1
|
Passera B, Harquel S, Chauvin A, Gérard P, Lai L, Moro E, Meoni S, Fraix V, David O, Raffin E. Multi-scale and cross-dimensional TMS mapping: A proof of principle in patients with Parkinson's disease and deep brain stimulation. Front Neurosci 2023; 17:1004763. [PMID: 37214390 PMCID: PMC10192635 DOI: 10.3389/fnins.2023.1004763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) mapping has become a critical tool for exploratory studies of the human corticomotor (M1) organization. Here, we propose to gather existing cutting-edge TMS-EMG and TMS-EEG approaches into a combined multi-dimensional TMS mapping that considers local and whole-brain excitability changes as well as state and time-specific changes in cortical activity. We applied this multi-dimensional TMS mapping approach to patients with Parkinson's disease (PD) with Deep brain stimulation (DBS) of the sub-thalamic nucleus (STN) ON and OFF. Our goal was to identifying one or several TMS mapping-derived markers that could provide unprecedent new insights onto the mechanisms of DBS in movement disorders. Methods Six PD patients (1 female, mean age: 62.5 yo [59-65]) implanted with DBS-STN for 1 year, underwent a robotized sulcus-shaped TMS motor mapping to measure changes in muscle-specific corticomotor representations and a movement initiation task to probe state-dependent modulations of corticospinal excitability in the ON (using clinically relevant DBS parameters) and OFF DBS states. Cortical excitability and evoked dynamics of three cortical areas involved in the neural control of voluntary movements (M1, pre-supplementary motor area - preSMA and inferior frontal gyrus - IFG) were then mapped using TMS-EEG coupling in the ON and OFF state. Lastly, we investigated the timing and nature of the STN-to-M1 inputs using a paired pulse DBS-TMS-EEG protocol. Results In our sample of patients, DBS appeared to induce fast within-area somatotopic re-arrangements of motor finger representations in M1, as revealed by mediolateral shifts of corticomuscle representations. STN-DBS improved reaction times while up-regulating corticospinal excitability, especially during endogenous motor preparation. Evoked dynamics revealed marked increases in inhibitory circuits in the IFG and M1 with DBS ON. Finally, inhibitory conditioning effects of STN single pulses on corticomotor activity were found at timings relevant for the activation of inhibitory GABAergic receptors (4 and 20 ms). Conclusion Taken together, these results suggest a predominant role of some markers in explaining beneficial DBS effects, such as a context-dependent modulation of corticospinal excitability and the recruitment of distinct inhibitory circuits, involving long-range projections from higher level motor centers and local GABAergic neuronal populations. These combined measures might help to identify discriminative features of DBS mechanisms towards deep clinical phenotyping of DBS effects in Parkinson's Disease and in other pathological conditions.
Collapse
Affiliation(s)
- Brice Passera
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sylvain Harquel
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- CNRS, INSERM, IRMaGe, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Alan Chauvin
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Pauline Gérard
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Lisa Lai
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Moro
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Sara Meoni
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Valerie Fraix
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Estelle Raffin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
2
|
Wang P, Zhao L, Wang T, Mei W, Li J, An Y, Li L, Li Z. Comparison of Half-Effective Concentration of Propofol in Patients with Parkinson's Disease and Non-Parkinson's Disease. Clin Interv Aging 2023; 18:307-315. [PMID: 36879829 PMCID: PMC9985387 DOI: 10.2147/cia.s380416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
OBJECTIVE This study aimed to compare the half-effective concentration (EC50) of propofol required for the bispectral index (BIS) 50 in patients with Parkinson's disease (PD) and non-PD (NPD) during induction by the Dixon's improved sequential method. METHODS This prospective study recruited 20 patients with PD undergoing deep brain stimulation and 20 patients with NPD accompanied by meningioma or glioma undergoing intracranial surgery from March 2018 to March 2019. The patients were induced by propofol via target-controlled infusion. The target effect-site concentration of propofol was determined by the Dixon's improved sequential method. The results of the pilot experiment showed that the target effect-site concentration for the first patient with PD and NPD was 3.5 µg/mL and 2.8 µg/mL, respectively. BIS values were recorded after achieving a constant effect-site concentration of propofol. The increment or decrement of the target effect-site concentration of the next patient was 0.1 µg/mL. RESULTS Demographic data, general physical condition, and hemodynamic values were similar between the PD and the NPD groups. The target effect-site concentration of propofol induction doses was significantly higher in the PD group than in the NPD group. The EC50 of propofol required for BIS 50 was 3.213 µg/mL [95% confidence interval (CI), 3.085-3.287 µg/mL] in the PD group and 2.77 µg/mL (95% CI, 2.568-2.977 µg/mL) in the NPD group. CONCLUSION The EC50 of propofol required for BIS 50 was higher in patients with PD than in patients with NPD.
