1
|
Lei KC, Srinivas N, Chandra M, Kervarrec T, Coyaud E, Spassova I, Peiffer L, Houben R, Shuda M, Hoffmann D, Schrama D, Becker JC. Merkel cell polyomavirus pan-T antigen knockdown reduces cancer cell stemness and promotes neural differentiation independent of RB1. J Med Virol 2024; 96:e29789. [PMID: 38988206 DOI: 10.1002/jmv.29789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with integration of Merkel cell polyomavirus (MCPyV). MCPyV-encoded T-antigens (TAs) are pivotal for sustaining MCC's oncogenic phenotype, i.e., repression of TAs results in reactivation of the RB pathway and subsequent cell cycle arrest. However, the MCC cell line LoKe, characterized by a homozygous loss of the RB1 gene, exhibits uninterrupted cell cycle progression after shRNA-mediated TA repression. This unique feature allows an in-depth analysis of the effects of TAs beyond inhibition of the RB pathway, revealing the decrease in expression of stem cell-related genes upon panTA-knockdown. Analysis of gene regulatory networks identified members of the E2F family (E2F1, E2F8, TFDP1) as key transcriptional regulators that maintain stem cell properties in TA-expressing MCC cells. Furthermore, minichromosome maintenance (MCM) genes, which encodes DNA-binding licensing proteins essential for stem cell maintenance, were suppressed upon panTA-knockdown. The decline in stemness occurred simultaneously with neural differentiation, marked by the increased expression of neurogenesis-related genes such as neurexins, BTG2, and MYT1L. This upregulation can be attributed to heightened activity of PBX1 and BPTF, crucial regulators of neurogenesis pathways. The observations in LoKe were confirmed in an additional MCPyV-positive MCC cell line in which RB1 was silenced before panTA-knockdown. Moreover, spatially resolved transcriptomics demonstrated reduced TA expression in situ in a part of a MCC tumor characterized by neural differentiation. In summary, TAs are critical for maintaining stemness of MCC cells and suppressing neural differentiation, irrespective of their impact on the RB-signaling pathway.
Collapse
Affiliation(s)
- Kuan Cheok Lei
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nalini Srinivas
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Mitalee Chandra
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Etienne Coyaud
- Department of Biology, University Lille, INSERM, Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Lille, France
| | - Ivelina Spassova
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Lukas Peiffer
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Masahiro Shuda
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen C Becker
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| |
Collapse
|
2
|
Ni H, Tang S, Yuan X, Xu J, Zheng F, Chen K, Liu X, Zhang H, Hu J, Xia D, Wu Y. Prolonged exposure of environmental concentration benzo[a]pyrene promoted cancer stemness through AhR/PKA/SOX2 dependent pathway in small cell lung cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167824. [PMID: 37839474 DOI: 10.1016/j.scitotenv.2023.167824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Benzo[a]pyrene (BaP) is commonly found in the environment as a result of incomplete combustion of organic materials and cigarette smoke. Epidemiological studies have consistently suggested that elderly smokers are at higher risk for small cell lung cancer (SCLC), with risks and clinical stages increasing with the intensity and duration of smoking. However, the underlying mechanism remains insufficiently investigated. Here, we established a positive correlation between smoking and BaP metabolite 3-hydroxybenzo[a]pyrene (3OH-BaP) in urine. The pooled standardized mean difference of urinary 3OH-BaP concentration for smokers versus nonsmokers was 5.18 (95 % CI 2.86-7.50). Clinical data suggested that smoking led to more lymph node metastasis, higher pathological N-stage, and worse overall survival in SCLC patients. We identified 75 genes that participate in BaP-associated cancer stemness of SCLC from Comparative Toxicogenomics Database and validated the expression of these candidate genes in SCLC patient samples. Protein kinase cAMP-activated catalytic subunit alpha (PRKACA) was found to be most upregulated in SCLC patients and in vitro experiments indicated that long-term exposure of SCLC cells to BaP, at the concentration equivalent to those detected in blood, increased PKA protein level. Further investigation revealed that PKA could directly interact with SOX2 and protect SOX2 from COP1-mediated ubiquitination and degradation. Upregulated SOX2 then contributed to the stemness and metastasis of SCLC cells while inhibition of aryl hydrocarbon receptor (AhR) signaling pathway abolished BaP induced PKA expression and downstream PKA/SOX2 axis. Our findings firstly pinpoint BaP exposure as a high-risk factor for SCLC and worse outcomes in patients, with the underlying mechanism being the activation of cancer stemness of SCLC via the AhR/PKA/SOX2 axis.
