapse
|
26
|
Garimella SV, Gampa SC, Chaturvedi P. Mitochondria in Cancer Stem Cells: From an Innocent Bystander to a Central Player in Therapy Resistance. Stem Cells Cloning 2023; 16:19-41. [PMID: 37641714 PMCID: PMC10460581 DOI: 10.2147/sccaa.s417842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer continues to rank among the world's leading causes of mortality despite advancements in treatment. Cancer stem cells, which can self-renew, are present in low abundance and contribute significantly to tumor recurrence, tumorigenicity, and drug resistance to various therapies. The drug resistance observed in cancer stem cells is attributed to several factors, such as cellular quiescence, dormancy, elevated aldehyde dehydrogenase activity, apoptosis evasion mechanisms, high expression of drug efflux pumps, protective vascular niche, enhanced DNA damage response, scavenging of reactive oxygen species, hypoxic stability, and stemness-related signaling pathways. Multiple studies have shown that mitochondria play a pivotal role in conferring drug resistance to cancer stem cells, through mitochondrial biogenesis, metabolism, and dynamics. A better understanding of how mitochondria contribute to tumorigenesis, heterogeneity, and drug resistance could lead to the development of innovative cancer treatments.
Collapse
Affiliation(s)
- Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
27
|
Sousa N, Geiß C, Bindila L, Lieberwirth I, Kim E, Régnier-Vigouroux A. Targeting sphingolipid metabolism with the sphingosine kinase inhibitor SKI-II overcomes hypoxia-induced chemotherapy resistance in glioblastoma cells: effects on cell death, self-renewal, and invasion. BMC Cancer 2023; 23:762. [PMID: 37587449 PMCID: PMC10433583 DOI: 10.1186/s12885-023-11271-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.
Collapse
Affiliation(s)
- Nadia Sousa
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Geiß
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, Medical University Mainz, Mainz, Germany
| | | | - Ella Kim
- Department of Neurosurgery, Medical University of Mainz, Mainz, Germany
| | - Anne Régnier-Vigouroux
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
28
|
Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L. Systematic Review of Photodynamic Therapy in Gliomas. Cancers (Basel) 2023; 15:3918. [PMID: 37568734 PMCID: PMC10417382 DOI: 10.3390/cancers15153918] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 554414, USA
| | - Syeda M. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana K. Escobedo
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
29
|
Alejo S, Palacios B, Venkata PP, He Y, Li W, Johnson J, Chen Y, Jayamohan S, Pratap U, Clarke K, Zou Y, Lv Y, Weldon K, Viswanadhapalli S, Lai Z, Ye Z, Chen Y, Gilbert A, Suzuki T, Tekmal R, Zhao W, Zheng S, Vadlamudi R, Brenner A, Sareddy GR. Lysine-specific histone demethylase 1A (KDM1A/LSD1) inhibition attenuates DNA double-strand break repair and augments the efficacy of temozolomide in glioblastoma. Neuro Oncol 2023; 25:1249-1261. [PMID: 36652263 PMCID: PMC10326496 DOI: 10.1093/neuonc/noad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Efficient DNA repair in response to standard chemo and radiation therapies often contributes to glioblastoma (GBM) therapy resistance. Understanding the mechanisms of therapy resistance and identifying the drugs that enhance the therapeutic efficacy of standard therapies may extend the survival of GBM patients. In this study, we investigated the role of KDM1A/LSD1 in DNA double-strand break (DSB) repair and a combination of KDM1A inhibitor and temozolomide (TMZ) in vitro and in vivo using patient-derived glioma stem cells (GSCs). METHODS Brain bioavailability of the KDM1A inhibitor (NCD38) was established using LS-MS/MS. The effect of a combination of KDM1A knockdown or inhibition with TMZ was studied using cell viability and self-renewal assays. Mechanistic studies were conducted using CUT&Tag-seq, RNA-seq, RT-qPCR, western blot, homologous recombination (HR) and non-homologous end joining (NHEJ) reporter, immunofluorescence, and comet assays. Orthotopic murine models were used to study efficacy in vivo. RESULTS TCGA analysis showed KDM1A is highly expressed in TMZ-treated GBM patients. Knockdown or knockout or inhibition of KDM1A enhanced TMZ efficacy in reducing the viability and self-renewal of GSCs. Pharmacokinetic studies established that NCD38 readily crosses the blood-brain barrier. CUT&Tag-seq studies showed that KDM1A is enriched at the promoters of DNA repair genes and RNA-seq studies confirmed that KDM1A inhibition reduced their expression. Knockdown or inhibition of KDM1A attenuated HR and NHEJ-mediated DNA repair capacity and enhanced TMZ-mediated DNA damage. A combination of KDM1A knockdown or inhibition and TMZ treatment significantly enhanced the survival of tumor-bearing mice. CONCLUSIONS Our results provide evidence that KDM1A inhibition sensitizes GBM to TMZ via attenuation of DNA DSB repair pathways.