Collapse
Affiliation(s)
- Ping Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Lei Zhao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, People’s Republic of China
| | - Jingsheng Li
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yi An
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Lixia Li
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Zhongjia Li
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| |
Collapse
|
3
|
Alosaimi F, Boonstra JT, Tan S, Temel Y, Jahanshahi A. The role of neurotransmitter systems in mediating deep brain stimulation effects in Parkinson’s disease. Front Neurosci 2022; 16:998932. [PMID: 36278000 PMCID: PMC9579467 DOI: 10.3389/fnins.2022.998932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Deep brain stimulation (DBS) is among the most successful paradigms in both translational and reverse translational neuroscience. DBS has developed into a standard treatment for movement disorders such as Parkinson’s disease (PD) in recent decades, however, specific mechanisms behind DBS’s efficacy and side effects remain unrevealed. Several hypotheses have been proposed, including neuronal firing rate and pattern theories that emphasize the impact of DBS on local circuitry but detail distant electrophysiological readouts to a lesser extent. Furthermore, ample preclinical and clinical evidence indicates that DBS influences neurotransmitter dynamics in PD, particularly the effects of subthalamic nucleus (STN) DBS on striatal dopaminergic and glutamatergic systems; pallidum DBS on striatal dopaminergic and GABAergic systems; pedunculopontine nucleus DBS on cholinergic systems; and STN-DBS on locus coeruleus (LC) noradrenergic system. DBS has additionally been associated with mood-related side effects within brainstem serotoninergic systems in response to STN-DBS. Still, addressing the mechanisms of DBS on neurotransmitters’ dynamics is commonly overlooked due to its practical difficulties in monitoring real-time changes in remote areas. Given that electrical stimulation alters neurotransmitter release in local and remote regions, it eventually exhibits changes in specific neuronal functions. Consequently, such changes lead to further modulation, synthesis, and release of neurotransmitters. This narrative review discusses the main neurotransmitter dynamics in PD and their role in mediating DBS effects from preclinical and clinical data.
Collapse
Affiliation(s)
- Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
- *Correspondence: Faisal Alosaimi,
| | - Jackson Tyler Boonstra
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sonny Tan
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Ali Jahanshahi,
| |
Collapse
|
4
|
Ozturk M, Viswanathan A, Sheth SA, Ince NF. Electroceutically induced subthalamic high-frequency oscillations and evoked compound activity may explain the mechanism of therapeutic stimulation in Parkinson's disease. Commun Biol 2021; 4:393. [PMID: 33758361 PMCID: PMC7988171 DOI: 10.1038/s42003-021-01915-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Despite having remarkable utility in treating movement disorders, the lack of understanding of the underlying mechanisms of high-frequency deep brain stimulation (DBS) is a main challenge in choosing personalized stimulation parameters. Here we investigate the modulations in local field potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson's disease patients undergoing DBS surgery. We find that therapeutic high-frequency stimulation (130-180 Hz) induces high-frequency oscillations (~300 Hz, HFO) similar to those observed with pharmacological treatment. Along with HFOs, we also observed evoked compound activity (ECA) after each stimulation pulse. While ECA was observed in both therapeutic and non-therapeutic (20 Hz) stimulation, the HFOs were induced only with therapeutic frequencies, and the associated ECA were significantly more resonant. The relative degree of enhancement in the HFO power was related to the interaction of stimulation pulse with the phase of ECA. We propose that high-frequency STN-DBS tunes the neural oscillations to their healthy/treated state, similar to pharmacological treatment, and the stimulation frequency to maximize these oscillations can be inferred from the phase of ECA waveforms of individual subjects. The induced HFOs can, therefore, be utilized as a marker of successful re-calibration of the dysfunctional circuit generating PD symptoms.