Collapse
Affiliation(s)
- Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Tang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinming Xu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Liu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Wang X, Li N, Zheng M, Yu Y, Zhang S. Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer. Transl Oncol 2024; 39:101815. [PMID: 37935080 PMCID: PMC10654249 DOI: 10.1016/j.tranon.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Adipocytes are derived from pluripotent mesenchymal stem cells and can develop into several cell types including adipocytes, myocytes, chondrocytes, and osteocytes. Adipocyte differentiation is regulated by a variety of transcription factors and signaling pathways. Various epigenetic factors, particularly histone modifications, play key roles in adipocyte differentiation and have indispensable functions in altering chromatin conformation. Histone acetylases and deacetylases participate in the regulation of protein acetylation, mediate transcriptional and post-translational modifications, and directly acetylate or deacetylate various transcription factors and regulatory proteins. The adipocyte differentiation of stem cells plays a key role in various metabolic diseases. Cancer stem cells(CSCs) play an important function in cancer metastasis, recurrence, and drug resistance, and have the characteristics of stem cells. They are expressed in various cell lineages, including adipocytes. Recent studies have shown that cancer stem cells that undergo epithelial-mesenchymal transformation can undergo adipocytic differentiation, thereby reducing the degree of malignancy. This opens up new possibilities for cancer treatment. This review summarizes the regulation of acetylation during adipocyte differentiation, involving the functions of histone acetylating and deacetylating enzymes as well as non-histone acetylation modifications. Mechanistic studies on adipogenesis and acetylation during the differentiation of cancer cells into a benign cell phenotype may help identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Na Li
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China.
| |
Collapse
|
4
|
Chen P, Sun C, Wang H, Zhao W, Wu Y, Guo H, Zhou C, He Y. YAP1 expression is associated with survival and immunosuppression in small cell lung cancer. Cell Death Dis 2023; 14:636. [PMID: 37752152 PMCID: PMC10522695 DOI: 10.1038/s41419-023-06053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023]
Abstract
Immunotherapy is considered a major breakthrough in the treatment of small cell lung cancer (SCLC), although its anti-tumor efficacy is limited. With a high degree of malignancy and high heterogeneity, SCLC is difficult to treat in the clinic. A new combination strategy is urgently needed to further improve the efficacy of immunotherapy in patients with SCLC. By immunofluorescence, 100 SCLC patients in a local cohort were classified into the SCLC-A (high ASCL1 expression; n = 36), SCLC-N (high NEUROD1 expression; n = 32), SCLC-P (high POU2F3 expression; n = 14), and SCLC-Y (high YAP1 expression; n = 18) subtypes. Each SCLC molecular subtype represented different prognoses, tumor microenvironment traits, and immunotherapy sensitivities. Analysis of both the local and public cohorts suggested that the SCLC-Y subtype exhibited the worst clinical outcome (p < 0.05) when compared with other subtypes. SCLC with high YAP1 expression was characterized by high PD-L1 expression, high stromal score, T-cell functional impairment, and a close relationship with immune-related pathways. YAP1 upregulated PD-L1 expression and suppressed T cell activation, thus leading to immune evasion. In in vitro experiments, blockade of YAP1 promoted cancer cell apoptosis, immune cell proliferation, T-cell activation, and cytotoxic T-cell infiltration, thus further potentiating the efficacy of immunotherapy in patients with the SCLC-Y subtype.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Chenglong Sun
- Radiotherapy Department, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Yan Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
5
|
Biswas S, Kang K, Ng KP, Radivoyevitch T, Schalper K, Zhang H, Lindner DJ, Thomas A, MacPherson D, Gastman B, Schrump DS, Wong KK, Velcheti V, Saunthararajah Y. Neuroendocrine lineage commitment of small cell lung cancers can be leveraged into p53-independent non-cytotoxic therapy. Cell Rep 2023; 42:113016. [PMID: 37597186 PMCID: PMC10528072 DOI: 10.1016/j.celrep.2023.113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
Small cell lung cancers (SCLCs) rapidly resist cytotoxic chemotherapy and immune checkpoint inhibitor (ICI) treatments. New, non-cross-resistant therapies are thus needed. SCLC cells are committed into neuroendocrine lineage then maturation arrested. Implicating DNA methyltransferase 1 (DNMT1) in the maturation arrests, we find (1) the repression mark methylated CpG, written by DNMT1, is retained at suppressed neuroendocrine-lineage genes, even as other repression marks are erased; (2) DNMT1 is recurrently amplified, whereas Ten-Eleven-Translocation 2 (TET2), which functionally opposes DNMT1, is deleted; (3) DNMT1 is recruited into neuroendocrine-lineage master transcription factor (ASCL1, NEUROD1) hubs in SCLC cells; and (4) DNMT1 knockdown activated ASCL1-target genes and released SCLC cell-cycling exits by terminal lineage maturation, which are cycling exits that do not require the p53/apoptosis pathway used by cytotoxic chemotherapy. Inhibiting DNMT1/corepressors with clinical compounds accordingly extended survival of mice with chemorefractory and ICI-refractory, p53-null, disseminated SCLC. Lineage commitment of SCLC cells can hence be leveraged into non-cytotoxic therapy able to treat chemo/ICI-refractory SCLC.
