1
|
Yañez-Esparza A, Corona-Meraz FI, Mireles-Ramírez MA, Reyes-Mata MP, Martínez-Fernández C, Pallàs M, Griñan-Ferré C, Pavón L, Guerrero-García JDJ, Ortuño-Sahagún D. Alterations in the miR-145/143 cluster expression in multiple sclerosis patients and their correlation with clinical variables. Mult Scler Relat Disord 2025; 96:106344. [PMID: 40068475 DOI: 10.1016/j.msard.2025.106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 04/15/2025]
Abstract
Multiple sclerosis (MS) is a complex, neurodegenerative and autoimmune disease with a multifactorial etiology. Epigenetic changes can influence the onset and development of the disease, and miRNAs, small RNAs that play a key role in post-transcriptional gene regulation, act as important modulators of the inflammatory process and the central nervous system´s response. The objective of this work is to compare and identify the expression of the miR-143/145 cluster, namely miR-143-5p and miR-145-5p. For this purpose, the expression of two mature miRNAs was determined in the serum of 80 patients with relapsing-remitting multiple sclerosis (RRMS) under different treatments and 60 healthy control subjects (HCS). Total miRNA was isolated from serum and subjected to quantitative PCR analysis (qPCR). In addition, an in silico analysis focused on the molecules affected by the disease was performed. It was found that miR-143-5p is upregulated in patients with RRMS (mean (m)= 0.74) compared to HCS (m = 1.50), while miR-145-5p is significantly downregulated in RRMS (m = 0.32) compared to HCS (m = 2.26). Furthermore, miR-143-5p expression may vary with treatment and exhibit sexual dimorphism, whereas miR-145 expression is primarily pathology-dependent. For in silico analysis, we proposed a new modified C-score that integrates several computational tools. This analysis indicates that GSTM3 and MMP9, which have been previously studied in MS, are the primary targets of miR-143-5p and miR-145-5p, respectively. In conclusion, the differential expression of these miRNAs underscores their possible sensitizing role in pathogenesis, suggesting that these two miRNAs, along with others, may be further explored in unraveling new pathophysiological pathways for treatment response in MS.
Collapse
Affiliation(s)
- Asareel Yañez-Esparza
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Jalisco, Mexico
| | - Fernanda Isadora Corona-Meraz
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá (CUTONALÁ), Universidad de Guadalajara, 45425, Tonalá, Mexico
| | - Mario Alberto Mireles-Ramírez
- División de Investigación y Educación en Salud, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), IMSS, Mexico
| | - María Paulina Reyes-Mata
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Jalisco, Mexico
| | - Carmen Martínez-Fernández
- Departamento de Farmacología e Instituto de Neurociencias, Universidad de Barcelona, Barcelona, España
| | - Mercè Pallàs
- Departamento de Farmacología e Instituto de Neurociencias, Universidad de Barcelona, Barcelona, España
| | - Christian Griñan-Ferré
- Departamento de Farmacología e Instituto de Neurociencias, Universidad de Barcelona, Barcelona, España
| | - Lenin Pavón
- Laboratorio de Psicoinmunologia de la Direccion de investigaciones en Neurociencias. Instituto Nacional de Psiquiatria "Ramón de la Fuente Muñiz". Ciudad de Mexico, Mexico
| | - José de Jesús Guerrero-García
- Banco de Sangre Central, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), IMSS, Mexico; Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Jalisco, Mexico.
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Jalisco, Mexico.
| |
Collapse
|
2
|
Bardhan A, Banerjee A, Pal DK, Ghosh A. HAGLR, A Long Non-coding RNA of Potential Tumor Suppressive Function in Clear Cell Renal Cell Carcinoma: Diagnostic and Prognostic Implications. Mol Biotechnol 2024; 66:3485-3497. [PMID: 37955777 DOI: 10.1007/s12033-023-00948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Research works suggested the role of long non-coding RNAs (lncRNAs) in pathogenesis of clear cell renal cell carcinoma (ccRCC). lncRNA HAGLR is studied in several malignancies, but not in ccRCC. From The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) dataset, we analyzed molecular alterations of HAGLR and constructed a competitive endogenous RNA (ceRNA) network with related miRNAs and mRNAs. Gene Ontology analysis was done to identify important pathways enriched with HAGLR recovered mRNAs. Clinical importance of HAGLR and related mRNAs was assessed and, the impact of selected mRNA-encoding genes on tumor immune infiltration was studied using TIMER. HAGLR expression was reduced in ccRCC than in normal kidneys, and correlated significantly with gene promoter methylation. Low HAGLR level in tumors showed diagnostic potency, and was associated with clinicopathological parameters (stage/grade/metastasis) and poor patient survival. The HAGLR-associated ceRNA network constituted 13 miRNAs and 23 mRNAs differentially expressed in the TCGA-KIRC dataset. From HAGLR recovered mRNA-encoding genes, we developed a 5-gene (PAQR5, ARHGAP24, HABP4, PDLIM5, and RPS6KA2) prognostic signature in the training dataset and validated it in testing as well as entire datasets. The expression level of signature genes showed negative correlation with tumor infiltration of immune cells having adverse impact on ccRCC prognosis and also with tumor derived chemokines facilitating the infiltration. In conclusion, HAGLR seemed to play a tumor suppressive role in ccRCC. HAGLR and associated gene signature may have implementation in improving existing prognostic measure and developing effective immunotherapeutic strategies for ccRCC.
Collapse
Affiliation(s)
- Abhishek Bardhan
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Anwesha Banerjee
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | | | - Amlan Ghosh
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
3
|
Vij P, Hussain MS, Satapathy SK, Cobos E, Tripathi MK. The Emerging Role of Long Noncoding RNAs in Sorafenib Resistance Within Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3904. [PMID: 39682093 PMCID: PMC11639815 DOI: 10.3390/cancers16233904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a liver cancer originating from hepatocytes, is a major health concern and among the most common malignancies worldwide. Sorafenib, approved by the U.S. F.D.A., is the primary first-line treatment for patients with advanced HCC. While the preferred first-line systemic regimen for HCC is immunotherapy with Atezolizumab plus bevacizumab or Tremelimumab-actl + durvalumab, Sorafenib is still an alternative recommended regimen. While some patients with advanced HCC may benefit from Sorafenib treatment, most eventually develop resistance, leading to poor prognosis. Long noncoding RNAs (lncRNAs) have been found to play a critical role in tumorigenesis and the development of HCC, as well as other cancers. They are also key players in tumor drug resistance, though the mechanisms of lncRNAs in Sorafenib resistance in HCC remain poorly understood. This review summarizes the molecular mechanisms contributing to Sorafenib resistance in HCC with their potential correlation with lncRNAs, including the roles of transporters, receptors, cell death regulation, and other influencing factors.
Collapse
Affiliation(s)
- Puneet Vij
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA;
| | - Mohammad Shabir Hussain
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjaya K. Satapathy
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health Center for Liver Diseases & Transplantation, Northshore University Hospital, Manhasset, NY 11030, USA;
| | - Everardo Cobos
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K. Tripathi
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
4
|
Hussain MA, Elemam NM, Talaat IM. Androgen Receptor and Non-Coding RNAs' Interaction in Renal Cell Carcinoma. Noncoding RNA 2024; 10:56. [PMID: 39585048 PMCID: PMC11587015 DOI: 10.3390/ncrna10060056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Renal cell carcinoma (RCC), the most prevalent among the urogenital cancers, accounts for around 3% of new cancer cases worldwide. Significantly, the incidence of RCC has doubled in developed world countries, ranking it as the sixth most common cancer in males, who represent two-thirds of RCC cases. Males with RCC exhibit a higher mortality rate and tend to develop a more aggressive form of the disease than females. Sex-related risk factors, including lifestyle and biological variations, explain this difference. The androgen receptor (AR) oncogenic signaling pathway has been extensively studied among the biological factors that affect RCC. Recent advancements in high-throughput RNA sequencing techniques have underscored the significant roles played by noncoding-RNAs (ncRNAs), previously dismissed as "junk". The oncogenic potential of AR is manifested through its dysregulation of the ncRNAs' availability and function, promoting RCC tumorigenesis. This review offers a summary of the most recent findings on the role and molecular mechanisms of the AR in dysregulating the ncRNAs that play a role in the progression of RCC and the possibility of utilizing ncRNAs to target AR as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Manal A. Hussain
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Pure Lab North, Purelab, Abu Dhabi 134808, United Arab Emirates
| | - Noha M. Elemam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman M. Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| |
Collapse
|
5
|
Shi Y, Ma J, Li S, Liu C, Liu Y, Chen J, Liu N, Liu S, Huang H. Sex difference in human diseases: mechanistic insights and clinical implications. Signal Transduct Target Ther 2024; 9:238. [PMID: 39256355 PMCID: PMC11387494 DOI: 10.1038/s41392-024-01929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
Sex characteristics exhibit significant disparities in various human diseases, including prevalent cardiovascular diseases, cancers, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Risk profiles and pathological manifestations of these diseases exhibit notable variations between sexes. The underlying reasons for these sex disparities encompass multifactorial elements, such as physiology, genetics, and environment. Recent studies have shown that human body systems demonstrate sex-specific gene expression during critical developmental stages and gene editing processes. These genes, differentially expressed based on different sex, may be regulated by androgen or estrogen-responsive elements, thereby influencing the incidence and presentation of cardiovascular, oncological, metabolic, immune, and neurological diseases across sexes. However, despite the existence of sex differences in patients with human diseases, treatment guidelines predominantly rely on male data due to the underrepresentation of women in clinical trials. At present, there exists a substantial knowledge gap concerning sex-specific mechanisms and clinical treatments for diverse diseases. Therefore, this review aims to elucidate the advances of sex differences on human diseases by examining epidemiological factors, pathogenesis, and innovative progress of clinical treatments in accordance with the distinctive risk characteristics of each disease and provide a new theoretical and practical basis for further optimizing individualized treatment and improving patient prognosis.