Collapse
Affiliation(s)
- Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Jessica D Johnson
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yihong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Kyra Clarke
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yingli Lv
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Korri Weldon
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhenqing Ye
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yidong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas, 78229, USA
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| |
Collapse
|
30
|
Eckerdt F, Platanias LC. Emerging Role of Glioma Stem Cells in Mechanisms of Therapy Resistance. Cancers (Basel) 2023; 15:3458. [PMID: 37444568 PMCID: PMC10340782 DOI: 10.3390/cancers15133458] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since their discovery at the beginning of this millennium, glioma stem cells (GSCs) have sparked extensive research and an energetic scientific debate about their contribution to glioblastoma (GBM) initiation, progression, relapse, and resistance. Different molecular subtypes of GBM coexist within the same tumor, and they display differential sensitivity to chemotherapy. GSCs contribute to tumor heterogeneity and recapitulate pathway alterations described for the three GBM subtypes found in patients. GSCs show a high degree of plasticity, allowing for interconversion between different molecular GBM subtypes, with distinct proliferative potential, and different degrees of self-renewal and differentiation. This high degree of plasticity permits adaptation to the environmental changes introduced by chemo- and radiation therapy. Evidence from mouse models indicates that GSCs repopulate brain tumors after therapeutic intervention, and due to GSC plasticity, they reconstitute heterogeneity in recurrent tumors. GSCs are also inherently resilient to standard-of-care therapy, and mechanisms of resistance include enhanced DNA damage repair, MGMT promoter demethylation, autophagy, impaired induction of apoptosis, metabolic adaptation, chemoresistance, and immune evasion. The remarkable oncogenic properties of GSCs have inspired considerable interest in better understanding GSC biology and functions, as they might represent attractive targets to advance the currently limited therapeutic options for GBM patients. This has raised expectations for the development of novel targeted therapeutic approaches, including targeting GSC plasticity, chimeric antigen receptor T (CAR T) cells, and oncolytic viruses. In this review, we focus on the role of GSCs as drivers of GBM and therapy resistance, and we discuss how insights into GSC biology and plasticity might advance GSC-directed curative approaches.
Collapse
Affiliation(s)
- Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Medicine Service, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Boylan J, Byers E, Kelly DF. The Glioblastoma Landscape: Hallmarks of Disease, Therapeutic Resistance, and Treatment Opportunities. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i6.3994. [PMID: 38107346 PMCID: PMC10723753 DOI: 10.18103/mra.v11i6.3994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Malignant brain tumors are aggressive and difficult to treat. Glioblastoma is the most common and lethal form of primary brain tumor, often found in patients with no genetic predisposition. The median life expectancy for individuals diagnosed with this condition is 6 months to 2 years and there is no known cure. New paradigms in cancer biology implicate a small subset of tumor cells in initiating and sustaining these incurable brain tumors. Here, we discuss the heterogenous nature of glioblastoma and theories behind its capacity for therapy resistance and recurrence. Within the cancer landscape, cancer stem cells are thought to be both tumor initiators and major contributors to tumor heterogeneity and therapy evasion and such cells have been identified in glioblastoma. At the cellular level, disruptions in the delicate balance between differentiation and self-renewal spur transformation and support tumor growth. While rapidly dividing cells are more sensitive to elimination by traditional treatments, glioblastoma stem cells evade these measures through slow division and reversible exit from the cell cycle. At the molecular level, glioblastoma tumor cells exploit several signaling pathways to evade conventional therapies through improved DNA repair mechanisms and a flexible state of senescence. We examine these common evasion techniques while discussing potential molecular approaches to better target these deadly tumors. Equally important, the presented information encourages the idea of augmenting conventional treatments with novel glioblastoma stem cell-directed therapies, as eliminating these harmful progenitors holds great potential to modulate tumor recurrence.
Collapse
Affiliation(s)
- Jack Boylan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
32
|
Sahu U, Mullarkey MP, Pei G, Zhao Z, Hong B, Kaur B. oHSV-P10 reduces glioma stem cell enrichment after oncolytic HSV therapy. Mol Ther Oncolytics 2023; 29:30-41. [PMID: 37114074 PMCID: PMC10126842 DOI: 10.1016/j.omto.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Longstanding evidence implicate glioma stem-like cells as the main drivers contributing toward glioblastoma (GBM) therapy resistance and tumor recurrence. Although oncolytic herpes simplex virus (oHSV) viral therapy is a promising biological therapy recently approved for melanoma (in the United States and Europe) and GBM (in Japan); however, the impact of this therapy on GBM stem-like cells (GSCs) is understudied. Here we show that post-oHSV virotherapy activated AKT signaling results in an enrichment of GSC signatures in glioma, which mimics the enrichment in GSC observed after radiation treatment. We also uncovered that a second-generation oncolytic virus armed with PTEN-L (oHSV-P10) decreases this by moderating IL6/JAK/STAT3 signaling. This ability was retained in the presence of radiation treatment and oHSV-P10-sensitized intracranial GBM to radiotherapy. Collectively, our findings uncover potential mechanisms to overcome GSC-mediated radiation resistance via oHSV-P10.