Collapse
Affiliation(s)
- Sudipta Biswas
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kai Kang
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kwok Peng Ng
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kurt Schalper
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Hua Zhang
- Thoracic Oncology Program, Langone-Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anish Thomas
- Experimental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Brian Gastman
- Department of Plastic Surgery, Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kwok-Kin Wong
- Thoracic Oncology Program, Langone-Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Thoracic Oncology Program, Langone-Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA.
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
6
|
Zhang K, Yang X, Zheng M, Ning Y, Zhang S. Acetylated-PPARγ expression is regulated by different P53 genotypes associated with the adipogenic differentiation of polyploid giant cancer cells with daughter cells. Cancer Biol Med 2023; 20:56-76. [PMID: 36647790 PMCID: PMC9843444 DOI: 10.20892/j.issn.2095-3941.2022.0432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Polyploid giant cancer cells (PGCCs) with daughter cells express epithelial-mesenchymal transition (EMT)-associated proteins. Highly malignant tumor cells with EMT properties can transdifferentiate into mature tumor cells. In this study, we elucidated the potential for, and underlying mechanism of, adipogenic differentiation of PGCCs with daughter cells (PDCs). METHODS Cobalt chloride was used to induce PGCC formation in HEY (wild-type P53) and MDA-MB-231 (mutant P53) cells; these cells were then cultured in adipogenic differentiation medium. Oil red O staining was used to confirm adipogenic differentiation, and the cell cycle was detected with flow cytometry. The expression of adipogenic differentiation-associated proteins and P300 histone acetyltransferase activity were compared before and after adipogenic differentiation. Animal xenograft models were used to confirm the adipogenic differentiation of PDCs. RESULTS PDCs transdifferentiated into functional adipocytes. Two different cell cycle distributions were observed in PDCs after adipogenic differentiation. The expression levels of PPARγ, Ace-PPARγ, and Ace-P53 were higher in PDCs after adipogenic differentiation than in cells before adipogenic differentiation. Ace-PPARγ and FABP4 expression increased in HEY cells and decreased in MDA-MB-231 PDCs after p53 knockdown. A485 treatment increased Ace-P53, Ace-PPARγ, and FABP4 expression in HEY PDCs by inhibiting SUMOylation of P53. In MDA-MB-231 PDCs, A485 treatment decreased Ace-P53, Ace-PPARγ, and FABP4 expression. Animal experiments also confirmed the adipogenic differentiation of PDCs. CONCLUSIONS Acetylation of P53 and PPARγ plays an important role in the adipogenic differentiation of PDCs.