Collapse
Affiliation(s)
- Yuncong Shi
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jianshuai Ma
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Sijin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chao Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yuning Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Wu J, Zhu Y, Liu D, Cong Q, Bai C. Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review). Oncol Rep 2024; 52:113. [PMID: 38994765 PMCID: PMC11253085 DOI: 10.3892/or.2024.8772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
In recent years, microRNAs (miRNAs or miRs) have been increasingly studied for their role in cancer and have shown potential as cancer biomarkers. miR‑143‑3p and miR‑143‑5p are the mature miRNAs derived from pre‑miRNA‑143. At present, there are numerous studies on the function of miR‑143‑3p in cancer progression, but there are no systematic reviews describing the function of miR‑143‑3p in cancer. It is widely considered that miR‑143‑3p is downregulated in most malignant tumors and that upstream regulators can act on this gene, which in turn regulates the corresponding target to act on the tumor. In addition, miRNA‑143‑3p can regulate target genes to affect the biological process of tumors through various signaling pathways, such as the PI3K/Akt, Wnt/β‑catenin, AKT/STAT3 and Ras‑Raf‑MEK‑ERK pathways. The present review comprehensively described the biogenesis of miR‑143‑3p, the biological functions of miR‑143‑3p and the related roles and mechanisms in different cancer types. The potential of miR‑143‑3p as a biomarker for cancer was also highlighted and valuable future research directions were discussed.
Collapse
Affiliation(s)
- Jia Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ying Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Dandan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Qingwei Cong
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Changchuan Bai
- Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning 116013, P.R. China
| |
Collapse
|
7
|
Ladurner M, Lindner AK, Rehder P, Tulchiner G. The influence of sex hormones on renal cell carcinoma. Ther Adv Med Oncol 2024; 16:17588359241269664. [PMID: 39175990 PMCID: PMC11339752 DOI: 10.1177/17588359241269664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/25/2024] [Indexed: 08/24/2024] Open
Abstract
Kidney cancer is a common malignancy that constitutes around 5% of all cancer cases. Males are twice as likely to acquire renal cell carcinoma (RCC) compared to females and experience a higher rate of mortality. These disparities indicate that sex hormone (SH)-dependent pathways may have an impact on the aetiology and pathophysiology of RCC. Examination of SH involvement in conventional signalling pathways, as well as genetics and genomics, especially the involvement of ribonucleic acid, reveal further insights into sex-related differences. An understanding of SHs and their influence on kidney cancer is essential to offer patients individualized medicine that would better meet their needs in terms of prevention, diagnosis and treatment. This review presents the understanding of sex-related differences in the clinical manifestation of kidney cancer patients and the underlying biological processes.
Collapse
Affiliation(s)
- Michael Ladurner
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Peter Rehder
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gennadi Tulchiner
- Department of Urology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| |
Collapse
|
8
|
Naciri I, Andrade-Ludena MD, Yang Y, Kong M, Sun S. An emerging link between lncRNAs and cancer sex dimorphism. Hum Genet 2024; 143:831-842. [PMID: 38095719 PMCID: PMC11176266 DOI: 10.1007/s00439-023-02620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/05/2023] [Indexed: 06/15/2024]
Abstract
The prevalence and progression of cancer differ in males and females, and thus, sexual dimorphism in tumor development directly impacts clinical research and medicine. Long non-coding RNAs (lncRNAs) are increasingly recognized as important players in gene expression and various cellular processes, including cancer development and progression. In recent years, lncRNAs have been implicated in the differences observed in cancer incidence, progression, and treatment responses between men and women. Here, we present a brief overview of the current knowledge regarding the role of lncRNAs in cancer sex dimorphism, focusing on how they affect epigenetic processes in male and female mammalian cells. We discuss the potential mechanisms by which lncRNAs may contribute to sex differences in cancer, including transcriptional control of sex chromosomes, hormonal signaling pathways, and immune responses. We also propose strategies for studying lncRNA functions in cancer sex dimorphism. Furthermore, we emphasize the importance of considering sex as a biological variable in cancer research and the need to investigate the role lncRNAs play in mediating these sex differences. In summary, we highlight the emerging link between lncRNAs and cancer sex dimorphism and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Maria D Andrade-Ludena
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| | - Sha Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Tan RZ, Jia J, Li T, Wang L, Kantawong F. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed Pharmacother 2024; 176:116922. [PMID: 38870627 DOI: 10.1016/j.biopha.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate crosstalk between long noncoding RNAs (lncRNAs) and epigenetic modifications such as chromatin/histone methylation and acetylation offer new perspectives on the pathogenesis and treatment of kidney diseases. lncRNAs, a class of transcripts longer than 200 nucleotides with no protein-coding potential, are now recognized as key regulatory molecules influencing gene expression through diverse mechanisms. They modulate the epigenetic modifications by recruiting or blocking enzymes responsible for adding or removing methyl or acetyl groups, such as DNA, N6-methyladenosine (m6A) and histone methylation and acetylation, subsequently altering chromatin structure and accessibility. In kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), glomerulonephritis (GN), and renal cell carcinoma (RCC), aberrant patterns of DNA/RNA/histone methylation and acetylation have been associated with disease onset and progression, revealing a complex interplay with lncRNA dynamics. Recent studies have highlighted how lncRNAs can impact renal pathology by affecting the expression and function of key genes involved in cell cycle control, fibrosis, and inflammatory responses. This review will separately address the roles of lncRNAs and epigenetic modifications in renal diseases, with a particular emphasis on elucidating the bidirectional regulatory effects and underlying mechanisms of lncRNAs in conjunction with DNA/RNA/histone methylation and acetylation, in addition to the potential exacerbating or renoprotective effects in renal pathologies. Understanding the reciprocal relationships between lncRNAs and epigenetic modifications will not only shed light on the molecular underpinnings of renal pathologies but also present new avenues for therapeutic interventions and biomarker development, advancing precision medicine in nephrology.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
10
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Yao GS, Fu LM, Dai JS, Chen JW, Liu KZ, Liang H, Wang Z, Deng Q, Wang JY, Jin MY, Chen W, Fang Y, Luo JH, Cao JZ, Wei JH. Exploring the oncogenic potential of circSOD2 in clear cell renal cell carcinoma: a novel positive feedback loop. J Transl Med 2024; 22:596. [PMID: 38926764 PMCID: PMC11209967 DOI: 10.1186/s12967-024-05290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.
Collapse
Affiliation(s)
- Gao-Sheng Yao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Liang-Min Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Jun-Shang Dai
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin-Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Ke-Zhi Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Hui Liang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhu Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qiong Deng
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jie-Yan Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei-Yu Jin
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Yong Fang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Jun-Hang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jia-Zheng Cao
- Department of Urology, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No.23 Haibang Street, Jiangmen, 529030, Guangdong, China.
| | - Jin-Huan Wei
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
12
|
Tian P, Wei J, Li J, Ren J, He C. An oncogenic role of lncRNA SNHG1 promotes ATG7 expression and autophagy involving tumor progression and sunitinib resistance of Renal Cell Carcinoma. Cell Death Discov 2024; 10:273. [PMID: 38851811 PMCID: PMC11162435 DOI: 10.1038/s41420-024-02021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor with high incidence in adult kidney. Long non-coding RNAs (lncRNAs) have recently been recognized as important regulators in the development of RCC. However, whether lncRNA SNHG1 is associated with RCC progression remains to be elucidated. Here, the role of SNHG1 in RCC autophagy and sunitinib resistance was evaluated. Expression of SNHG1 in RCC tissues and cells was assessed using RT-qPCR. Western blot was utilized to measure the levels of autophagy-related molecules and ATG7. RNA pull-down and RIP assays were performed to confirm the molecular axis between SNHG1/PTBP1/ATG7. Cell proliferation, migration, invasion and apoptosis were analyzed by CCK-8, EdU, transwell and flow cytometry, respectively. The subcellular localization of SNHG1 was determined by an intracellular fractionation assay. The fluorescence intensity of GFP-LC3 autophagosome in RCC cells was detected. IHC staining was performed to test ATG7 expression in tumor tissues from nude mice. Here, a positive correlation of upregulated SNHG1 with poor prognosis of RCC patients was observed in RCC tissues and cells. SNHG1 knockdown suppressed tumor growth and reversed sunitinib resistance and autophagy of RCC cells. Additionally, SNHG1 was found to directly bind to PTBP1, thereby positively regulating ATG7 expression. Furthermore, we verified that SNHG1 mediated the malignant behavior of RCC cells through the PTBP1/ATG7 axis. To sum up, SNHG1 regulates RCC cell autophagy and sunitinib resistance through the PTBP1/ATG7 axis, which highlights a promising therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Pei Tian
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Jinxing Wei
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Jing Li
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Junkai Ren
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Chaohong He
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China.
| |
Collapse
|
13
|
Li H, Han X, Song L, Li X, Zhang L, Jin Z, Zhang Y, Wang T, Huang Z, Jia Z, Yang J. LINC00645 inhibits renal cell carcinoma progression by interacting with HNRNPA2B1 to regulate the ROCK1 mRNA stability. Gene 2024; 905:148232. [PMID: 38309317 DOI: 10.1016/j.gene.2024.148232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The lncRNA plays an important role in tumorigenesis and the progression of renal cell carcinoma (RCC). LINC00645 is one of the most different expressed lncRNA between RCC and normal renal tissue. However, the regulatory mechanism of LINC00645 in RCC remains unknown. Our results indicated that LINC00645 inhibited RCC proliferation, migration, and invasion. Mechanistically, HNRNPA2B1 directly bound to ROCK1 mRNA and strengthened its stability. LINC00645 competitively bound to the RRM1 domain, which is responsible for interacting with ROCK1 mRNA, reducing ROCK1 mRNA level by affecting posttranscriptional destabilization. The expression of LINC00645 was significantly reduced in RCC cells, significantly upregulating ROCK1 by abolishing the interaction with HNRNPA2B1, finally promoting RCC proliferation, migration, and invasion. Moreover, RCC cells with lower LINC00645 expression were more sensitive to the ROCK1 inhibitor Y-27632. Our study indicates that decreased expression of LINC00645 promotes the RCC progression via HNRNPA2B1/ROCK1 axis, providing a promising treatment strategy for RCC patients with decreased LINC00645 expression.