Collapse
Affiliation(s)
- Upasana Sahu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Matthew P. Mullarkey
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bangxing Hong
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
33
|
Xu L, Duan H, Zou Y, Wang J, Liu H, Wang W, Zhu X, Chen J, Zhu C, Yin Z, Zhao X, Wang Q. Xihuang Pill-destabilized CD133/EGFR/Akt/mTOR cascade reduces stemness enrichment of glioblastoma via the down-regulation of SOX2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154764. [PMID: 36963368 DOI: 10.1016/j.phymed.2023.154764] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Our previous study found that XHP could induce GBM cells to undergo apoptosis. A lot of evidence suggests that glioma stem-like cells (GSCs) are key factors that contribute to disease progression and poor prognosis of glioblastoma multiforme (GBM). Traditional Chinese medicine has been applied in clinical practice as a complementary and alternative therapy for glioma. PURPOSE To evaluate the effect and the potential molecular mechanism of Xihuang pill (XHP) on GSCs. METHODS UPLC-QTOF-MS analysis was used for constituent analysis of XHP. Using network pharmacology and bioinformatics methods, a molecular network targeting GSCs by the active ingredients in XHP was constructed. Cell viability, self-renewal ability, apoptosis, and GSC markers were detected by CCK-8 assay, tumor sphere formation assay and flow cytometry, respectively. The interrelationship between GSC markers (CD133 and SOX2) and key proteins of the EGFR/Akt/mTOR signaling pathway was evaluated using GEPIA and verified by western blot. A GBM cell line stably overexpressing Akt was constructed using lentivirus to evaluate the role of Akt signaling in the regulation of glioma stemness. The effect of XHP on glioma growth was analyzed by a subcutaneously transplanted glioma cell model in nude mice, hematoxylin-eosin staining was used to examine pathological changes, TUNEL staining was used to detect apoptosis in tumor tissues, and the expression of GSC markers in tumor tissues was identified by western blot and immunofluorescence. RESULTS Bioinformatics analysis showed that 55 matched targets were related to XHP targets and glioma stem cell targets. In addition to causing apoptosis, XHP could diminish the number of GBM 3D spheroids, the proportion of CD133-positive cells and the expression level of GSC markers (CD133 and SOX2) in vitro. Furthermore, XHP could attenuate the expression of CD133, EGFR, p-Akt, p-mTOR and SOX2 in GBM spheres. Overexpression of Akt significantly increased the expression level of SOX2, which was prohibited in the presence of XHP. XHP reduced GSC markers including CD133 and SOX2, and impeded the development of glioma growth in xenograft mouse models in vivo. CONCLUSION We demonstrate for the first time that XHP down-regulates stemness, restrains self-renewal and induces apoptosis in GSCs and impedes glioma growth by down-regulating SOX2 through destabilizing the CD133/EGFR/Akt/mTOR cascade.
Collapse
Affiliation(s)
- Lanyang Xu
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yuheng Zou
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huaxi Liu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wanyu Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Zhu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Chen
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuanwu Zhu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhixin Yin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoshan Zhao
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Qirui Wang
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
34
|
Perrault EN, Shireman JM, Ali ES, Lin P, Preddy I, Park C, Budhiraja S, Baisiwala S, Dixit K, James CD, Heiland DH, Ben-Sahra I, Pott S, Basu A, Miska J, Ahmed AU. Ribonucleotide reductase regulatory subunit M2 drives glioblastoma TMZ resistance through modulation of dNTP production. SCIENCE ADVANCES 2023; 9:eade7236. [PMID: 37196077 PMCID: PMC10191446 DOI: 10.1126/sciadv.ade7236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
During therapy, adaptations driven by cellular plasticity are partly responsible for driving the inevitable recurrence of glioblastoma (GBM). To investigate plasticity-induced adaptation during standard-of-care chemotherapy temozolomide (TMZ), we performed in vivo single-cell RNA sequencing in patient-derived xenograft (PDX) tumors of GBM before, during, and after therapy. Comparing single-cell transcriptomic patterns identified distinct cellular populations present during TMZ therapy. Of interest was the increased expression of ribonucleotide reductase regulatory subunit M2 (RRM2), which we found to regulate dGTP and dCTP production vital for DNA damage response during TMZ therapy. Furthermore, multidimensional modeling of spatially resolved transcriptomic and metabolomic analysis in patients' tissues revealed strong correlations between RRM2 and dGTP. This supports our data that RRM2 regulates the demand for specific dNTPs during therapy. In addition, treatment with the RRM2 inhibitor 3-AP (Triapine) enhances the efficacy of TMZ therapy in PDX models. We present a previously unidentified understanding of chemoresistance through critical RRM2-mediated nucleotide production.