Collapse
Affiliation(s)
- Kexin Zhang
- Tianjin Union Medical Center, Tianjin 300122, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | | | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Shiwu Zhang
- Tianjin Union Medical Center, Tianjin 300122, China
| |
Collapse
|
7
|
Revisiting Epithelial Carcinogenesis. Int J Mol Sci 2022; 23:ijms23137437. [PMID: 35806442 PMCID: PMC9267463 DOI: 10.3390/ijms23137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The origin of cancer remains one of the most important enigmas in modern biology. This paper presents a hypothesis for the origin of carcinomas in which cellular aging and inflammation enable the recovery of cellular plasticity, which may ultimately result in cancer. The hypothesis describes carcinogenesis as the result of the dedifferentiation undergone by epithelial cells in hyperplasia due to replicative senescence towards a mesenchymal cell state with potentially cancerous behavior. In support of this hypothesis, the molecular, cellular, and histopathological evidence was critically reviewed and reinterpreted when necessary to postulate a plausible generic series of mechanisms for the origin and progression of carcinomas. In addition, the implications of this theoretical framework for the current strategies of cancer treatment are discussed considering recent evidence of the molecular events underlying the epigenetic switches involved in the resistance of breast carcinomas. The hypothesis also proposes an epigenetic landscape for their progression and a potential mechanism for restraining the degree of dedifferentiation and malignant behavior. In addition, the manuscript revisits the gradual degeneration of the nonalcoholic fatty liver disease to propose an integrative generalized mechanistic explanation for the involution and carcinogenesis of tissues associated with aging. The presented hypothesis might serve to understand and structure new findings into a more encompassing view of the genesis of degenerative diseases and may inspire novel approaches for their study and therapy.
Collapse
|
8
|
Stella GM, Scialò F, Bortolotto C, Agustoni F, Sanci V, Saddi J, Casali L, Corsico AG, Bianco A. Pragmatic Expectancy on Microbiota and Non-Small Cell Lung Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14133131. [PMID: 35804901 PMCID: PMC9264919 DOI: 10.3390/cancers14133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that lung cancer relies on a number of genes aberrantly expressed because of somatic lesions. Indeed, the lungs, based on their anatomical features, are organs at a high risk of development of extremely heterogeneous tumors due to the exposure to several environmental toxic agents. In this context, the microbiome identifies the whole assemblage of microorganisms present in the lungs, as well as in distant organs, together with their structural elements and metabolites, which actively interact with normal and transformed cells. A relevant amount of data suggest that the microbiota plays a role not only in cancer disease predisposition and risk but also in its initiation and progression, with an impact on patients’ prognosis. Here, we discuss the mechanistic insights of the complex interaction between lung cancer and microbiota as a relevant component of the microenvironment, mainly focusing on novel diagnostic and therapeutic objectives.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
- Correspondence:
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
- Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy;
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vincenzo Sanci
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Jessica Saddi
- Radiation Therapy IRCCS Unit, Department of Medical Sciences and Infective Diseases, Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- University of Milano-Bicocca, 20900 Monza, Italy
| | - Lucio Casali
- Honorary Consultant Student Support and Services, University of Pavia, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
| |
Collapse
|
9
|
Ju Q, Wu YT, Zhang Y, Yang WH, Zhao CL, Zhang J. Histology transformation-mediated pathological atypism in small-cell lung cancer within the presence of chemotherapy: A case report. World J Clin Cases 2021; 9:10652-10658. [PMID: 35004997 PMCID: PMC8686138 DOI: 10.12998/wjcc.v9.i34.10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The treatment of small-cell lung cancer (SCLC) has progressed little in recent years because of its unique biological activities and complex genomic alterations. Chemotherapy combined with radiotherapy has been widely accepted as the first-line treatment for SCLC.
CASE SUMMARY Here, we present a 68-year-old male smoker who was diagnosed with SCLC of the right lung. After several cycles of concurrent chemoradiotherapy, the tumor progressed with broad metastasis to liver and bone. Histopathological examination showed an obvious transformation to adenocarcinoma, probably a partial recurrence mediated by the chemotherapy-based regimen. A mixed tumor as the primary lesion and transformation from SCLC or/and tumor stem cells may have accounted for the pathology conversion. We adjusted the treatment schedule in accord with the change in phenotype.
CONCLUSION Although diffuse skeletal and hepatic metastases were seen on a recent computed tomography scan, the patient is alive, with intervals of progression and shrinkage of his cancer.