Collapse
Affiliation(s)
- Hao Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xu Han
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liang Song
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiang Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhibo Jin
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
14
|
Mattoo S, Gupta A, Chauhan M, Agrawal A, Pore SK. Prospects and challenges of noncoding-RNA-mediated inhibition of heat shock protein 90 for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195006. [PMID: 38218528 DOI: 10.1016/j.bbagrm.2024.195006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Heat Shock Protein 90 (HSP90) is a potential drug target for cancer therapy as it is often dysregulated in several cancers, including lung, breast, pancreatic, and prostate cancers. In cancer, HSP90 fails to maintain the structural and functional integrity of its several client proteins which are involved in the hallmarks of cancer such as cell proliferation, invasion, migration, angiogenesis, and apoptosis. Several small molecule inhibitors of HSP90 have been shown to exhibit anticancer effects in vitro and in vivo animal models. However, a few of them are currently under clinical studies. The status and potential limitations of these inhibitors are discussed here. Studies demonstrate that several noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) regulate HSP90 and its client proteins to modulate cellular processes to exhibit oncogenic or tumor suppressing properties. Over the last decade, miRNAs and lncRNAs have drawn significant interest from the scientific community as therapeutic agents or targets for clinical applications. Here, we discuss the detailed mechanistic regulation of HSP90 and its client proteins by ncRNAs. Moreover, we highlight the significance of these ncRNAs as potential therapeutic agents/targets, and the challenges associated with ncRNA-based therapies. This article aims to provide a holistic view on HSP90-regulating ncRNAs for the development of novel therapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Abha Gupta
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Manvee Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Akshi Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
15
|
Zhu Z, Wang Q, Zeng X, Zhu S, Chen J. Validation and identification of anoikis-related lncRNA signatures for improving prognosis in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:3915-3933. [PMID: 38385949 PMCID: PMC10929799 DOI: 10.18632/aging.205568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Clear cell carcinoma (ccRCC) usually has a high metastasis rate and high mortality rate. To enable precise risk stratification, there is a need for novel biomarkers. As one form of apoptosis, anoikis results from the disruption of cell-cell connection or cell-ECM attachment. However, the impact of anoikis-related lncRNAs on ccRCC has not yet received adequate attention. METHODS The study utilized univariate Cox regression analysis in order to identify the overall survival (OS) associated anoikis-related lncRNAs (ARLs), followed by the LASSO algorithm for selection. On this basis, a risk model was subsequently established using five anoikis-related lncRNAs. To dig the inner molecular mechanism, KEGG, GO, and GSVA analyses were conducted. Additionally, the immune infiltration landscape was estimated using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. RESULTS The study constructed a novel risk model based on five ARLs (AC092611.2, AC027601.2, AC103809.1, AL133215.2, and AL162586.1). Patients categorized as low-risk exhibited significantly better OS. Notably, the study observed marked different immune infiltration landscapes and drug sensitivity by risk stratification. Additionally, the study preliminarily explored potential signal pathways associated with risk stratification. CONCLUSION The study exhibited the crucial role of ARLs in the carcinogenesis of ccRCC, potentially through differential immune infiltration. Furthermore, the established risk model could serve as a valuable stratification factor for predicting OS prognosis.
Collapse
Affiliation(s)
- Zhenjie Zhu
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qibo Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaowei Zeng
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shaoxing Zhu
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinchao Chen
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
16
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Zhu HX, Zheng WC, Chen H, Chen JY, Lin F, Chen SH, Xue XY, Zheng QS, Liang M, Xu N, Chen DN, Sun XL. Exploring Novel Genome Instability-associated lncRNAs and their Potential Function in Pan-Renal Cell Carcinoma. Comb Chem High Throughput Screen 2024; 27:1788-1807. [PMID: 37957851 DOI: 10.2174/0113862073258779231020052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Genomic instability can drive clonal evolution, continuous modification of tumor genomes, and tumor genomic heterogeneity. The molecular mechanism of genomic instability still needs further investigation. This study aims to identify novel genome instabilityassociated lncRNAs (GI-lncRNAs) and investigate the role of genome instability in pan-Renal cell carcinoma (RCC). MATERIALS AND METHODS A mutator hypothesis was employed, combining the TCGA database of somatic mutation (SM) information, to identify GI-lncRNAs. Subsequently, a training cohort (n = 442) and a testing cohort (n = 439) were formed by randomly dividing all RCC patients. Based on the training cohort dataset, a multivariate Cox regression analysis lncRNAs risk model was created. Further validations were performed in the testing cohort, TCGA cohort, and different RCC subtypes. To confirm the relative expression levels of lncRNAs in HK-2, 786-O, and 769-P cells, qPCR was carried out. Functional pathway enrichment analyses were performed for further investigation. RESULTS A total of 170 novel GI-lncRNAs were identified. The lncRNA prognostic risk model was constructed based on LINC00460, AC073218.1, AC010789.1, and COLCA1. This risk model successfully differentiated patients into distinct risk groups with significantly different clinical outcomes. The model was further validated in multiple independent patient cohorts. Additionally, functional and pathway enrichment analyses revealed that GI-lncRNAs play a crucial role in GI. Furthermore, the assessments of immune response, drug sensitivity, and cancer stemness revealed a significant relationship between GI-lncRNAs and tumor microenvironment infiltration, mutational burden, microsatellite instability, and drug resistance. CONCLUSIONS In this study, we discovered four novel GI-lncRNAs and developed a novel signature that effectively predicted clinical outcomes in pan-RCC. The findings provide valuable insights for pan-RCC immunotherapy and shed light on potential underlying mechanisms.
Collapse
Affiliation(s)
- Hui-Xin Zhu
- Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Min Liang
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| |
Collapse
|
18
|
Wang J, Shen D, Li S, Li Q, Zuo Q, Lu J, Tang D, Feng Y, Yin P, Chen C, Chen T. LINC00665 activating Wnt3a/β-catenin signaling by bond with YBX1 promotes gastric cancer proliferation and metastasis. Cancer Gene Ther 2023; 30:1530-1542. [PMID: 37563362 DOI: 10.1038/s41417-023-00657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a key role in human cancer development; nevertheless, the effect of lncRNA LINC00665 on the progression of gastric cancer (GC) still unclear. In this study, we found that LINC00665 expression is upregulated in GC than normal gastric mucosa tissues and higher LINC00665 expression is associated with a poor prognosis in GC patients. Downregulated LINC00665 inhibited GC cells proliferation, invasion, and migration in vitro. Pulmonary metastasis animal models showed that downregulated LINC00665 could reduce the lung metastasis of GC in vivo. Tumor organoids were generated from human malignant GC tissues, downregulated LINC00665 could inhibit the growth of the organoids of GC tissues. Mechanistically, downregulated LINC00665 could inhibit GC cells EMT. RNA pulldown, RIP, and RIP-seq studies found that LINC00665 can bind to the transcription factor YBX1 and form a positive feed-forward loop. The luciferase reporter and CHIP results showed that YBX1 could regulate the transcriptional activity of Wnt3a, and downregulation of LINC00665 could block the activation of Wnt/β-catenin signaling. In conclusion, our results identified a feedback loop between LINC00665 and YBX1 that activates Wnt/β-catenin signaling, and it may be a potential therapeutic approach to suppress GC progression.
Collapse
Affiliation(s)
- Jie Wang
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Dongxiao Shen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Shichao Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Qiuying Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Qingsong Zuo
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Jiahao Lu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Peihao Yin
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Chao Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China.
| | - Teng Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China.
| |
Collapse
|
19
|
Zhou J, Li P, Feng J, Wu Q, You S. MiR-24-1-5p Hinders Malignant Phenotypes of Clear Cell Renal Cell Carcinoma by Targeting SHOX2. Biochem Genet 2023; 61:2004-2019. [PMID: 36917325 DOI: 10.1007/s10528-023-10353-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
MiRNAs are essential epigenetic modulators that can regulate protein expression. According to the principle of base complementary pairing, miRNA is partially or completely complementary to the 3'-UTR region of its target gene, by which it inhibits the translation of the targeted gene. This study investigated the role of miR-24-1-5p in clear cell renal cell carcinoma (ccRCC). Data in TCGA-KIRC denoted that miR-24-1-5p was under-expressed in ccRCC. Bioinformatics analysis predicted that its target gene was SHOX2, which was significantly expressed in cancer tissues. Dual luciferase assay verified the targeting relationship between miR-24-1-5p and SHOX2. Cell function experiments demonstrated that overexpression of miR-24-1-5p significantly inhibited SHOX2 level and the malignant phenotypes of ccRCC cells. The above results illustrated that miR-24-1-5p/SHOX2 axis was critical for the oncogenesis and development of ccRCC, which might be helpful for us to understand the mechanism and novel therapeutic methods of ccRCC.
Collapse
Affiliation(s)
- Jueyi Zhou
- Department of Oncology, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Peng Li
- Department of Urology Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui, 323000, China
| | - Jihong Feng
- Department of Oncology, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Qi Wu
- Department of Urology Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui, 323000, China
| | - Shengjie You
- Department of Urology Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Street, Liandu District, Lishui, 323000, China.
| |
Collapse
|
20
|
Ning K, Peng Y, Jiang Y, Li Z, Luo X, Lin L, Deng M, Wu Y, Huang T, Huang Y, Xie Y, Yang X, Zhang M, Xiong L, Zou X, Zhou Z, Zhou F, Dong P, Yu C, Zhang Z. Sex differences in renal cell carcinoma: a single-cell analysis reveals exhausted CD8 + T-cells highly infiltrated in males. Biol Sex Differ 2023; 14:58. [PMID: 37715192 PMCID: PMC10503187 DOI: 10.1186/s13293-023-00540-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Although sex bias has been reported in the development and progression of renal cell carcinoma (RCC), the underlying mechanisms remain enigmatic. Here, we investigated the sex differences in the tumor microenvironment (TME) of RCC and explored a promising combination drug regimen to enhance the efficacy of immunotherapy. METHODS Single-cell RNA sequencing (scRNA-seq) data from four published datasets were analyzed to investigate the sex differences in RCC patients, and tumor tissues were collected to validate the sex differences using multiplex immunofluorescence (MxIF) and flow cytometry (FCM). The function of the androgen-androgen receptor axis in sex differences was explored in vivo and in vitro experiments. RESULTS Our analysis of scRNA-seq data from 220,156 cells, as well as MxIF and FCM assays, revealed that CD8+ T-cells infiltrated highly in the TME of male RCC, but were mostly in an exhausted and dysfunctional state. In vitro and in vivo experiments indicated that the dysfunction and exhaustion of CD8+ T-cells in male TME were induced by androgen. Clinically, higher serum androgen was significantly associated with a worse prognosis in male RCC patients receiving immunotherapy. Androgen receptor inhibitors could activate tumor-infiltrating CD8+ T-cells and enhance the efficacy of immunotherapy of RCC in vivo. CONCLUSIONS Our study delineated the difference in TME between male and female patients with RCC, and demonstrated that the androgen-androgen receptor axis plays an important role in immunosuppression in male RCC. Our findings suggest that androgen receptor inhibitors in combination with immunotherapy may be a promising treatment option for male RCC patients.