Collapse
Affiliation(s)
- Ella N. Perrault
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jack M. Shireman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eunus S. Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peiyu Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isabelle Preddy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cheol Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shreya Budhiraja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shivani Baisiwala
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karan Dixit
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C. David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dieter H Heiland
- Microenvironment and Immunology Research Laboratory, Medical-Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical-Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sebastian Pott
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
35
|
Roddy AC, McInerney CE, Flannery T, Healy EG, Stewart JP, Spence VJ, Walsh J, Salto-Tellez M, McArt DG, Prise KM. Transcriptional Profiling of a Patient-Matched Cohort of Glioblastoma (IDH-Wildtype) for Therapeutic Target and Repurposing Drug Identification. Biomedicines 2023; 11:biomedicines11041219. [PMID: 37189838 DOI: 10.3390/biomedicines11041219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive adult brain tumor. Despite multi-modal therapies, GBM recurs, and patients have poor survival (~14 months). Resistance to therapy may originate from a subpopulation of tumor cells identified as glioma-stem cells (GSC), and new treatments are urgently needed to target these. The biology underpinning GBM recurrence was investigated using whole transcriptome profiling of patient-matched initial and recurrent GBM (recGBM). Differential expression analysis identified 147 significant probes. In total, 24 genes were validated using expression data from four public cohorts and the literature. Functional analyses revealed that transcriptional changes to recGBM were dominated by angiogenesis and immune-related processes. The role of MHC class II proteins in antigen presentation and the differentiation, proliferation, and infiltration of immune cells was enriched. These results suggest recGBM would benefit from immunotherapies. The altered gene signature was further analyzed in a connectivity mapping analysis with QUADrATiC software to identify FDA-approved repurposing drugs. Top-ranking target compounds that may be effective against GSC and GBM recurrence were rosiglitazone, nizatidine, pantoprazole, and tolmetin. Our translational bioinformatics pipeline provides an approach to identify target compounds for repurposing that may add clinical benefit in addition to standard therapies against resistant cancers such as GBM.
Collapse
Affiliation(s)
- Aideen C Roddy
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Caitríona E McInerney
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Tom Flannery
- Department of Neurosurgery, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast BT12 6BA, UK
| | - Estelle G Healy
- Regional Service for Neuropathology, Institute of Pathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast BT12 6BA, UK
| | - James P Stewart
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Veronica J Spence
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Jamie Walsh
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Manuel Salto-Tellez
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
- Integrated Pathology Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Darragh G McArt
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Kevin M Prise
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
36
|
Lo HW, Tapinos N. Editorial: Epigenetics and cellular plasticity in glioblastoma. Front Oncol 2023; 13:1179214. [PMID: 37020873 PMCID: PMC10068962 DOI: 10.3389/fonc.2023.1179214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/22/2023] Open
Affiliation(s)
- Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, United States
| | - Nikos Tapinos
- Department of Neuroscience, Brown University, Providence, RI, United States
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neuroscience, Brown University, Providence, RI, United States
- *Correspondence: Nikos Tapinos,
| |
Collapse
|
37
|
Knauer N, Meschaninova M, Muhammad S, Hänggi D, Majoral JP, Kahlert UD, Kozlov V, Apartsin EK. Effects of Dendrimer-microRNA Nanoformulations against Glioblastoma Stem Cells. Pharmaceutics 2023; 15:pharmaceutics15030968. [PMID: 36986829 PMCID: PMC10056969 DOI: 10.3390/pharmaceutics15030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Glioblastoma is a rapidly progressing tumor quite resistant to conventional treatment. These features are currently assigned to a self-sustaining population of glioblastoma stem cells. Anti-tumor stem cell therapy calls for a new means of treatment. In particular, microRNA-based treatment is a solution, which in turn requires specific carriers for intracellular delivery of functional oligonucleotides. Herein, we report a preclinical in vitro validation of antitumor activity of nanoformulations containing antitumor microRNA miR-34a and microRNA-21 synthetic inhibitor and polycationic phosphorus and carbosilane dendrimers. The testing was carried out in a panel of glioblastoma and glioma cell lines, glioblastoma stem-like cells and induced pluripotent stem cells. We have shown dendrimer-microRNA nanoformulations to induce cell death in a controllable manner, with cytotoxic effects being more pronounced in tumor cells than in non-tumor stem cells. Furthermore, nanoformulations affected the expression of proteins responsible for interactions between the tumor and its immune microenvironment: surface markers (PD-L1, TIM3, CD47) and IL-10. Our findings evidence the potential of dendrimer-based therapeutic constructions for the anti-tumor stem cell therapy worth further investigation.