Collapse
Affiliation(s)
- Qing Ju
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Xi'an 710000, Shaanxi Province, China
| | - Ying-Tong Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Xi'an 710000, Shaanxi Province, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Xi'an 710000, Shaanxi Province, China
| | - Wen-Hui Yang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Xi'an 710000, Shaanxi Province, China
| | - Cheng-Lei Zhao
- Department of Dermatology, Southwest Hospital, Chongqing 404100, China
| | - Jian Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Xi'an 710000, Shaanxi Province, China
| |
Collapse
|
10
|
Skurikhin E, Pershina O, Zhukova M, Widera D, Ermakova N, Pan E, Pakhomova A, Morozov S, Kubatiev A, Dygai A. Potential of Stem Cells and CART as a Potential Polytherapy for Small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:778020. [PMID: 34926461 PMCID: PMC8678572 DOI: 10.3389/fcell.2021.778020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the increasing urgency of the problem of treating small cell lung cancer (SCLC), information on the causes of its development is fragmentary. There is no complete understanding of the features of antitumor immunity and the role of the microenvironment in the development of SCLC resistance. This impedes the development of new methods for the diagnosis and treatment of SCLC. Lung cancer and chronic obstructive pulmonary disease (COPD) have common pathogenetic factors. COPD is a risk factor for lung cancer including SCLC. Therefore, the search for effective approaches to prevention, diagnosis, and treatment of SCLC in patients with COPD is an urgent task. This review provides information on the etiology and pathogenesis of SCLC, analyses the effectiveness of current treatment options, and critically evaluates the potential of chimeric antigen receptor T cells therapy (CART therapy) in SCLC. Moreover, we discuss potential links between lung cancer and COPD and the role of endothelium in the development of COPD. Finally, we propose a new approach for increasing the efficacy of CART therapy in SCLC.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
11
|
Zou Z, Dai R, Deng N, Su W, Liu P. Exosomal miR-1275 Secreted by Prostate Cancer Cells Modulates Osteoblast Proliferation and Activity by Targeting the SIRT2/RUNX2 Cascade. Cell Transplant 2021; 30:9636897211052977. [PMID: 34689576 PMCID: PMC8549474 DOI: 10.1177/09636897211052977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies and the second leading cause of cancer mortality among men worldwide. Modulation of osteoblast activity is involved in PCa metastasis, and miR-1275 is also reported to regulate PCa metastasis; however, the association between cancer-derived exosomal miR-1275 and osteoblast activity is unclear. Here, we isolated exosomes from PC3-derived conditioned medium by ultracentrifugation. We found that miR-1275 could be transferred from PCa cells to osteoblasts via exosomes. Exosomal miR-1275 significantly accelerated the proliferation of osteoblasts and the expression levels of osteoblast-specific genes, such as osteocalcin (OCN), type I collagen (COL-1), and osteopontin (OPN). Moreover, exosomal miR-1275 increased the expression of RUNX2, a master modulator of osteoblast activity, by down-regulation of SIRT2, which in turn influenced the growth and activity of osteoblasts. Our findings indicate that PCa-derived exosomal miR-1275 promotes the proliferation and activity of osteoblasts via modulation of SIRT2/Runx2 signaling.
Collapse
Affiliation(s)
- Zihao Zou
- Department of urology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ranran Dai
- Department of urology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Nan Deng
- Department of urology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wei Su
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Ping Liu
- Department of urology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
12
|
Sirtuin 2 promotes cell stemness and MEK/ERK signaling pathway while reduces chemosensitivity in endometrial cancer. Arch Gynecol Obstet 2021; 305:693-701. [PMID: 34476599 DOI: 10.1007/s00404-021-06216-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Sirtuin 2 (SIRT2) is functionally important in cancer progression and treatment resistance as an NAD+-dependent deacetylase, whereas its role in endometrial cancer (EC) is limitedly investigated. This study aimed to evaluate the regulatory role of SIRT2 on cell stemness and chemosensitivity in EC. METHODS SIRT2 expression was detected in human EC cell lines, including Ishikawa, AN3CA, HEC1A, KLE, and normal human endometrial (uterine) epithelial cells (served as controls). Then, SIRT2 overexpression plasmids (constructed with pcDNA3.1 vector) and knock-down plasmids (constructed with pGPH1 vector) were transfected in Ishikawa cells and KLE cells, respectively to assess the influence of SIRT2 on EC cell stemness and chemosensitivity to cisplatin and paclitaxel. RESULTS SIRT2 mRNA and protein were both overexpressed in EC cell lines (including Ishikawa cells, AN3CA cells, HEC1A cells, and KLE cells) compared with controls. Upregulation of SIRT2 increased the sphere formation capacity (by sphere formation assay and extreme limiting dilution analysis) and CD133+ cells rate in Ishikawa cells, whereas knock-down of SIRT2 reduced the sphere formation capacity and CD133+ cells rate in KLE cells. As for chemosensitivity, upregulation of SIRT2 increased relative cell viability in cisplatin-treated and paclitaxel-treated Ishikawa cells. In contrast, SIRT2 knock-down suppressed relative cell viability in cisplatin-treated but not in paclitaxel-treated KLE cells. In addition, SIRT2 overexpression increased, while SIRT2 knock-down reduced p-MEK and p-ERK1/2 levels in EC cells. CONCLUSION SIRT2 promotes cell stemness and activates the MEK/ERK signaling pathway while represses chemosensitivity in EC.