Collapse
Affiliation(s)
- Kang Ning
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yulu Peng
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yue Jiang
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Li
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xin Luo
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lede Lin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Minhua Deng
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Tingxuan Huang
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yixin Huang
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ye Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Manhuai Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Longbin Xiong
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiangpeng Zou
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhaohui Zhou
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Pei Dong
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Chunping Yu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhiling Zhang
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
21
|
Tesarova T, Koucka K, Vaclavikova R, Seborova K, Hora M, Hes O, Pivovarcikova K, Soucek P, Fiala O. Association of lncRNA and transcriptome intersections with response to targeted therapy in metastatic renal cell carcinoma. Oncol Lett 2023; 26:365. [PMID: 37559591 PMCID: PMC10407709 DOI: 10.3892/ol.2023.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/18/2023] [Indexed: 08/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) serve an important role in cancer progression and may be used as efficient molecular biomarkers. The present study aimed to identify lncRNAs associated with the response to the receptor tyrosine kinase inhibitor sunitinib and transcriptome profile and clinical features of metastatic renal cell carcinoma (mRCC). The gene expression of 84 cancer-associated lncRNAs in tumor and non-malignant tissue samples of 38 patients with mRCC was evaluated using quantitative PCR. In addition, the coding transcriptome was estimated using RNA sequencing in a subgroup of 20 patients and mRNA-lncRNA intersections were identified. In total, 37 and 13 lncRNAs were down- and upregulated, respectively, in tumor compared with non-malignant adjacent tissue samples. A total of 10 and 4 lncRNAs were up- and downregulated, respectively, in good responders to sunitinib compared with poor responders. High expression of HNF1A-AS1 and IPW lncRNAs was associated with prolonged progression-free survival of patients and a high expression of the TUSC7 lncRNA was associated with poor response and worse survival. Significant associations of dysregulated MEG3 and SNHG16 lncRNAs with expression of protein-coding genes representing various pathways, were identified. Furthermore, a significantly higher expression of CLIP4 gene was observed in good responders. The present study revealed promising candidates for predictive and prognostic biomarkers with further therapeutic potential.
Collapse
Affiliation(s)
- Tereza Tesarova
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague 10, Czech Republic
| | - Kamila Koucka
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Radka Vaclavikova
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague 10, Czech Republic
| | - Karolina Seborova
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Milan Hora
- Department of Urology, Faculty of Medicine in Pilsen and University Hospital, Charles University, 301 00 Pilsen, Czech Republic
| | - Ondrej Hes
- Department of Pathology, Faculty of Medicine in Pilsen and University Hospital, Charles University, 301 00 Pilsen, Czech Republic
| | - Kristyna Pivovarcikova
- Department of Pathology, Faculty of Medicine in Pilsen and University Hospital, Charles University, 301 00 Pilsen, Czech Republic
| | - Pavel Soucek
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague 10, Czech Republic
| | - Ondrej Fiala
- Department of Oncology and Radiotherapeutics, Faculty of Medicine in Pilsen and University Hospital, Charles University, 323 00 Pilsen, Czech Republic
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| |
Collapse
|
22
|
Gabryelska MM, Conn SJ. The RNA interactome in the Hallmarks of Cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1786. [PMID: 37042179 PMCID: PMC10909452 DOI: 10.1002/wrna.1786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Ribonucleic acid (RNA) molecules are indispensable for cellular homeostasis in healthy and malignant cells. However, the functions of RNA extend well beyond that of a protein-coding template. Rather, both coding and non-coding RNA molecules function through critical interactions with a plethora of cellular molecules, including other RNAs, DNA, and proteins. Deconvoluting this RNA interactome, including the interacting partners, the nature of the interaction, and dynamic changes of these interactions in malignancies has yielded fundamental advances in knowledge and are emerging as a novel therapeutic strategy in cancer. Here, we present an RNA-centric review of recent advances in the field of RNA-RNA, RNA-protein, and RNA-DNA interactomic network analysis and their impact across the Hallmarks of Cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Marta M Gabryelska
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
23
|
Wang Y, Zheng X, Huang W, Lu J, Hou N, Qi J, Ma J, Xue W, Zheng J, Zhai W. Loss of MIR503HG facilitates papillary renal cell carcinoma associated lymphatic metastasis by triggering NOTCH1/VEGFC signaling. Int J Biol Sci 2023; 19:3266-3284. [PMID: 37416763 PMCID: PMC10321273 DOI: 10.7150/ijbs.83302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Clinical lymphatic metastasis indicates an extremely poor prognosis. Patients with papillary renal cell carcinoma (pRCC) have a high probability of progressing to lymphatic metastasis. However, the molecular mechanism of pRCC-associated lymphatic metastasis has not been elucidated. In this study, we found a downregulated long non-coding RNA (lncRNA) MIR503HG in pRCC primary tumor tissues due to hypermethylation at the CpG islands within its transcriptional start site. Decreased MIR503HG expression could stimulate tube formation and migration of human lymphatic endothelial cell (HLEC) and play a central role to promote lymphatic metastasis in vivo by enhancing tumor lymphangiogenesis. MIR503HG, located in the nucleus, bound with histone variant H2A.Z and affected the recruitment of histone variant H2A.Z to chromatin. Subsequently, increasing the H3K27 trimethylation caused by MIR503HG-overexpression epigenetically downregulated the NOTCH1 expression, which ultimately resulted in decreasing VEGFC secretion and lymphangiogenesis. Additionally, downregulated MIR503HG facilitated the HNRNPC expression, which ultimately promoted the maturation of NOTCH1 mRNA. Notably, upregulating MIR503HG expression might decrease pRCC resistance to the mTOR inhibitor. Together, these findings highlighted a VEGFC-independent mechanism of MIR503HG-mediated lymphatic metastasis. MIR503HG, identified as a novel pRCC-suppressor, would serve as the potentially biomarker for lymphatic metastasis.
Collapse
Affiliation(s)
- Yiqiu Wang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Wenjie Huang
- Department of Urology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Jiayi Lu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiabao Qi
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junjie Ma
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
24
|
Schiavoni V, Campagna R, Pozzi V, Cecati M, Milanese G, Sartini D, Salvolini E, Galosi AB, Emanuelli M. Recent Advances in the Management of Clear Cell Renal Cell Carcinoma: Novel Biomarkers and Targeted Therapies. Cancers (Basel) 2023; 15:3207. [PMID: 37370817 PMCID: PMC10296504 DOI: 10.3390/cancers15123207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Renal cell carcinoma (RCC) belongs to a heterogenous cancer group arising from renal tubular epithelial cells. Among RCC subtypes, clear cell renal cell carcinoma (ccRCC) is the most common variant, characterized by high aggressiveness, invasiveness and metastatic potential, features that lead to poor prognosis and high mortality rate. In addition, diagnosis of kidney cancer is incidental in the majority of cases, and this results in a late diagnosis, when the stage of the disease is advanced and the tumor has already metastasized. Furthermore, ccRCC treatment is complicated by its strong resistance to chemo- and radiotherapy. Therefore, there is active ongoing research focused on identifying novel biomarkers which could be useful for assessing a better prognosis, as well as new molecules which could be used for targeted therapy. In this light, several novel targeted therapies have been shown to be effective in prolonging the overall survival of ccRCC patients. Thus, the aim of this review is to analyze the actual state-of-the-art on ccRCC diagnosis, prognosis and therapeutic options, while also reporting the recent advances in novel biomarker discoveries, which could be exploited for a better prognosis or for targeted therapy.
Collapse
Affiliation(s)
- Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Giulio Milanese
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Andrea Benedetto Galosi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (R.C.); (V.P.); (M.C.); (G.M.); (A.B.G.); (M.E.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
25
|
Liu Y, Zhang H, Fang Y, Tang D, Luo Z. Non-coding RNAs in renal cell carcinoma: Implications for drug resistance. Biomed Pharmacother 2023; 164:115001. [PMID: 37315433 DOI: 10.1016/j.biopha.2023.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Renal cell carcinoma (RCC) represents a malignant tumor of the urinary system. Individuals with early-stage RCC could be cured by surgical treatment, but a considerable number of cases of advanced RCC progress to drug resistance. Recently, numerous reports have demonstrated that a variety of non-coding RNAs (ncRNAs) contribute to tumor occurrence and development. ncRNAs can act as oncogenic or tumor suppressor genes to regulate proliferation, migration, drug resistance and other processes in RCC cells through a variety of signaling pathways. Considering the lack of treatment options for advanced RCC after drug resistance, ncRNAs may be a good choice as biomarkers of drug resistance in RCC and targets to overcome drug resistance. In this review, we discussed the effects of ncRNAs on drug resistance in RCC and the great potential of ncRNAs as a biomarker of or a new therapeutic method in RCC.