Collapse
Affiliation(s)
- Musa Ozturk
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nuri F Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
5
|
Albaugh DL, Huang C, Ye S, Paré J, Smith Y. Glutamatergic inputs to GABAergic interneurons in the motor thalamus of control and parkinsonian monkeys. Eur J Neurosci 2020; 53:2049-2060. [DOI: 10.1111/ejn.14763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel L. Albaugh
- Division of Neuropharmacology and Neurological Disorders Yerkes National Primate Research Center Emory University Atlanta GA USA
- Udall Center of Excellence for Parkinson’s Disease ResearchEmory University Atlanta GA USA
| | - Christina Huang
- Division of Neuropharmacology and Neurological Disorders Yerkes National Primate Research Center Emory University Atlanta GA USA
| | - Sherry Ye
- Division of Neuropharmacology and Neurological Disorders Yerkes National Primate Research Center Emory University Atlanta GA USA
| | - Jean‐François Paré
- Division of Neuropharmacology and Neurological Disorders Yerkes National Primate Research Center Emory University Atlanta GA USA
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Disorders Yerkes National Primate Research Center Emory University Atlanta GA USA
- Udall Center of Excellence for Parkinson’s Disease ResearchEmory University Atlanta GA USA
- Department of Neurology School of Medicine Emory University Atlanta GA USA
| |
Collapse
|
6
|
Di Giovanni G, Grandi LC, Fedele E, Orban G, Salvadè A, Song W, Cuboni E, Stefani A, Kaelin-Lang A, Galati S. Acute and Chronic Dopaminergic Depletion Differently Affect Motor Thalamic Function. Int J Mol Sci 2020; 21:ijms21082734. [PMID: 32326424 PMCID: PMC7215393 DOI: 10.3390/ijms21082734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/23/2022] Open
Abstract
The motor thalamus (MTh) plays a crucial role in the basal ganglia (BG)-cortical loop in motor information codification. Despite this, there is limited evidence of MTh functionality in normal and Parkinsonian conditions. To shed light on the functional properties of the MTh, we examined the effects of acute and chronic dopamine (DA) depletion on the neuronal firing of MTh neurons, cortical/MTh interplay and MTh extracellular concentrations of glutamate (GLU) and gamma-aminobutyric acid (GABA) in two states of DA depletion: acute depletion induced by the tetrodotoxin (TTX) and chronic denervation obtained by 6-hydroxydopamine (6-OHDA), both infused into the medial forebrain bundle (MFB) in anesthetized rats. The acute TTX DA depletion caused a clear-cut reduction in MTh neuronal activity without changes in burst content, whereas the chronic 6-OHDA depletion did not modify the firing rate but increased the burst firing. The phase correlation analysis underscored that the 6-OHDA chronic DA depletion affected the MTh-cortical activity coupling compared to the acute TTX-induced DA depletion state. The TTX acute DA depletion caused a clear-cut increase of the MTh GABA concentration and no change of GLU levels. On the other hand, the 6-OHDA-induced chronic DA depletion led to a significant reduction of local GABA and an increase of GLU levels in the MTh. These data show that MTh is affected by DA depletion and support the hypothesis that a rebalancing of MTh in the chronic condition counterbalances the profound alteration arising after acute DA depletion state.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Laura Clara Grandi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
| | - Ernesto Fedele
- Section of Pharmacology and Toxicology, Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gergely Orban
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
| | - Agnese Salvadè
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
| | - Wei Song
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
| | - Eleonora Cuboni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
| | - Alessandro Stefani
- Department of system medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
- Medical Faculty, University of Bern, 3008 Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Salvatore Galati
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, 6900 Taverne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Center for Movement Disorders, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
| |
Collapse
|
7
|
van Nuland AJM, den Ouden HEM, Zach H, Dirkx MFM, van Asten JJA, Scheenen TWJ, Toni I, Cools R, Helmich RC. GABAergic changes in the thalamocortical circuit in Parkinson's disease. Hum Brain Mapp 2019; 41:1017-1029. [PMID: 31721369 PMCID: PMC7267977 DOI: 10.1002/hbm.24857] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/31/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease is characterized by bradykinesia, rigidity, and tremor. These symptoms have been related to an increased gamma‐aminobutyric acid (GABA)ergic inhibitory drive from globus pallidus onto the thalamus. However, in vivo empirical evidence for the role of GABA in Parkinson's disease is limited. Some discrepancies in the literature may be explained by the presence or absence of tremor. Specifically, recent functional magnetic resonance imaging (fMRI) findings suggest that Parkinson's tremor is associated with reduced, dopamine‐dependent thalamic inhibition. Here, we tested the hypothesis that GABA in the thalamocortical motor circuit is increased in Parkinson's disease, and we explored differences between clinical phenotypes. We included 60 Parkinson patients with dopamine‐resistant tremor (n = 17), dopamine‐responsive tremor (n = 23), or no tremor (n = 20), and healthy controls (n = 22). Using magnetic resonance spectroscopy, we measured GABA‐to‐total‐creatine ratio in motor cortex, thalamus, and a control region (visual cortex) on two separate days (ON and OFF dopaminergic medication). GABA levels were unaltered by Parkinson's disease, clinical phenotype, or medication. However, motor cortex GABA levels were inversely correlated with disease severity, particularly rigidity and tremor, both ON and OFF medication. We conclude that cortical GABA plays a beneficial rather than a detrimental role in Parkinson's disease, and that GABA depletion may contribute to increased motor symptom expression.