Collapse
|
13
|
Modulating cell differentiation in cancer models. Biochem Soc Trans 2021; 49:1803-1816. [PMID: 34436513 DOI: 10.1042/bst20210230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Cancer has been traditionally viewed as a disease characterised by excessive and uncontrolled proliferation, leading to the development of cytotoxic therapies against highly proliferating malignant cells. However, tumours frequently relapse due to the presence of slow-cycling cancer stem cells eluding chemo and radiotherapy. Since these malignant stem cells are largely undifferentiated, inducing their lineage commitment has been proposed as a potential intervention strategy to deplete tumours from their most resistant components. Pro-differentiation approaches have thus far yielded clinical success in the reversion of acute promyelocytic leukaemia (APL), and new developments are fast widening their therapeutic applicability to solid carcinomas. Recent advances in cancer differentiation discussed here highlight the potential and outstanding challenges of differentiation-based approaches.
Collapse
|
14
|
Kursunel MA, Taskiran EZ, Tavukcuoglu E, Yanik H, Demirag F, Karaosmanoglu B, Ozbay FG, Uner A, Esendagli D, Kizilgoz D, Yilmaz U, Esendagli G. Small cell lung cancer stem cells display mesenchymal properties and exploit immune checkpoint pathways in activated cytotoxic T lymphocytes. Cancer Immunol Immunother 2021; 71:445-459. [PMID: 34228218 PMCID: PMC8783896 DOI: 10.1007/s00262-021-02998-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/19/2021] [Indexed: 02/07/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive tumor type with early dissemination and distant metastasis capacity. Even though optimal chemotherapy responses are observed initially in many patients, therapy resistance is almost inevitable. Accordingly, SCLC has been regarded as an archetype for cancer stem cell (CSC) dynamics. To determine the immune-modulatory influence of CSC in SCLC, this study focused on the characterization of CD44+CD90+ CSC-like subpopulations in SCLC. These cells displayed mesenchymal properties, differentiated into different lineages and further contributed to CD8+ cytotoxic T lymphocytes (CTL) responses. The interaction between CD44+CD90+ CSC-like cells and T cells led to the upregulation of checkpoint molecules PD-1, CTLA-4, TIM-3, and LAG3. In the patient-derived lymph nodes, CD44+ SCLC metastases were also observed with T cells expressing PD-1, TIM-3, or LAG3. Proliferation and IFN-γ expression capacity of TIM-3 and LAG3 co-expressing CTLs are adversely affected over long-time co-culture with CD44+CD90+ CSC-like cells. Moreover, especially through IFN-γ secreted by the T cells, the CSC-like SCLC cells highly expressed PD-L1 and PD-L2. Upon a second encounter with immune-experienced, IFN-γ-stimulated CSC-like SCLC cells, both cytotoxic and proliferation capacities of T cells were hampered. In conclusion, our data provide evidence for the superior potential of the SCLC cells with stem-like and mesenchymal properties to gain immune regulatory capacities and cope with cytotoxic T cell responses. With their high metastatic and immune-modulatory assets, the CSC subpopulation in SCLC may serve as a preferential target for checkpoint blockade immunotherapy
.
Collapse
Affiliation(s)
- M Alper Kursunel
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey.
- Max-Delbrück-Center for Molecular Medicine, Robert-Rossle Str. 10, 13125, Berlin, Germany.
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ece Tavukcuoglu
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Hamdullah Yanik
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Funda Demirag
- Department of Pathology, Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Feyza Gul Ozbay
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Dorina Esendagli
- Department of Chest Diseases, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Derya Kizilgoz
- Department of Chest Diseases, Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Ulku Yilmaz
- Department of Chest Diseases, Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
15
|
Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, Kelenis DP, Whitney CP, Guthrie MR, Wait SJ, Soltero D, Witt BL, Quaranta V, Johnson JE, Oliver TG. ASCL1 represses a SOX9 + neural crest stem-like state in small cell lung cancer. Genes Dev 2021; 35:847-869. [PMID: 34016693 PMCID: PMC8168563 DOI: 10.1101/gad.348295.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.