Collapse
Affiliation(s)
- Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Dongshan Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Zhigang Luo
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
26
|
Cheng B, Xie M, Zhou Y, Li T, Liu W, Yu W, Jia M, Yu S, Chen L, Dai R, Wang R. Vascular mimicry induced by m 6A mediated IGFL2-AS1/AR axis contributes to pazopanib resistance in clear cell renal cell carcinoma. Cell Death Discov 2023; 9:121. [PMID: 37037853 PMCID: PMC10086028 DOI: 10.1038/s41420-023-01423-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Metastatic clear cell renal cell carcinoma (ccRCC) is a lethal sub-type of kidney cancer. Vascular mimicry (VM) has been postulated as an alternative route to supply tumors with nutrients, playing key role in tumor development. Whether VM development is linked to pazopanib efficacy, however, remains unclear. Here, our in vitro and in vivo models identified that VM development was profoundly increased in pazopanib resistant ccRCC as compared to the sensitive controls, which was due to the activation of IGFL2-AS1/AR/TWIST1 signaling. IGFL2-AS1, a m6A modified long coding RNA, was demethylated by METTL3/METTL14 complex and stabilized owing to its failing recognition by YTHDF2 upon chronic pazopanib treatment. Further mechanistic dissection illustrated that IGFL2-AS1 physically interacted with the 5'-UTR AR mRNA and neutralized the negative regulation of 5'-uORF (upstream open reading frame) on AR translation. Indeed, IGFL2-AS1 short of AR binding region failed to promote AR expression, VM formation and pazopanib resistance. In vivo xenografted mouse model also elucidated that inhibition of AR activity with enzalutamide or silence of IGFL2-AS1 with siRNAs all led to retarded growth of pazopanib resistant ccRCC tumors. Together, these results suggest that IGFL2-AS1 may represent a key player to mediate pazopanib-induced VM formation of ccRCC cells via regulating AR expression and targeting this newly identified IGFL2-AS1/AR signaling may help us to better suppress ccRCC VM formation and to increase the therapeutic efficacy of pazopanib.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Mingyue Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Wanting Liu
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Shuang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
27
|
Zhang Q, Ren H, Ge L, Zhang W, Song F, Huang P. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int 2023; 23:16. [PMID: 36732762 PMCID: PMC9893571 DOI: 10.1186/s12935-023-02861-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Qi Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Ren
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Luqi Ge
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wen Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
28
|
Guo C, Sun Y, Zhai W, Yao X, Gong D, You B, Huang CP, Zheng J, Chang C. Hypoxia increases RCC stem cell phenotype via altering the androgen receptor (AR)-lncTCFL5-2-YBX1-SOX2 signaling axis. Cell Biosci 2022; 12:185. [PMID: 36397101 PMCID: PMC9670551 DOI: 10.1186/s13578-022-00912-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
Background Early studies indicated that the androgen receptor (AR) could promote renal cell carcinoma (RCC) development and metastasis, but its linkage to RCC progression under hypoxia, remains unclear. Results Here we found AR expression in RCC cells decreased in response to hypoxia, which might then lead to increase the cancer stem cells (CSC) phenotype through the lncTCFL5-2-modulated YBX1/SOX2 signals. The consequences of such hypoxia-modulated AR/lncTCFL5-2/YBX1/SOX2 signals ablity to alter the CSC phenotype might render RCC cells more resistant to targeted therapy with Sunitinib. Mechanism dissection revealed that AR might alter the lncTCFL5-2/YBX1/SOX2 signaling through transcriptional suppression of the lncTCFL5-2 expression via the AR-response-elements (AREs) on the lncTCFL5-2 promoter. The lncTCFL5-2 interacts with YBX1 to increase its stability, which in turn increases SOX2 expression at a transcriptional level via the YBX1-response-elements (YBX1Es) on the SOX2 promoter. The in vivo mouse model with orthotopic xenografts of RCC cells also validates the in vitro data, and a human RCC sample survey demonstrated the clinical significance of the AR/lncTCFL5-2/YBX1/SOX2 signaling axis for the RCC prognosis, likely as a result of regulating CSC phenotypes. Conclusions Together, these findings suggest that hypoxia may increase the RCC CSC phenotype via altering the AR/lncTCFL5-2/YBX1/SOX2 signaling axis and a potential therapy to target this newly identified signal perhaps may help improve the targeted therapy with Sunitinib to better suppress RCC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00912-5.
Collapse
Affiliation(s)
- Changcheng Guo
- grid.412538.90000 0004 0527 0050Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China ,grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Yin Sun
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Wei Zhai
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA ,grid.415869.7Department of Urology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 400062 China
| | - Xudong Yao
- grid.412538.90000 0004 0527 0050Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Dongkui Gong
- grid.412538.90000 0004 0527 0050Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China ,grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Bosen You
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Chi-Ping Huang
- grid.411508.90000 0004 0572 9415Department of Urology, China Medical University/Hospital, Taichung, 404 Taiwan
| | - Junhua Zheng
- grid.415869.7Department of Urology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 400062 China
| | - Chawnshang Chang
- grid.412750.50000 0004 1936 9166George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642 USA ,grid.411508.90000 0004 0572 9415Department of Urology, China Medical University/Hospital, Taichung, 404 Taiwan
| |
Collapse
|
29
|
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol 2022; 86:325-345. [PMID: 35643221 DOI: 10.1016/j.semcancer.2022.05.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.
Collapse
Affiliation(s)
- Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed Kardousha
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Rizwan Qureshi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
30
|
Zhang X, Qin X, Yu T, Wang K, Chen Y, Xing Q. Chromatin regulators-related lncRNA signature predicting the prognosis of kidney renal clear cell carcinoma and its relationship with immune microenvironment: A study based on bioinformatics and experimental validation. Front Genet 2022; 13:974726. [PMID: 36338996 PMCID: PMC9630733 DOI: 10.3389/fgene.2022.974726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Kidney Renal Clear cell carcinoma (KIRC) is a major concern in the urinary system. A lot of researches were focused on Chromatin Regulators (CRs) in tumors. In this study, CRs-related lncRNAs (CRlncRNAs) were investigated for their potential impact on the prognosis of KIRC and the immune microenvironment. Methods: The TCGA database was used to obtain transcriptome and related clinical information. CRs were obtained from previous studies, whereas CRlncRNAs were obtained by differential and correlation analysis. We screened the lncRNAs for the signature construction using regression analysis and LASSO regression analysis. The effectiveness of the signature was evaluated using the Kaplan-Meier (K-M) curve and Receiver Operating Characteristic curve (ROC). Additionally, we examined the associations between the signature and Tumor Microenvironment (TME), and the efficacy of drug therapy. Finally, we further verified whether these lncRNAs could affect the biological function of KIRC cells by functional experiments such as CCK8 and transwell assay. Results: A signature consisting of 8 CRlncRNAs was constructed to predict the prognosis of KIRC. Quantitative Real-Time PCR verified the expression of 8 lncRNAs at the cell line and tissue level. The signature was found to be an independent prognostic indicator for KIRC in regression analysis. This signature was found to predict Overall Survival (OS) better for patients in the subgroups of age, gender, grade, stage, M, N0, and T. Furthermore, a significant correlation was found between riskScore and immune cell infiltration and immune checkpoint. Finally, we discovered several drugs with different IC50 values in different risk groups using drug sensitivity analysis. And functional experiments showed that Z97200.1 could affect the proliferation, migration and invasion of KIRC cells. Conclusion: Overall, the signature comprised of these 8 lncRNAs were reliable prognostic biomarkers for KIRC. Moreover, the signature had significant potential for assessing the immunological landscape of tumors and providing individualized treatment.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinyue Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Tiannan Yu
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kexin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yinhao Chen
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- *Correspondence: Qianwei Xing, ; Yinhao Chen,
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Qianwei Xing, ; Yinhao Chen,
| |
Collapse
|
31
|
Jiang D, Wu T, Shi N, Shan Y, Wang J, Jiang H, Wu Y, Wang M, Li J, Liu H, Chen M. Development of genomic instability-associated long non-coding RNA signature: A prognostic risk model of clear cell renal cell carcinoma. Front Oncol 2022; 12:1019011. [PMID: 36387102 PMCID: PMC9651086 DOI: 10.3389/fonc.2022.1019011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/23/2022] [Indexed: 09/08/2024] Open
Abstract
Purpose Renal clear cell carcinoma (ccRCC) is the most lethal of all pathological subtypes of renal cell carcinoma (RCC). Genomic instability was recently reported to be related to the occurrence and development of kidney cancer. The biological roles of long non-coding RNAs (lncRNAs) in tumorigenesis have been increasingly valued, and various lncRNAs were found to be oncogenes or cancer suppressors. Herein, we identified a novel genomic instability-associated lncRNA (GILncs) model for ccRCC patients to predict the overall survival (OS). Methods The Cancer Genome Atlas (TCGA) database was utilized to obtain full transcriptome data, somatic mutation profiles, and clinical characteristics. The differentially expressed lncRNAs between the genome-unstable-like group (GU) and the genome-stable-like group (GS) were defined as GILncs, with |logFC| > 1 and an adjusted p-value< 0.05 for a false discovery rate. All samples were allocated into GU-like or GS-like types based on the expression of GILncs observed using hierarchical cluster analyses. A genomic instability-associated lncRNA signature (GILncSig) was constructed using parameters of the included lncRNAs. Quantitative real-time PCR analysis was used to detect the in vitro expression of the included lncRNAs. Validation of the risk model was performed by the log-rank test, time-dependent receiver operating characteristic (ROC) curves analysis, and multivariate Cox regression analysis. Results Forty-six lncRNAs were identified as GILncs. LINC00460, AL139351.1, and AC156455.1 were employed for GILncSig calculation based on the results of Cox analysis. GILncSig was confirmed as an independent predictor for OS of ccRCC patients. Additionally, it presented a higher efficiency and accuracy than other RCC prognostic models reported before. Conclusion GILncSig score was qualified as a critical indicator, independent of other clinical factors, for prognostic prediction of ccRCC patients.
Collapse
Affiliation(s)
- Dongfang Jiang
- Department of Urology, Danyang People’s Hospital, Danyang, China
| | - Tiange Wu
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Naipeng Shi
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yong Shan
- Department of Urology, The Second People's Hospital of Taizhou, Taizhou, China
| | - Jinfeng Wang
- Department of Urology, Yancheng Third People’s Hospital, Yancheng, China
| | - Hua Jiang
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yuqing Wu
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Mengxue Wang
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Jian Li
- Department of Urology, Jinhu County People’s Hospital, Huaian, China
| | - Hui Liu
- Department of Urology, Binhai County People’s Hospital, Yancheng, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| |
Collapse
|
32
|
Construction and Characterization of n6-Methyladenosine-Related lncRNA Prognostic Signature and Immune Cell Infiltration in Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7495183. [PMID: 36213821 PMCID: PMC9536954 DOI: 10.1155/2022/7495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background. Kidney renal clear cell carcinoma (KIRC) lacks effective prognostic biomarkers and the role and mechanism of N6-methyladenosine (m6A) modification of long noncoding RNAs (lncRNAs) in KIRC remain unclear. Methods. We extracted standard mRNA-sequencing and clinical data from the TCGA database. The prognostic risk model was obtained by Lasso regression and Cox regression. We randomly divided the samples into training and test sets, each taking half of the cases. Based on Lasso regression and Cox regression for training set, the prognostic risk signature was constructed; risk scores were calculated with the R package “glmnet.” Based on the median value of the prognostic risk score, risk scores were calculated for each patient and we divided all KIRC samples into high-risk and low-risk groups. Then, high- and low-risk subtypes were established and their prognosis, clinical features, and immune infiltration microenvironment were evaluated in test set and the entire sampled data set. The reliability of the prognostic model was confirmed by receiver operating characteristic curve analysis. Results. We found 28 prognostic m6A-related lncRNAs and established a m6A-related lncRNAs prognostic signature.