Collapse
Affiliation(s)
- Annelies J M van Nuland
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Hanneke E M den Ouden
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Heidemarie Zach
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands.,Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Michiel F M Dirkx
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Jack J A van Asten
- Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Ivan Toni
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Roshan Cools
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Rick C Helmich
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Hamdi H, Robin E, Stahl JP, Doche E, Azulay JP, Chabardes S, Bartolomei F, Regis J. Anterior Thalamic Stimulation Induced Relapsing Encephalitis. Stereotact Funct Neurosurg 2019; 97:132-136. [PMID: 31055582 DOI: 10.1159/000499072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
Deep brain stimulation of the anterior thalamic nucleus is one of the promising therapeutic options for epilepsy. Several studies are still under way to further strengthen and clarify the mechanism, efficacy, and complications. Contrary to hardware-related and operation-related events, the stimulation-related adverse effect is mild, target-dependent, and adjustable. We present a case of relapsing herpes simplex encephalitis (HSE) as a newly reported and potentially fatal stimulation-related adverse effect following stimulation of the anterior thalamic nucleus (ANT-DBS) accompanied by fever, confusion, and cognitive impairment in a 32-year-old epileptic patient with a history of herpes meningoencephalitis 31 years earlier. The T2-weighted/FLAIR high-signal intensity in the temporal lobe developed at a "distance" from the stimulation target. The positive polymerase chain reaction of herpes virus deoxyribonucleic acid in the cerebrospinal fluid confirmed the diagnosis. The condition improved partially on acyclovir and stimulation stopped. Seizures disappeared and then returned after few months. The unique case report presents a rationale for considering history of herpes encephalitis as a relative contraindication for ANT-DBS, and HSE relapse should be suspected in patients with post-stimulation fever and/or altered consciousness.
Collapse
Affiliation(s)
- Hussein Hamdi
- Service de Neurochirurgie Fonctionnelle et Stéréotaxique, INSERM, UMR 1106, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France, .,Functional Neurosurgery and Stereotaxy Unit, Neurological Surgery Department, Tanta University, Tanta, Egypt,
| | - Elsa Robin
- Service de Neurologie et pathologie du mouvement, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Jean-Paul Stahl
- Service de Maladies infectieuses et tropicales, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Emilie Doche
- Service de Neurologie et Unité Neurovasculaire, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Jean-Philippe Azulay
- Service de Neurologie et pathologie du mouvement, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Stephan Chabardes
- Service de Neurochirurgie, INSERM, U836, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Fabrice Bartolomei
- Service de Neurophysiologie Clinique, INSERM, UMR 1106, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| | - Jean Regis
- Service de Neurochirurgie Fonctionnelle et Stéréotaxique, INSERM, UMR 1106, Hôpital d'adulte de la Timone, Aix-Marseille Université, Marseille, France
| |
Collapse
|
9
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Andres D. On the Motion of Spikes: Turbulent-Like Neuronal Activity in the Human Basal Ganglia. Front Hum Neurosci 2018; 12:429. [PMID: 30405381 PMCID: PMC6207592 DOI: 10.3389/fnhum.2018.00429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/02/2018] [Indexed: 12/03/2022] Open
Abstract
Neuronal signals are usually characterized in terms of their discharge rate, a description inadequate to account for the complex temporal organization of spike trains. Complex temporal properties, which are characteristic of neuronal systems, can only be described with the appropriate, complex mathematical tools. Here, I apply high order structure functions to the analysis of neuronal signals recorded from parkinsonian patients during functional neurosurgery, recovering multifractal properties. To achieve an accurate model of such multifractality is critical for understanding the basal ganglia, since other non-linear properties, such as entropy, depend on the fractal properties of complex systems. I propose a new approach to the study of neuronal signals: to study spiking activity in terms of the velocity of spikes, defining it as the inverse function of the instantaneous frequency. I introduce a neural field model that includes a non-linear gradient field, representing neuronal excitability, and a diffusive term to consider the physical properties of the electric field. Multifractality is present in the model for a range of diffusion coefficients, and multifractal temporal properties are mirrored into space. The model reproduces the behavior of human basal ganglia neurons and shows that it is like that of turbulent fluids. The results obtained from the model predict that passive electric properties of neuronal activity, including ephaptic coupling, are far more relevant to the human brain than what is usually considered: passive electric properties determine the temporal and spatial organization of neuronal activity in the neural tissue.