Collapse
Affiliation(s)
- Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariya Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Sajjad Muhammad
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, CEDEX 04, 31077 Toulouse, France
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular-, and Transplant-Surgery, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Evgeny K. Apartsin
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
38
|
Zhu X, Fang Y, Chen Y, Chen Y, Hong W, Wei W, Tu J. Interaction of tumor-associated microglia/macrophages and cancer stem cells in glioma. Life Sci 2023; 320:121558. [PMID: 36889666 DOI: 10.1016/j.lfs.2023.121558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Glioma is the most common tumor of the primary central nervous system, and its malignant phenotype has been shown to be closely related to glioma stem cells (GSCs). Although temozolomide has significantly improved the therapeutic outcome of glioma with a high penetration rate of the blood-brain barrier, resistance is often present in patients. Moreover, evidence has shown that the crosstalk between GSCs and tumor-associated microglia/macrophages (TAMs) affect the clinical occurrence, growth, and multi-tolerance of chemoradiotherapy in gliomas. Here, we highlight its vital roles in the maintenance of the stemness of GSCs and the ability of GSCs to recruit TAMs to the tumor microenvironment and promote their polarization into tumor-promoting macrophages, hence providing groundwork for future research into new treatment strategies of cancer.
Collapse
Affiliation(s)
- Xiangling Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Chen
- Department of Gynecology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| |
Collapse
|
39
|
Illangeswaran RSS, Jebanesan DZP, Sivakumar KK, Vidhyadharan RT, Rajamani BM, Janet NB, David E, Velayudhan SR, Mathews V, Balasubramanian P. Chemotherapeutic drugs elicit stemness and metabolic alteration to mediate acquired drug-resistant phenotype in acute myeloid leukemia cell lines. Leuk Res 2023; 128:107054. [PMID: 36906941 DOI: 10.1016/j.leukres.2023.107054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Chemotherapy resistance leading to disease relapse is a significant barrier in treating acute myeloid leukemia (AML). Metabolic adaptations have been shown to contribute to therapy resistance. However, little is known about whether specific therapies cause specific metabolic changes. We established cytarabine-resistant (AraC-R) and Arsenic trioxide-resistant (ATO-R) AML cell lines, displaying distinct cell surface expression and cytogenetic abnormalities. Transcriptomic analysis revealed a significant difference in the expression profiles of ATO-R and AraC-R cells. Geneset enrichment analysis showed AraC-R cells rely on OXPHOS, while ATO-R cells on glycolysis. ATO-R cells were also enriched for stemness gene signatures, whereas AraC-R cells were not. The mito stress and glycolytic stress tests confirmed these findings. The distinct metabolic adaptation of AraC-R cells increased sensitivity to the OXPHOS inhibitor venetoclax. Cytarabine resistance was circumvented in AraC-R cells by combining Ven and AraC. In vivo, ATO-R cells showed increased repopulating potential, leading to aggressive leukemia compared to the parental and AraC-R. Overall, our study shows that different therapies can cause different metabolic changes and that these metabolic dependencies can be used to target chemotherapy-resistant AML.
Collapse
Affiliation(s)
| | | | | | | | | | - Nancy Beryl Janet
- Department of Haematology, Christian Medical College, Vellore, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Shaji Ramachandran Velayudhan
- Department of Haematology, Christian Medical College, Vellore, India; Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
40
|
Sighel D, Battistini G, Rosatti EF, Vigna J, Pavan M, Belli R, Peroni D, Alessandrini F, Longhi S, Pancher M, Rorbach J, Moro S, Quattrone A, Mancini I. Streptogramin A derivatives as mitochondrial translation inhibitors to suppress glioblastoma stem cell growth. Eur J Med Chem 2023; 246:114979. [PMID: 36495628 DOI: 10.1016/j.ejmech.2022.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
New therapeutic strategies for glioblastoma treatment, especially tackling the tumour's glioblastoma stem cell (GSC) component, are an urgent medical need. Recently, mitochondrial translation inhibition has been shown to affect GSC growth, clonogenicity, and self-renewal capability, therefore becoming an attractive therapeutic target. The combination of streptogramins B and A antibiotics quinupristin/dalfopristin (Q/D), which inhibits mitochondrial ribosome function, affects GSCs more effectively in vitro than the standard of care temozolomide. Here, docking calculations based on the cryo-EM structure of the Q/D-bound mitochondrial ribosome have been used to develop a series of streptogramin A derivatives. We obtained twenty-two new and known molecules starting from the dalfopristin and virginiamycin M1 scaffolds. A structure-activity relationship refinement was performed to evaluate the capability of these compounds to suppress GSC growth and inhibit mitochondrial translation, either alone or in combination with quinupristin. Finally, quantitative ultra HPLC-mass spectrometry allowed us to assess the cell penetration of some of these derivatives. Among all, the fluorine derivatives of dalfopristin and virginiamycin M1, (16R)-1e and (16R)-2e, respectively, and flopristin resulted in being more potent than the corresponding lead compounds and penetrating to a greater extent into the cells. We, therefore, propose these three compounds for further evaluation in vivo as antineoplastic agents.