The signature showed a better predictive ability than other clinical indicators, including tumor node metastasis classification (TNM), histological, and pathological stages. In the high-risk group, M0 macrophages, CD8+ T cells, and regulatory T cells had significantly higher scores. Contrarily, in the low-risk group, activated dendritic cells, M1 macrophages, mast resting cells, and monocytes had significantly higher scores. In the high-risk group, LSECtin was overexpressed. In the low-risk group, PD-L1 was overexpressed. Moreover, high-risk patients may benefit more from AZ628. Conclusions. In conclusion, prognosis prediction of patients with KIRC and new insights for immunotherapy are provided by the m6A-related lncRNA prognostic signature.
Collapse
|
33
|
Mao W, Wang K, Zhang W, Chen S, Xie J, Zheng Z, Li X, Zhang N, Zhang Y, Zhang H, Peng B, Yao X, Che J, Zheng J, Chen M, Li W. Transfection with Plasmid-Encoding lncRNA-SLERCC nanoparticle-mediated delivery suppressed tumor progression in renal cell carcinoma. J Exp Clin Cancer Res 2022; 41:252. [PMID: 35986402 PMCID: PMC9389749 DOI: 10.1186/s13046-022-02467-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background The accumulating evidence confirms that long non-coding RNAs (lncRNAs) play a critical regulatory role in the progression of renal cell carcinoma (RCC). But, the application of lncRNAs in gene therapy remains scarce. Here, we investigated the efficacy of a delivery system by introducing the plasmid-encoding tumor suppressor lncRNA-SLERCC (SLERCC) in RCC cells. Methods We performed lncRNAs expression profiling in paired cancer and normal tissues through microarray and validated in our clinical data and TCGA dataset. The Plasmid-SLERCC@PDA@MUC12 nanoparticles (PSPM-NPs) were tested in vivo and in vitro, including cellular uptake, entry, CCK-8 assay, tumor growth inhibition, histological assessment, and safety evaluations. Furthermore, experiments with nude mice xenografts model were performed to evaluate the therapeutic effect of PSPM-NPs nanotherapeutic system specific to the SLERCC. Results We found that the expression of SLERCC was downregulated in RCC tissues, and exogenous upregulation of SLERCC could suppress metastasis of RCC cells. Furthermore, high expression DNMT3A was recruited at the SLERCC promoter, which induced aberrant hypermethylation, eventually leading to downregulation of SLERCC expression in RCC. Mechanistically, SLERCC could directly bind to UPF1 and exert tumor-suppressive effects through the Wnt/β-catenin signaling pathway, thereby inhibiting progression and metastasis in RCC. Subsequently, the PSPM-NPs nanotherapeutic system can effectively inhibit the growth of RCC metastases in vivo. Conclusions Our findings suggested that SLERCC is a promising therapeutic target and that plasmid-encapsulated nanomaterials targeting transmembrane metastasis markers may open a new avenue for the treatment in RCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02467-2.
Collapse
|
34
|
Osca-Verdegal R, Beltrán-García J, Górriz JL, Martínez Jabaloyas JM, Pallardó FV, García-Giménez JL. Use of Circular RNAs in Diagnosis, Prognosis and Therapeutics of Renal Cell Carcinoma. Front Cell Dev Biol 2022; 10:879814. [PMID: 35813211 PMCID: PMC9257016 DOI: 10.3389/fcell.2022.879814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma is the most common type of kidney cancer, representing 90% of kidney cancer diagnoses, and the deadliest urological cancer. While the incidence and mortality rates by renal cell carcinoma are higher in men compared to women, in both sexes the clinical characteristics are the same, and usually unspecific, thereby hindering and delaying the diagnostic process and increasing the metastatic potential. Regarding treatment, surgical resection remains the main therapeutic strategy. However, even after radical nephrectomy, metastasis may still occur in some patients, with most metastatic renal cell carcinomas being resistant to chemotherapy and radiotherapy. Therefore, the identification of new biomarkers to help clinicians in the early detection, and treatment of renal cell carcinoma is essential. In this review, we describe circRNAs related to renal cell carcinoma processes reported to date and propose the use of some in therapeutic strategies for renal cell carcinoma treatment.
Collapse
Affiliation(s)
- Rebeca Osca-Verdegal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis Górriz
- Department of Nephrology, University Clinic Hospital, INCLIVA, University of Valencia, Valencia, Spain
| | | | - Federico V. Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
- *Correspondence: José Luis García-Giménez,
| |
Collapse
|
35
|
Li J, Wei S, Zhang Y, Lu S, Zhang X, Wang Q, Yan J, Yang S, Chen L, Liu Y, Huang Z. Comprehensive Analyses of Mutation-Derived Long-Chain Noncoding RNA Signatures of Genome Instability in Kidney Renal Papillary Cell Carcinoma. Front Genet 2022; 13:874673. [PMID: 35547247 PMCID: PMC9082950 DOI: 10.3389/fgene.2022.874673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The role of long-chain noncoding RNA (lncRNA) in genomic instability has been demonstrated to be increasingly importance. Therefore, in this study, lncRNAs associated with genomic instability were identified and kidney renal papillary cell carcinoma (KIRP)-associated predictive features were analysed to classify high-risk patients and improve individualised treatment. Methods: The training (n = 142) and test (n = 144) sets were created using raw RNA-seq and patient’s clinical data of KIRP obtained from The Cancer Genome Atlas (TCGA).There are 27 long-chain noncoding RNAs (lncRNAs) that are connected with genomic instability, these lncRNAs were identified using the ‘limma’ R package based on the numbers of somatic mutations and lncRNA expression profiles acquired from KIRP TCGA cohort. Furthermore, Cox regression analysis was carried out to develop a genome instability-derived lncRNA-based gene signature (GILncSig), whose prognostic value was confirmed in the test cohort as well as across the entire KIRP TCGA dataset. Results: A GILncSig derived from three lncRNAs (BOLA3-AS1, AC004870, and LINC00839), which were related with poor KIRP survival, was identified, which was split up into high- and low-risk groups. Additionally, the GILncSig was found to be an independent prognostic predictive index in KIRP using univariate and multivariate Cox analysis. Furthermore, the prognostic significance and characteristics of GilncSig were confirmed in the training test and TCGA sets. GilncSig also showed better predictive performance than other prognostic lncRNA features. Conclusion: The function of lncRNAs in genomic instability and the genetic diversity of KIRP were elucidated in this work. Moreover, three lncRNAs were screened for prediction of the outcome of KIRP survival and novel insights into identifying cancer biomarkers related to genomic instability were discussed.
Collapse
Affiliation(s)
- Jian Li
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shimei Wei
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Zhang
- Department of Pediatrics, Shanxi Children's Hospital, Taiyuan, China
| | - Shuangshuang Lu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaoxu Zhang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qiong Wang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiawei Yan
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Sanju Yang
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Liying Chen
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Yunguang Liu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhijing Huang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
36
|
Min L, Zhu T, Lv B, An T, Zhang Q, Shang Y, Yu Z, Zheng L, Wang Q. Exosomal LncRNA RP5-977B1 as a novel minimally invasive biomarker for diagnosis and prognosis in non-small cell lung cancer. Int J Clin Oncol 2022; 27:1013-1024. [PMID: 35482171 PMCID: PMC9120093 DOI: 10.1007/s10147-022-02129-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths in the world. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases. For lack of conveniently sensitive and specific biomarkers, the majority of patients are in the late stage at initial diagnosis. Long non-coding RNAs (LncRNAs), a novel type of non-coding RNA, have recently been recognized as critical factors in tumor initiation and progression, but the role of exosomal LncRNAs has not been thoroughly excavated in NSCLC yet. METHODS We isolated exosomes from the serum of patients with NSCLC and healthy controls. Exosome RNA deep sequencing was subsequently performed to detect differentially expressed exosomal LncRNAs. qRT-PCR assay was then utilized to validate dysregulated LncRNAs in both testing and multicentric validation cohort. Receiver operating characteristic (ROC) curve was used to detect the diagnostic capability of exosomal biomarkers. Furthermore, Kaplan-Meier analysis was applied to evaluate the prognostic values of these molecules. RESULTS On the basis of analysis, we found that novel exosomal LncRNA RP5-977B1 exhibited higher levels in NSCLC than that in the healthy controls. The area under the curve (AUC) value of exosomal RP5-977B1 was 0.8899 and superior to conventional biomarkers CEA and CYFRA21-1 both in testing and multicentric validation cohort. Interestingly, the diagnostic capability of exosomal RP5-977B1 was also validated in early-stage patients with NSCLC. Furthermore, high expression of exosomal RP5-977B1was closely related with worse prognosis in NSCLC (P = 0.036). CONCLUSIONS Our results suggested that exosomal RP5-977B1 might serve as a novel "liquid biopsy" diagnostic and prognostic biomarker to monitor NSCLC and improve possible therapy.