Collapse
Affiliation(s)
- Daniela Andres
- Science and Technology School, National University of San Martin, Buenos Aires, Argentina
| |
Collapse
|
11
|
Wu HF, Chen YJ, Chu MC, Hsu YT, Lu TY, Chen IT, Chen PS, Lin HC. Deep Brain Stimulation Modified Autism-Like Deficits via the Serotonin System in a Valproic Acid-Induced Rat Model. Int J Mol Sci 2018; 19:ijms19092840. [PMID: 30235871 PMCID: PMC6164279 DOI: 10.3390/ijms19092840] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/30/2023] Open
Abstract
Deep brain stimulation (DBS) is known to be a promising treatment for resistant depression, which acts via the serotonin (5-hydroxytryptamine, 5-HT) system in the infralimbic prefrontal cortex (ILPFC). Previous study revealed that dysfunction of brain 5-HT homeostasis is related to a valproate (VPA)-induced rat autism spectrum disorder (ASD) model. Whether ILPFC DBS rescues deficits in VPA-induced offspring through the 5-HT system is not known. Using VPA-induced offspring, we therefore explored the effect of DBS in autistic phenotypes and further investigated the underlying mechanism. Using combined behavioral and molecular approaches, we observed that applying DBS and 5-HT1A receptor agonist treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) reversed sociability deficits, anxiety and hyperactivity in the VPA-exposed offspring. We then administered the selective 5-HT1A receptor antagonist N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate (WAY 100635), following which the effect of DBS in terms of improving autistic behaviors was blocked in the VPA-exposed offspring. Furthermore, we found that both 8-OH-DPAT and DBS treatment rescued autistic behaviors by decreasing the expressions of NR2B subunit of N-methyl-D-aspartate receptors (NMDARs) and the β₃ subunit of γ-aminobutyric acid type A receptors (GABAAR) in the PFC region. These results provided the first evidence of characteristic behavioral changes in VPA-induced offspring caused by DBS via the 5-HT system in the ILPFC.
Collapse
Affiliation(s)
- Han-Fang Wu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yi-Ju Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ming-Chia Chu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ya-Ting Hsu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ting-Yi Lu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - I-Tuan Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Addiction Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
12
|
Hurtado F, Cardenas MAN, Cardenas F, León LA. La Enfermedad de Parkinson: Etiología, Tratamientos y Factores Preventivos. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.epet] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La enfermedad de Parkinson (EP) es la patología neurodegenerativa motora con mayor incidencia a nivel mundial. Esta afecta a aproximadamente 2-3% de la población mayor a 60 años de edad y sus causas aún no han sido bien determinadas. Actualmente no existe cura para esta patología; sin embargo, es posible contar con diferentes tratamientos que permiten aliviar algunos de sus síntomas y enlentecer su curso. Estos tratamientos tienen como premisa contrarrestar los efectos ocasionados por la pérdida de la función dopaminérgica de la sustancia nigra (SN) sobre estructuras como el núcleo subtálamico (NST) o globo pálido interno (GPi) ya sea por medio de tratamientos farmacológicos, estimulación cerebral profunda (ECP) o con el implante celular. Existen también investigaciones que están dirigiendo su interés al desarrollo de fármacos con potencial terapéutico, que presenten alta especificidad a receptores colinérgicos de nicotina (nAChRs) y antagonistas de receptores de adenosina, específicamente del subtipo A2A. Estos últimos, juegan un papel importante en el control de liberación dopaminérgica y en los procesos de neuroprotección. En esta revisión se pretende ofrecer una panorámica actual sobre algunos de los factores de riesgo asociados a EP, algunos de los tratamientos actuales más utilizados y acerca del rol de sustancias potencialmente útiles en la prevención de esta enfermedad.