Collapse
Affiliation(s)
- Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy.
| | - Giulia Battistini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo, Trento, Italy
| | - Emanuele Filiberto Rosatti
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Jacopo Vigna
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo, Trento, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Romina Belli
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Daniele Peroni
- Mass Spectrometry and Proteomics Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Federica Alessandrini
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Sara Longhi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Michael Pancher
- High Throughput Screening (HTS) and Validation Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Ines Mancini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo, Trento, Italy.
| |
Collapse
|
41
|
Yang DY, Cheng X, Bu XY, Yan ZY, Qu MQ, Zhao YW, Kong LF, Wang YW, Luo JC. Granulocyte-macrophage colony stimulating factor enhances efficacy of nimustine rendezvousing with temozolomide plus irradiation in patients with glioblastoma. Technol Health Care 2023; 31:635-645. [PMID: 36314174 DOI: 10.3233/thc-220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glioblastoma is the most common and most aggressive type of primary brain tumor. OBJECTIVE The aim of this study was to investigate the efficacy and safety of intranasal granulocyte-macrophage colony stimulating factor (GM-CSF) administration combined with chemoradiotherapy in patients with glioblastoma who underwent surgery. METHODS Ninety-two patients were randomly divided into two groups: a control group (n= 46), who received radiotherapy with adjuvant local delivery of nimustine hydrochloride (ACNU) and systemic administration of temozolomide, and an intervention group (n= 46), who received intranasal GM-CSF prior to each cycle of adjuvant chemotherapy in addition to the treatment of the control group. Karnofsky performance status (KPS) scores, progression-free survival (PFS), overall survival (OS), and adverse effects were calculated and compared between the two groups. RESULTS Compared with the control group, the intervention group had longer PFS (7.8 vs. 6.9 months, P= 0.016) and OS (19.2 vs. 17.1 months, P= 0.045, without adjustment for interim analyses). The KPS scores were also higher in the intervention group than in the control group after 6 months (84.35 ± 8.86 vs. 80.65 ± 7.72; t= 4.552, P= 0.036). Furthermore, the patients in the intervention group had lower incidence of neutropenia and thrombocytopenia (8.7% vs. 29.5%, P= 0.012; 8.7% vs. 18.2%, P= 0.186). Other adverse events were similar in both groups, and most adverse events were grade I/II and resolved spontaneously. CONCLUSION Intranasal GM-CSF enhances the efficacy of the local ACNU administration combined with oral temozolomide chemotherapy. The survival and performance status were significantly improved in patients with glioblastoma after surgery. Additionally, the GM-CSF therapy was able to reduce the occurrence of chemotherapy-related neutropenia and thrombocytopenia.
Collapse
Affiliation(s)
- Dong-Yi Yang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xue Cheng
- Rehabilitation Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Xing-Yao Bu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhao-Yue Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Ming-Qi Qu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yue-Wu Zhao
- Department of Pathology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Ling-Fei Kong
- Department of Pathology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yao-Wei Wang
- Department of Radiotherapy, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Jian-Chao Luo
- Department of Radiotherapy, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Pillai S, Roy N. Plasticity of Cancer Stem Cell. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:101-117. [DOI: 10.1007/978-981-99-3185-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
44
|
Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K. Glioma Stem Cells: Novel Data Obtained by Single-Cell Sequencing. Int J Mol Sci 2022; 23:14224. [PMID: 36430704 PMCID: PMC9694247 DOI: 10.3390/ijms232214224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Maxim Abakumov
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
45
|
Berg TJ, Pietras A. Radiotherapy-induced remodeling of the tumor microenvironment by stromal cells. Semin Cancer Biol 2022; 86:846-856. [PMID: 35143991 DOI: 10.1016/j.semcancer.2022.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/08/2023]
Abstract
Cancer cells reside amongst a complex milieu of stromal cells and structural features known as the tumor microenvironment. Often cancer cells divert and co-opt functions of stromal cells of the microenvironment to support tumor progression and treatment resistance. During therapy targeting cancer cells, the stromal cells of the microenvironment receive therapy to the same extent as cancer cells. Stromal cells therefore activate a variety of responses to the damage induced by these therapies, and some of those responses may support tumor progression and resistance. We review here the response of stromal cells to cancer therapy with a focus on radiotherapy in glioblastoma. We highlight the response of endothelial cells and the vasculature, macrophages and microglia, and astrocytes, as well as describing resulting changes in the extracellular matrix. We emphasize the complex interplay of these cellular factors in their dynamic responses. Finally, we discuss their resulting support of cancer cells in tumor progression and therapy resistance. Understanding the stromal cell response to therapy provides insight into complementary therapeutic targets to enhance tumor response to existing treatment options.