Collapse
Affiliation(s)
- Ling Min
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhouda Road, Guangzhou, 510515, Guangdong, China.,Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Bo Lv
- Department of General Practice, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Taixue An
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhouda Road, Guangzhou, 510515, Guangdong, China
| | - Qichao Zhang
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Yanyan Shang
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Zhiwu Yu
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhouda Road, Guangzhou, 510515, Guangdong, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhouda Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
37
|
Hao J, Zhou Y, Yu W, Li H, He D. Silencing of LncRNA KCNQ1OT1 confers an inhibitory effect on renal fibrosis through repressing miR-124-3p activity. Bioengineered 2022; 13:10399-10411. [PMID: 35443864 PMCID: PMC9161840 DOI: 10.1080/21655979.2022.2056816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LncRNA have been increasingly shown that plays pivotal roles in the development of various diseases, including renal fibrosis. Nevertheless, the pathological function of Long non-coding RNA KCNQ1OT1 (KCNQ1OT1) in the renal fibrosis remains obscure. Unilateral ureteral obstruction (UUO) was used to induce renal fibrosis. We detected the expression levels of KCNQ1OT1 in the TGF-β1-induced HK-2 cells via RT-qPCR analysis. The functions of KCNQ1OT1 on the progression of renal fibrosis were examined by CCK-8, EdU, dual-luciferase reporter, and immunofluorescence analyses. In the present study, we found that sh-KCNQ1OT1 obviously attenuated UUO-induced renal fibrosis. Moreover, production of extracellular matrix (ECM), including α-SMA and Fibronectin levels, was significantly increased in kidney and HK-2 cells after UUO or TGF-β stimulation. Knockdown of KCNQ1OT1 inhibited cell proliferation and inhibits the α-SMA and Fibronectin expression of TGF-β1-induced HK-2 cells. In addition, bioinformatics analysis and dual-luciferase reporter assay indicated that miR-124-3p was a target gene of KCNQ1OT1. Mechanistically, silencing miR-124-3p abolished the repressive effects of KCNQ1OT1 on TGF-β1-induced HK-2 cells. In conclusion, KCNQ1OT1 knockdown plays an anti-fibrotic effect through promotion of miR-124-3p expression in renal fibrosis, which provides a promising therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Jian Hao
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, Shanxi Province, China
| | - Yun Zhou
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Weimin Yu
- Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, Shanxi Province, China
| | - Hui Li
- Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, Shanxi Province, China
| | - Dandan He
- Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
38
|
Long Noncoding RNA MMP2-AS1 Contributes to Progression of Renal Cell Carcinoma by Modulating miR-34c-5p/MMP2 Axis. JOURNAL OF ONCOLOGY 2022; 2022:7346460. [PMID: 35342412 PMCID: PMC8942703 DOI: 10.1155/2022/7346460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/23/2022]
Abstract
Renal cell carcinoma (RCC) serves as a prevalent malignancy of urinary system and presents severe mortality and increasing incidence. Long noncoding RNAs (lncRNAs) have demonstrated critical roles in RCC development. Here, we were interested in the function of MMP2-AS1 during RCC progression. We observed that MP2-AS1 localized in both nucleus and cytoplasm of RCC cells using fluorescent in situ hybridization (FISH). The cell viability, proliferation, invasion, and migration of RCC cells were reduced by the depletion of MMP2-AS1. The MMP2-AS1 depletion-inhibited viability, proliferation, migration, and invasion of RCC cells were rescued by the overexpression of MMP2 in vitro. Consistently, the tumor growth of RCC cells was repressed by the depletion of MMP2-AS1 in the nude mice, while the overexpression of MMP2 could reverse this effect in vivo. Mechanically, we predicted the potential interaction of miR-34c-5p with both MMP2-AS1 and MMP2. The treatment of miR-34c-5p mimic reduced the luciferase activity of MMP2-AS1 and MMP2 3'UTR. The depletion of MMP2-AS1 enhanced miR-34c-5p expression and the expression of MMP2 was inhibited by miR-34c-5p in RCC cells. The protein levels of MMP2 were downregulated by MMP2-AS1 knockdown, while the inhibitor of miR-34c-5p rescued the expression of MMP2 in the cells. The treatment of miR-34c-5p mimic attenuated the cell viability, proliferation, invasion, and migration of RCC cells, in which MMP2 overexpression restored the phenotypes. MMP2-AS1 depletion-attenuated viability, proliferation, migration, and invasion of RCC cells were reversed by miR-34c-5p inhibitor. We concluded that MMP2-AS1 contributed to progression of renal cell carcinoma by modulating miR-34c-5p/MMP2 axis.
Collapse
|
39
|
Abedi Kichi Z, Soltani M, Rezaei M, Shirvani-Farsani Z, Rojhannezhad M. The Emerging role of EMT-related lncRNAs in therapy resistance and their application as biomarkers. Curr Med Chem 2022; 29:4574-4601. [PMID: 35352644 DOI: 10.2174/0929867329666220329203032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/09/2022]
Abstract
Cancer is the world's second largest cause of death. The most common cancer treatments are surgery, radiation therapy, and chemotherapy. Drug resistance, epithelial-to-mesenchymal transition (EMT), and metastasis are all pressing issues in cancer therapy today. Increasing evidence showed that drug-resistant and EMT are co-related with each other. Indeed, drug-resistant cancer cells possess enhanced EMT and invasive ability. Recent researches have demonstrated lncRNAs (long noncoding RNAs) are noncoding transcripts, which play an important role in the regulation of EMT, metastasis, and drug resistance in different cancers. However, the relationships among lncRNAs, EMT, and drug resistance are still unclear. These effects could be exerted via several signaling pathways such as TGF-β, PI3K-AKT, and Wnt/β-catenin. Identifying the crucial regulatory roles of lncRNAs in these pathways and processes leads to the development of novel targeted therapies. We review the key aspects of lncRNAs associated with EMT and therapy resistance. We focus on the crosstalk between lncRNAs and molecular signaling pathways affecting EMT and drug resistance. Moreover, each of the mentioned lncRNAs could be used as a potential diagnostic, prognostic, and therapeutic biomarker for cancer. Although, there are still many challenges to investigate lncRNAs for clinical applications.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Mona Soltani
- Department of Plant Production & Genetics, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Mina Rezaei
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
40
|
Chen J, Wang R, Lu E, Song S, Zhu Y. LINC00630 as a miR-409-3p sponge promotes apoptosis and glycolysis of colon carcinoma cells via regulating HK2. Am J Transl Res 2022; 14:863-875. [PMID: 35273690 PMCID: PMC8902572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 06/14/2023]
Abstract
Long-chain non-coding RNAs (lncRNAs) belong to the family of non-coding RNAs and contain more than 200 nucleotides. They are involved in the growth, apoptosis, and glycolysis of carcinoma cells. A newly discovered lncRNA, LINC00630, has been reported in colon carcinoma. In this study, we found that the expression of LINC00630 was remarkably upregulated in colon carcinoma tissues and cell lines compared with that in adjacent tissues and the NCM-460 cell lines. Knocking out LINC00630 resulted in inhibition of proliferation and glycolysis but increase in apoptosis. In addition, we confirmed the direct interaction between LINC00630 and miR-409-3p in colon carcinoma cells using bioinformatics methods and dual luciferase reporter gene assay. Finally, we demonstrated that LINC00630 could promote cell growth and glycolysis and inhibit apoptosis by functioning as a miR-409-3p sponge, and further regulate hexokinase 2 (HK2) in colon carcinoma cells. Our results confirmed that LINC00630 regulates proliferation, glycolysis, and apoptosis mainly through targeting the miR-409-3p/HK2 axis, which may explain the progression of colon carcinoma and provide a potential target for the treatment of colon carcinoma.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai 264000, Shandong, China
| | - Runjie Wang
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Enci Lu
- Department of Lung, Changzhou Third People’s HospitalChangzhou 213001, Jiangsu, China
| | - Shan’ai Song
- Department of Oncology, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong, China
| | - Yingwei Zhu
- Cancer Center, Changzhou Second People’s Hospital, The Affiliated Hospital of Nanjing Medical UniversityChangzhou 213003, Jiangsu, China
| |
Collapse
|
41
|
The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases. Int J Mol Sci 2022; 23:ijms23031553. [PMID: 35163477 PMCID: PMC8835816 DOI: 10.3390/ijms23031553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target of miRNAs due to their regulatory function on AR gene expression. A deeper understanding of the AR–miRNA interactions may contribute to the development of better diagnostic tools as well as to providing new therapeutic approaches. While most studies usually focus on the role of miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and AR-independent diseases.
Collapse
|
42
|
Li W, Meng X, Yuan H, Xiao W, Zhang X. A Novel Immune-Related ceRNA Network and Relative Potential Therapeutic Drug Prediction in ccRCC. Front Genet 2022; 12:755706. [PMID: 35145542 PMCID: PMC8821820 DOI: 10.3389/fgene.2021.755706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
Abstract
Renal cell carcinoma (RCC) is the third common solid tumor in the urinary system with a high distant metastasis rate. The five-year survival rate of RCC has reached 75%, benefiting from the emergence and update of multiple treatments, while its pathogenesis and prognostic markers are still unclear. In this study, we committed to explore a prognostic ceRNA network that could participate in the development of RCC and had not been studied yet. We screened nine immune-related hub genes (AGER, HAMP, LAT, LTB4R, NR3C2, SEMA3D, SEMA3G, SLC11A1, and VAV3) using data of The Cancer Genome Atlas Kidney Clear Cell Carcinoma database (TCGA-KIRC) through survival analysis and the cox proportional hazard model. Next, we successfully constructed a ceRNA network of two mRNA (NR3C2 and VAV3), miRNA (hsa-miR-186-5p), and lncRNA (NNT-AS1) for ccRCC based on numerous online bioinformatics tools and Cytoscape. Finally, we predicted five potential drugs (clemizole, pentolonium, dioxybenzone, Prestwick-691, and metoprolol) based on the above results.
Collapse
Affiliation(s)
- Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wen Xiao, ; Xiaoping Zhang,
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wen Xiao, ; Xiaoping Zhang,
| |
Collapse
|
43
|
Shu X, Zhang Z, Yao ZY, Xing XL. Identification of Five Ferroptosis-Related LncRNAs as Novel Prognosis and Diagnosis Signatures for Renal Cancer. Front Mol Biosci 2022; 8:763697. [PMID: 35118117 PMCID: PMC8804361 DOI: 10.3389/fmolb.2021.763697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Ferroptosis is a novel regulated cell death that is characterized by iron-dependent oxidative damage. Renal cancer is the second most common cancer of the urinary system, which is highly correlated with iron metabolism. The aim of our present study was to identify suitable ferroptosis-related prognosis signatures for renal cancer.Methods: We downloaded the RNA-seq count data of renal cancer from The Cancer Genome Atlas database and used the DESeq2, Survival, and Cox regression analyses to screen the prognosis signatures.Results: We identified 5 ferroptosis-related differentially expressed lncRNAs (FR-DELs) (DOCK8-AS1, SNHG17, RUSC1-AS1, LINC02609, and LUCAT1) to be independently correlated with the overall survival (OS) of patients with renal cancer. The risk assessment model and diagnosis model constructed by those 5 FR-DELs could well predict the outcome and the diagnosis of renal cancer.Conclusion: Our present study not only suggested those 5 FR-DELs could be used as prognosis and diagnosis signatures for renal cancer but also provided strategies for other cancers in the screening of ferroptosis-related biomarkers.