Collapse
|
13
|
Stefani A, Trendafilov V, Liguori C, Fedele E, Galati S. Subthalamic nucleus deep brain stimulation on motor-symptoms of Parkinson's disease: Focus on neurochemistry. Prog Neurobiol 2017; 151:157-174. [PMID: 28159574 DOI: 10.1016/j.pneurobio.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) has become a standard therapy for Parkinson's disease (PD) and it is also currently under investigation for other neurological and psychiatric disorders. Although many scientific, clinical and ethical issues are still unresolved, DBS delivered into the subthalamic nucleus (STN) has improved the quality of life of several thousands of patients. The mechanisms underlying STN-DBS have been debated extensively in several reviews; less investigated are the biochemical consequences, which are still under scrutiny. Crucial and only partially understood, for instance, are the complex interplays occurring between STN-DBS and levodopa (LD)-centred therapy in the post-surgery follow-up. The main goal of this review is to address the question of whether an improved motor control, based on STN-DBS therapy, is also achieved through the additional modulation of other neurotransmitters, such as noradrenaline (NA) and serotonin (5-HT). A critical issue is to understand not only acute DBS-mediated effects, but also chronic changes, such as those involving cyclic nucleotides, capable of modulating circuit plasticity. The present article will discuss the neurochemical changes promoted by STN-DBS and will document the main results obtained in microdialysis studies. Furthermore, we will also examine the preliminary achievements of voltammetry applied to humans, and discuss new hypothetical investigational routes, taking into account novel players such as glia, or subcortical regions such as the pedunculopontine (PPN) area. Our further understanding of specific changes in brain chemistry promoted by STN-DBS would further disseminate its utilisation, at any stage of disease, avoiding an irreversible lesioning approach.
Collapse
Affiliation(s)
- A Stefani
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - V Trendafilov
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - C Liguori
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - E Fedele
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
| | - S Galati
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland.
| |
Collapse
|
14
|
Nord M, Zsigmond P, Kullman A, Dizdar N. Levodopa Pharmacokinetics in Brain after Both Oral and Intravenous Levodopa in One Patient with Advanced Parkinson’s Disease. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/apd.2017.62006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Modulation of Neuronal Activity in the Motor Thalamus during GPi-DBS in the MPTP Nonhuman Primate Model of Parkinson's Disease. Brain Stimul 2016; 10:126-138. [PMID: 27839724 DOI: 10.1016/j.brs.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The motor thalamus is a key nodal point in the pallidothalamocortical "motor" circuit, which has been implicated in the pathogenesis of Parkinson's disease (PD) and other movement disorders. Although a critical structure in the motor circuit, the role of the motor thalamus in mediating the therapeutic effects of deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) is not fully understood. OBJECTIVE To characterize the changes in neuronal activity in the pallidal (ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)) and cerebellar (ventralis posterior lateralis pars oralis (VPLo)) receiving areas of the motor thalamus during therapeutic GPi DBS. METHODS Neuronal activity from the VA/VLo (n = 134) and VPLo (n = 129) was recorded from two non-human primates made parkinsonian using the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. For each isolated unit, one minute of data was recorded before, during and after DBS; a pulse width of 90 µs and a frequency of 135 Hz were used for DBS to replicate commonly used clinical settings. Stimulation amplitude was determined based on the parameters required to improve motor signs. Severity of motor signs was assessed using the UPDRS modified for nonhuman primates. Discharge rate, presence and characteristics of bursts, and oscillatory activity were computed and compared across conditions (pre-, during, and post-stimulation). RESULTS Neurons in both the pallidal and cerebellar receiving areas demonstrated significant changes in their pattern of activity during therapeutic GPi DBS. A majority of the neurons in each nucleus were inhibited during DBS (VA/VLo: 47% and VPLo: 49%), while a smaller subset was excited (VA/VLo: 21% and VPLo: 17%). Bursts changed in structure, becoming longer in duration and both intra-burst and inter-spike intervals and variability were increased in both subnuclei. High frequency oscillatory activity was significantly increased during stimulation with 33% of VA/VLo (likelihood ratio: p < 0.0001) and 34% of VPLo (p < 0.0001) neurons entrained to the stimulation pulse train. CONCLUSIONS Therapeutic GPi DBS produced a significant change in neuronal activity in both pallidal and cerebellar receiving areas of the motor thalamus. DBS suppressed activity in the majority of neurons, changed the structure of bursting activity and locked the neuronal response of one-third of cells to the stimulation pulse, leading to an increase in the power of gamma oscillations. These data support the hypothesis that stimulation activates output from the stimulated structure and that GPi DBS produces network-wide changes in neuronal activity that includes both the pallidal and cerebellar thalamo-cortical circuits.