Collapse
Affiliation(s)
- Tracy J Berg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
46
|
Muthukrishnan SD, Kawaguchi R, Nair P, Prasad R, Qin Y, Johnson M, Wang Q, VanderVeer-Harris N, Pham A, Alvarado AG, Condro MC, Gao F, Gau R, Castro MG, Lowenstein PR, Deb A, Hinman JD, Pajonk F, Burns TC, Goldman SA, Geschwind DH, Kornblum HI. P300 promotes tumor recurrence by regulating radiation-induced conversion of glioma stem cells to vascular-like cells. Nat Commun 2022; 13:6202. [PMID: 36261421 PMCID: PMC9582000 DOI: 10.1038/s41467-022-33943-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma stem cells (GSC) exhibit plasticity in response to environmental and therapeutic stress leading to tumor recurrence, but the underlying mechanisms remain largely unknown. Here, we employ single-cell and whole transcriptomic analyses to uncover that radiation induces a dynamic shift in functional states of glioma cells allowing for acquisition of vascular endothelial-like and pericyte-like cell phenotypes. These vascular-like cells provide trophic support to promote proliferation of tumor cells, and their selective depletion results in reduced tumor growth post-treatment in vivo. Mechanistically, the acquisition of vascular-like phenotype is driven by increased chromatin accessibility and H3K27 acetylation in specific vascular genes allowing for their increased expression post-treatment. Blocking P300 histone acetyltransferase activity reverses the epigenetic changes induced by radiation and inhibits the adaptive conversion of GSC into vascular-like cells and tumor growth. Our findings highlight a role for P300 in radiation-induced stress response, suggesting a therapeutic approach to prevent glioma recurrence.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Riki Kawaguchi
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Pooja Nair
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Rachna Prasad
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yue Qin
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maverick Johnson
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Qing Wang
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Nathan VanderVeer-Harris
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Amy Pham
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alvaro G Alvarado
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Michael C Condro
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fuying Gao
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Raymond Gau
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maria G Castro
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Coppenhagen School of Medicine, Coppenhagen, Denmark
| | - Daniel H Geschwind
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Harley I Kornblum
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Silver A, Feier D, Ghosh T, Rahman M, Huang J, Sarkisian MR, Deleyrolle LP. Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Front Oncol 2022; 12:1022716. [PMID: 36338705 PMCID: PMC9628999 DOI: 10.3389/fonc.2022.1022716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is an extremely aggressive and incurable primary brain tumor with a 10-year survival of just 0.71%. Cancer stem cells (CSCs) are thought to seed GBM's inevitable recurrence by evading standard of care treatment, which combines surgical resection, radiotherapy, and chemotherapy, contributing to this grim prognosis. Effective targeting of CSCs could result in insights into GBM treatment resistance and development of novel treatment paradigms. There is a major ongoing effort to characterize CSCs, understand their interactions with the tumor microenvironment, and identify ways to eliminate them. This review discusses the diversity of CSC lineages present in GBM and how this glioma stem cell (GSC) mosaicism drives global intratumoral heterogeneity constituted by complex and spatially distinct local microenvironments. We review how a tumor's diverse CSC populations orchestrate and interact with the environment, especially the immune landscape. We also discuss how to map this intricate GBM ecosystem through the lens of metabolism and immunology to find vulnerabilities and new ways to disrupt the equilibrium of the system to achieve improved disease outcome.
Collapse
Affiliation(s)
- Aryeh Silver
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Diana Feier
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Tanya Ghosh
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Jianping Huang
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,*Correspondence: Loic P. Deleyrolle,
| |
Collapse
|
48
|
Koessinger AL, Cloix C, Koessinger D, Heiland DH, Bock FJ, Strathdee K, Kinch K, Martínez-Escardó L, Paul NR, Nixon C, Malviya G, Jackson MR, Campbell KJ, Stevenson K, Davis S, Elmasry Y, Ahmed A, O'Prey J, Ichim G, Schnell O, Stewart W, Blyth K, Ryan KM, Chalmers AJ, Norman JC, Tait SWG. Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death Differ 2022; 29:2089-2104. [PMID: 35473984 PMCID: PMC9525582 DOI: 10.1038/s41418-022-01001-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumour in adults. GBM typically has a poor prognosis, mainly due to a lack of effective treatment options leading to tumour persistence or recurrence. We investigated the therapeutic potential of targeting anti-apoptotic BCL-2 proteins in GBM. Levels of anti-apoptotic BCL-xL and MCL-1 were consistently increased in GBM compared with non-malignant cells and tissue. Moreover, we found that relative to their differentiated counterparts, patient-derived GBM stem-like cells also displayed higher expression of anti-apoptotic BCL-2 family members. High anti-apoptotic BCL-xL and MCL-1 expression correlated with heightened susceptibility of GBM to BCL-2 family protein-targeting BH3-mimetics. This is indicative of increased apoptotic priming. Indeed, GBM displayed an obligate requirement for MCL-1 expression in both tumour development and maintenance. Investigating this apoptotic sensitivity, we found that sequential inhibition of BCL-xL and MCL-1 led to robust anti-tumour responses in vivo, in the absence of overt toxicity. These data demonstrate that BCL-xL and MCL-1 pro-survival function is a fundamental prerequisite for GBM survival that can be therapeutically exploited by BH3-mimetics.