Collapse
Affiliation(s)
- Xiangjun Shu
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
- The First Affiliated Hospital, Hunan University of Medicine, Huaihua, China
| | - Zaiqi Zhang
- The First Affiliated Hospital, Hunan University of Medicine, Huaihua, China
| | - Zhi-Yong Yao
- The First Affiliated Hospital, Hunan University of Medicine, Huaihua, China
| | - Xiao-Liang Xing
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
- The First Affiliated Hospital, Hunan University of Medicine, Huaihua, China
- *Correspondence: Xiao-Liang Xing,
| |
Collapse
|
44
|
Shan G, Huang T, Tang T. Long non-coding RNA MEG8 induced by PLAG1 promotes clear cell renal cell carcinoma through the miR-495-3p/G3BP1 axis. Pathol Res Pract 2022; 229:153734. [PMID: 35030351 DOI: 10.1016/j.prp.2021.153734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is recognized as one of the most lethal malignancies among the urological system, with constantly increasing mortality. While the molecular mechanisms underlying ccRCC progression are still poorly understood, the molecular and functional role of lncRNA in multiple diseases has been well demonstrated. In this study, we hypothesized that lncRNA MEG8 might participate in ccRCC development. At first, we found that MEG8 expression was increased in ccRCC tumor tissues and cells. Next, we demonstrated that MEG8 knockdown suppressed cell viability, migration, and invasion in vitro and inhibited tumor growth in vivo. Subsequently, we utilized bioinformatics analysis, ChIP, and luciferase assays, and we found that PLAG1 could transcriptionally regulate MEG8 in ccRCC cells. Furthermore, MEG8 promoted G3BP1 expression to aggravate ccRCC tumorigenic properties through sponging miR-495-3p. Our study identified a novel PLAG1/MEG8/miR-495-3p/G3BP1 network in ccRCC development, which might be a promising direction for developing new diagnoses or therapeutic agents for ccRCC.
Collapse
Affiliation(s)
- Guang Shan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ting Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tian Tang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
45
|
Wang L, Zhong C. gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network. BMC Bioinformatics 2022; 23:11. [PMID: 34983363 PMCID: PMC8729153 DOI: 10.1186/s12859-021-04548-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/21/2021] [Indexed: 01/20/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are related to human diseases by regulating gene expression. Identifying lncRNA-disease associations (LDAs) will contribute to diagnose, treatment, and prognosis of diseases. However, the identification of LDAs by the biological experiments is time-consuming, costly and inefficient. Therefore, the development of efficient and high-accuracy computational methods for predicting LDAs is of great significance. Results In this paper, we propose a novel computational method (gGATLDA) to predict LDAs based on graph-level graph attention network. Firstly, we extract the enclosing subgraphs of each lncRNA-disease pair. Secondly, we construct the feature vectors by integrating lncRNA similarity and disease similarity as node attributes in subgraphs. Finally, we train a graph neural network (GNN) model by feeding the subgraphs and feature vectors to it, and use the trained GNN model to predict lncRNA-disease potential association scores. The experimental results show that our method can achieve higher area under the receiver operation characteristic curve (AUC), area under the precision recall curve (AUPR), accuracy and F1-Score than the state-of-the-art methods in five fold cross-validation. Case studies show that our method can effectively identify lncRNAs associated with breast cancer, gastric cancer, prostate cancer, and renal cancer. Conclusion The experimental results indicate that our method is a useful approach for predicting potential LDAs.
Collapse
Affiliation(s)
- Li Wang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China.,School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning, China. .,Key Laboratory of Parallel and Distributed Computing in Guangxi Colleges and Universities, Guangxi University, Nanning, China.
| |
Collapse
|
46
|
Effects of lncRNA LINC01320 on Proliferation and Migration of Pancreatic Cancer Cells through Targeted Regulation of miR-324-3p. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2021:4125432. [PMID: 34976325 PMCID: PMC8718302 DOI: 10.1155/2021/4125432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Objective LINC01320 is a new oncogenic gene. Nevertheless, the effect of LINC01320 on pancreatic cancer (PC) is still unclear. This research aimed to seek the influence of LINC01320 on PC and its possible mechanism. Methods RT-qPCR is used to test the LINC01320 in tissues and cells. Cell viability, apoptosis, migration, and invasiveness are detected to explore the role of LINC01320 in PC, and target genes are predicted by bioinformatics methods. The mechanism of action was further explored by transfection of specific siRNA, miRNA mimetics, or miRNA inhibitors. In order to verify the effect of LINC01320 in vivo, we carried out tumor xenotransplantation. Results We conclude that LINC01320 is highly expressed in PC tissues and cell strains. LINC01320 high expression was bound up with a poor prognosis. LINC01320 gene knockout inhibited the growth, migration, and invasiveness of PC cells. In addition, LINC01320 is expressed by miR-324-3p, which is also supported by in vivo experiments. Conclusion LINC01320 is highly expressed in PC, and it can suppress the growth and migration of PC cells through targeted regulation of miR-324-3p, which is expected to become a latent target for clinical treatment.
Collapse
|
47
|
Zhang Y, Dai J, Huang W, Chen Q, Chen W, He Q, Chen F, Zhang P. Identification of a competing endogenous RNA network related to immune signature in clear cell renal cell carcinoma. Aging (Albany NY) 2021; 13:25980-26002. [PMID: 34958632 PMCID: PMC8751601 DOI: 10.18632/aging.203784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a fatal cancer of the urinary system. Long non-coding RNAs (lncRNAs) act as competitive endogenous RNAs (ceRNAs) involving the ccRCC progression. However, the relationship between the ceRNA network and immune signature is largely unknown. In this study, the ccRCC-related gene expression profiles retrieved from the TCGA database were used first to identify the differentially expressed genes through differential gene expression analysis and weighted gene co-expression network analysis. The interaction among differentially expressed lncRNAs, miRNAs, and mRNAs were matched using public databases. As a result, a ceRNA network was developed that contained 144 lncRNAs, 23 miRNAs, as well as 62 mRNAs. Four of 144 lncRNAs including LINC00943, SRD5A3-AS1, LINC02345, and U62317.3 were identified through LASSO regression and Cox regression analyses, and were used to create a prognostic risk model. Then, the ccRCC samples were divided into the high- and low-risk groups depending on their risk scores. ROC curves, Kaplan-Meier survival analysis, and the survival risk plots indicated that the predictive performance of our developed risk model was accurate. Moreover, the CIBERSORT algorithm was used to measure the infiltration levels of immune cells in the ccRCC samples. The further genomic analysis illustrated a positive correlation between most immune checkpoint blockade-related genes and the risk score. In conclusion, the present findings effectually contribute to the comprehensive understanding of the ccRCC pathogenesis, and may offer a reference for developing novel therapeutic and prognostic biomarkers.
Collapse
Affiliation(s)
- Yuke Zhang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiangwen Dai
- Department of Oncology, Chengdu Fifth People's Hospital of Chengdu University of TCM, Chengdu, China
| | - Weifeng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingsong Chen
- Department of Traumatology, Chongqing University Central Hospital, Chongqing, China
| | - Wei Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiying He
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Chen
- Department of Integrated Care Management Center, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Zhang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Deng T, Xiao Y, Dai Y, Xie L, Li X. Roles of Key Epigenetic Regulators in the Gene Transcription and Progression of Prostate Cancer. Front Mol Biosci 2021; 8:743376. [PMID: 34977151 PMCID: PMC8714908 DOI: 10.3389/fmolb.2021.743376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a top-incidence malignancy, and the second most common cause of death amongst American men and the fifth leading cause of cancer death in men around the world. Androgen receptor (AR), the key transcription factor, is critical for the progression of PCa by regulating a series of target genes by androgen stimulation. A number of co-regulators of AR, including co-activators or co-repressors, have been implicated in AR-mediated gene transcription and PCa progression. Epigenetic regulators, by modifying chromatin integrity and accessibility for transcription regulation without altering DNA sequences, influence the transcriptional activity of AR and further regulate the gene expression of AR target genes in determining cell fate, PCa progression and therapeutic response. In this review, we summarized the structural interaction of AR and epigenetic regulators including histone or DNA methylation, histone acetylation or non-coding RNA, and functional synergy in PCa progression. Importantly, epigenetic regulators have been validated as diagnostic markers and therapeutic targets. A series of epigenetic target drugs have been developed, and have demonstrated the potential to treat PCa alone or in combination with antiandrogens.
Collapse
Affiliation(s)
- Tanggang Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yugang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Dai
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
49
|
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021; 10:3198. [PMID: 34831421 PMCID: PMC8619311 DOI: 10.3390/cells10113198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-dependent or through interaction with other DNA-bound transcription factors, as well as a number of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly prostate cancer. In the current review, we summarize the available data on the role of microRNAs, long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling, as well as the effects of AR on their expression. Recognition of the complicated interaction between non-coding RNAs and AR has practical importance in the design of novel treatment options, as well as modulation of response to conventional therapeutics.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| |
Collapse
|
50
|
Lu Y, Wan X, Huang W, Zhang L, Luo J, Li D, Huang Y, Li Y, Xu Y. AC016745.3 Regulates the Transcription of AR Target Genes by Antagonizing NONO. Life (Basel) 2021; 11:life11111208. [PMID: 34833084 PMCID: PMC8625561 DOI: 10.3390/life11111208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) and its related signaling pathways play an important role in the development of prostate cancer (PCa). Long non-coding RNAs (lncRNAs) are involved in the regulation of tumorigenesis and development, but their specific mechanism of action remains unclear. This study examines the function and mechanisms of action of lncRNA AC016745.3 in the development of PCa. It shows that dihydrotestosterone (DHT) results in the AR-dependent suppression of AC016745.3 expression in the LNCaP androgen-sensitive human prostate adenocarcinoma cell line. In addition, overexpression of AC016745.3 inhibits the proliferation and migration of PCa cells, and suppresses the expression of AR target genes. This research also demonstrates that the protein NONO interacts with AR and functions as an AR co-activator, promoting AR transcriptional activity. Furthermore, using RNA immunoprecipitation (RIP)-PCR experiments, the study demonstrates that both NONO and AR can bind AC016745.3. Moreover, cell phenotypic experiments reveal that NONO can promote cellular proliferation and migration, and that AC016745.3 can partially antagonize the pro-oncogenic functions of NONO in PCa cells. In summary, the results indicate that AC016745.3 can bind NONO, suppressing its ability to promote AR-dependent transcriptional activity. Furthermore, DHT-dependent suppression of AC016745.3 expression can enhance NONO's promotion effect on AR.
Collapse
Affiliation(s)
- Yali Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Xuechao Wan
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Wenhua Huang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Jun Luo
- Department of Urology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China; (J.L.); (D.L.)
| | - Dujian Li
- Department of Urology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China; (J.L.); (D.L.)
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
- Correspondence: (Y.L.); (Y.X.)
| | - Yaoting Xu
- Department of Urology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China; (J.L.); (D.L.)
- Correspondence: (Y.L.); (Y.X.)
| |
Collapse
|