Collapse
|
16
|
Andres DS, Gomez F, Ferrari FAS, Cerquetti D, Merello M, Viana R, Stoop R. Multiple-time-scale framework for understanding the progression of Parkinson's disease. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062709. [PMID: 25615131 DOI: 10.1103/physreve.90.062709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 06/04/2023]
Abstract
Parkinson's disease is marked by neurodegenerative processes that affect the pattern of discharge of basal ganglia neurons. The main features observed in the parkinsonian globus pallidus pars interna (GPi), a subdomain of the basal ganglia that is involved in the regulation of voluntary movement, are pathologically increased and synchronized neuronal activity. How these changes affect the implemented neuronal code is not well understood. Our experimental temporal structure-function analysis shows that in parkinsonian animals the rate-coding window of GPi neurons needed for the proper performance of voluntary actions is reduced. The model of the GPi network that we develop and discuss here reveals indeed that the size of the rate-coding window shrinks as the network activity increases and is expanded if the coupling strength among the neurons is increased. This leads to the novel interpretation that the pathological neuronal synchronization in Parkinson's disease in the GPi is the result of a collective attempt to counterbalance the shrinking of the rate-coding window due to increased activity in GPi neurons.
Collapse
Affiliation(s)
- D S Andres
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and Institute for Neurological Research Raul Carrea, Fleni Institute, Buenos Aires, Argentina and Society in Science, The Branco-Weiss Fellowship, administered by ETH Zurich, Switzerland
| | - F Gomez
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - F A S Ferrari
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and Physics Department, Federal University of Parana, Curitiba, Brazil
| | - D Cerquetti
- Institute for Neurological Research Raul Carrea, Fleni Institute, Buenos Aires, Argentina
| | - M Merello
- Institute for Neurological Research Raul Carrea, Fleni Institute, Buenos Aires, Argentina
| | - R Viana
- Physics Department, Federal University of Parana, Curitiba, Brazil
| | - R Stoop
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
17
|
Porras G, De Deurwaerdere P, Li Q, Marti M, Morgenstern R, Sohr R, Bezard E, Morari M, Meissner WG. L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci Rep 2014; 4:3730. [PMID: 24429495 PMCID: PMC3893648 DOI: 10.1038/srep03730] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/20/2013] [Indexed: 01/07/2023] Open
Abstract
L-dopa remains the mainstay treatment for Parkinson's disease (PD), although in later stages, treatment is complicated by L-dopa-induced dyskinesias (LID). Current evidence links LID to excessive striatal L-dopa-derived dopamine (DA) release, while the possibility of a direct involvement of L-dopa itself in LID has been largely ignored. Here we show that L-dopa can alter basal ganglia activity and produce LID without enhancing striatal DA release in parkinsonian non-human primates. These data may have therapeutic implications for the management of advanced PD since they suggest that LID could result from diverse mechanisms of action of L-dopa.