Collapse
Affiliation(s)
- Anna L Koessinger
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Dominik Koessinger
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Florian J Bock
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Karen Strathdee
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kevin Kinch
- Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Laura Martínez-Escardó
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nikki R Paul
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Mark R Jackson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Katrina Stevenson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Sandeep Davis
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Yassmin Elmasry
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Asma Ahmed
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jim O'Prey
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Gabriel Ichim
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France
| | - Oliver Schnell
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jim C Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
49
|
Song S, Wu H, Wang F, Jiao J, Xu L, Wang H, Tong X, Yan H. Global research trends and hotspots on glioma stem cells. Front Oncol 2022; 12:926025. [PMID: 36248966 PMCID: PMC9558893 DOI: 10.3389/fonc.2022.926025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioma stem cells (GSCs) are a sub-population of cancer stem cells with capacity of self-renewal and differentiation. Accumulated evidence has revealed that GSCs were shown to contribute to gliomagenesis, distant metastasis as well as the resistance to radiotherapy and chemotherapy. As a result, GSCs were regarded as a promising therapeutic target in human glioma. The purpose of our study is to identify current state and hotspots of GSCs research by analyzing scientific publications through bibliometric methods.MethodsAll relevant publications on GSCs during 2003-2021 were extracted from the Science Citation Index Expanded of Web of Science Core Collection (WoSCC), and related information was collected and analyzed using Microsoft Excel 2016, GraphPad Prism 8 and VOSviewer software.ResultsA total of 4990 papers were included. The United States accounted for the largest number of publications (1852), the second average citations per item (ACI) value (67.54) as well as the highest H-index (157). Cancer Research was the most influential journal in this field. The most contributive institution was League of European Research Universities. RICH JN was the author with the most publications (109) and the highest H-index (59). All studies were clustered into 3 groups: “glioma stem cell properties”, “cell biological properties” and “oncology therapy”. The keywords “identification”, “CD133” and “side population” appeared earlier with the smaller average appearing years (AAY), and the keywords”radiotherapy” and “chemotherapy” had the latest AAY. The analysis of top cited articles showed that “temozolomide”, “epithelial-mesenchymal transition”, and “immunotherapy” emerged as new focused issues.ConclusionThere has been a growing number of researches on GSCs. The United States has always been a leading player in this domain. In general, the research focus has gradually shifted from basic cellular biology to the solutions of clinical concerns. “Temozolomide resistance”, “epithelial-mesenchymal transition”, and “immunotherapy” should be given more attention in the future.
Collapse
Affiliation(s)
- Sirong Song
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fanchen Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jiji Jiao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Hongguang Wang
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Hua Yan, ; Hongguang Wang, ; Xiaoguang Tong,
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Hua Yan, ; Hongguang Wang, ; Xiaoguang Tong,
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Hua Yan, ; Hongguang Wang, ; Xiaoguang Tong,
| |
Collapse
|
50
|
Sabunga OD, Kaelan C, Zainudin A, Sungowati NK, Cangara MH, Miskad UA. Expression of CD133 Cancer Stem Cell Marker in IDH-Mutant and IDH-wildtype (Isocitrate Dehydrogenase) Astrocytoma. Asian Pac J Cancer Prev 2022; 23:3051-3059. [PMID: 36172668 PMCID: PMC9810319 DOI: 10.31557/apjcp.2022.23.9.3051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE This study evaluated the differences between IDH1-R132H and CD133 expression in different categories of astrocytoma. MATERIAL AND METHODS This study used a cross-sectional design. Sixty-seven paraffin embedded block of Diffuse Astrocytoma (DA), Anaplastic Astrocytoma (AA) and Glioblastoma (GB) were assessed using using the monoclonal antibody IDH1-R132H and Rabbit polyclonal antibody CD133. RESULTS It was found that there was a significant relationship between the expression of IDH1-R132H and CD133 in DA, AA and GB (p<0.001). Astrocytoma with IDH-mutant molecular status will express more markers of cancer stem cell CD133 than IDH-wildtype. CONCLUSION The IDH1-R132H and CD133 can provide predictive value on treatment success, disease prognosis, recurrence and can be considered as target combination therapy with chemotherapy.
Collapse
Affiliation(s)
| | - Cahyono Kaelan
- Department of Pathology, Faculty of Medicine, Hasanuddin University, Indonesia.
| | - Andi Zainudin
- Department of Public Health, Faculty of Medicine, Hasanuddin University, Indonesia.
| | - Ni Ketut Sungowati
- Department of Pathology, Faculty of Medicine, Hasanuddin University, Indonesia.
| | | | - Upik Anderiani Miskad
- Department of Pathology, Faculty of Medicine, Hasanuddin University, Indonesia. ,For Correspondence:
| |
Collapse
|