Collapse
Affiliation(s)
- Gregory Porras
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Motac neuroscience, Manchester, UK
| | - Philippe De Deurwaerdere
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Qin Li
- 1] Motac neuroscience, Manchester, UK [2] Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Rudolf Morgenstern
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, 10117 Berlin, Germany
| | - Reinhard Sohr
- Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, 10117 Berlin, Germany
| | - Erwan Bezard
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Motac neuroscience, Manchester, UK [4] Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China [5] Service de Neurologie, Centre Expert Parkinson, CHU de Bordeaux, 33076 Bordeaux, France
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Wassilios G Meissner
- 1] Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [2] CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France [3] Service de Neurologie, Centre Expert Parkinson, CHU de Bordeaux, 33076 Bordeaux, France [4] Centre de référence AMS, CHU de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
18
|
Abstract
P73 is a member of the p53 transcription factors family with a prominent role in neurobiology, affecting brain development as well as controlling neuronal survival. Accordingly, p73 has been identified as key player in many age-related neurodegenerative diseases, such as Alzheimer's disease, neuroAIDS and Niemann-Pick type C disease. Here we investigate possible correlations of p73 with Parkinson disease. Tyrosine hydroxylase is a crucial player in Parkinson disease being the enzyme necessary for dopamine synthesis. In this work we show that levels of tyrosine hydroxylase can be influenced by p73. We also demonstrate that p73 can protect against tyrosine hydroxylase depletion in an in vitro model of Parkinson disease.
Collapse
Affiliation(s)
- Francesca Grespi
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | | |
Collapse
|
19
|
Sutton AC, Yu W, Calos ME, Smith AB, Ramirez-Zamora A, Molho ES, Pilitsis JG, Brotchie JM, Shin DS. Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat. J Neurophysiol 2012; 109:363-74. [PMID: 23076106 DOI: 10.1152/jn.00311.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinson's disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. Hemiparkinsonian rats predominantly touched with their unimpaired forepaw >90% of the time in the stepping and limb-use asymmetry tests. After SNr-HFS (150 Hz), rats touched equally with both forepaws, similar to naive and sham-lesioned rats. In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.
Collapse
Affiliation(s)
- Alexander C Sutton
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rosa M, Giannicola G, Marceglia S, Fumagalli M, Barbieri S, Priori A. Neurophysiology of Deep Brain Stimulation. EMERGING HORIZONS IN NEUROMODULATION - NEW FRONTIERS IN BRAIN AND SPINE STIMULATION 2012. [DOI: 10.1016/b978-0-12-404706-8.00004-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Stefani A, Fedele E, Pierantozzi M, Galati S, Marzetti F, Peppe A, Pastore FS, Bernardi G, Stanzione P. Reduced GABA Content in the Motor Thalamus during Effective Deep Brain Stimulation of the Subthalamic Nucleus. Front Syst Neurosci 2011; 5:17. [PMID: 21519387 PMCID: PMC3078559 DOI: 10.3389/fnsys.2011.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/22/2011] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN), in Parkinson's disease (PD) patients, is a well established therapeutic option, but its mechanisms of action are only partially known. In our previous study, the clinical transitions from OFF- to ON-state were not correlated with significant changes of GABA content inside GPi or substantia nigra reticulata. Here, biochemical effects of STN-DBS have been assessed in putamen (PUT), internal pallidus (GPi), and inside the antero-ventral thalamus (VA), the key station receiving pallidothalamic fibers. In 10 advanced PD patients undergoing surgery, microdialysis samples were collected before and during STN-DBS. cGMP, an index of glutamatergic transmission, was measured in GPi and PUT by radioimmunoassay, whereas GABA from VA was measured by HPLC. During clinically effective STN-DBS, we found a significant decrease in GABA extracellular concentrations in VA (−30%). Simultaneously, cGMP extracellular concentrations were enhanced in PUT (+200%) and GPi (+481%). These findings support a thalamic dis-inhibition, in turn re-establishing a more physiological corticostriatal transmission, as the source of motor improvement. They indirectly confirm the relevance of patterning (instead of mere changes of excitability) and suggest that a rigid interpretation of the standard model, at least when it indicates the hyperactive indirect pathway as key feature of hypokinetic signs, is unlikely to be correct. Finally, given the demonstration of a key role of VA in inducing clinical relief, locally administration of drugs modulating GABA transmission in thalamic nuclei could become an innovative therapeutic strategy.
Collapse
Affiliation(s)
- Alessandro Stefani
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione S. Lucia, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|