Collapse
Affiliation(s)
- Rachelle R Olsen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - David W Kastner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karine Pozo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Demetra P Kelenis
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christopher P Whitney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah J Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Danny Soltero
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
- ARUP Laboratories at University of Utah, Salt Lake City, Utah 84108, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
16
|
Chi YH, Yeh TK, Ke YY, Lin WH, Tsai CH, Wang WP, Chen YT, Su YC, Wang PC, Chen YF, Wu ZW, Yeh JY, Hung MC, Wu MH, Wang JY, Chen CP, Song JS, Shih C, Chen CT, Chang CP. Discovery and Synthesis of a Pyrimidine-Based Aurora Kinase Inhibitor to Reduce Levels of MYC Oncoproteins. J Med Chem 2021; 64:7312-7330. [PMID: 34009981 PMCID: PMC8279414 DOI: 10.1021/acs.jmedchem.0c01806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The A-type Aurora kinase is upregulated in many human cancers, and it stabilizes MYC-family oncoproteins, which have long been considered an undruggable target. Here, we describe the design and synthesis of a series of pyrimidine-based derivatives able to inhibit Aurora A kinase activity and reduce levels of cMYC and MYCN. Through structure-based drug design of a small molecule that induces the DFG-out conformation of Aurora A kinase, lead compound 13 was identified, which potently (IC50 < 200 nM) inhibited the proliferation of high-MYC expressing small-cell lung cancer (SCLC) cell lines. Pharmacokinetic optimization of 13 by prodrug strategies resulted in orally bioavailable 25, which demonstrated an 8-fold higher oral AUC (F = 62.3%). Pharmacodynamic studies of 25 showed it to effectively reduce cMYC protein levels, leading to >80% tumor regression of NCI-H446 SCLC xenograft tumors in mice. These results support the potential of 25 for the treatment of MYC-amplified cancers including SCLC.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wen-Hsing Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Hua Tsai
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wan-Ping Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yu-Chieh Su
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Pei-Chen Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yan-Fu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Zhong-Wei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jen-Yu Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Ming-Chun Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chun-Ping Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan.,Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
17
|
Wiesnagrotzki N, Bernreuther C, Saeger W, Flitsch J, Glatzel M, Hagel C. Co-expression of intermediate filaments glial fibrillary acidic protein and cytokeratin in pituitary adenoma. Pituitary 2021; 24:62-67. [PMID: 33001343 PMCID: PMC7864846 DOI: 10.1007/s11102-020-01087-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/02/2022]
Abstract
PURPOSE To analyze the co-expression of the intermediate filaments GFAP and cytokeratin in 326 pituitary adenomas with regard to the distribution pattern, the subtype of the adenoma and clinical prognostic data. METHODS Tissue from 326 pituitary adenomas and 13 normal anterior pituitaries collected in the Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, between 2006 and 2009 was investigated by immunohistochemistry, immunofluorescence and electron microscopy. RESULTS Co-expression of intermediate filaments GFAP and cytokeratin was associated with hormone expression in 62/278 cases (22%), but only found in 2/48 (4%) of null cell adenomas (p < 0.01). Simultaneous co-expression of GFAP and cytokeratin in the same cells was demonstrated in 26 out of 326 pituitary adenomas and in all 13 pituitaries. In pituitary intermediate filaments were demonstrated in a larger area of the cytoplasm than in adenoma (p < 0.01), however, overlapping expression was seen in 2.6% of the total area in both, pituitary and adenoma. Congenially, cells with overlapping expression were found near vessels and in follicles. Furthermore, adenomas with cellular co-expression of GFAP and cytokeratin were associated with a lower recurrence rate (7.7%) compared to adenomas without co-expression of intermediate filaments (17.8%). CONCLUSIONS Cellular co-expression of the intermediate filaments GFAP and cytokeratin in pituitary adenomas and the pituitary was demonstrated and shown to be associated with hormone expression and low recurrence rate. The results are discussed with regard to the biology of folliculostellate cells, neural transformation and tumor stem cells. This study may complement the understanding of pituitary adenoma biology.
Collapse
Affiliation(s)
- Nina Wiesnagrotzki
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Wolfgang Saeger
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
18
|
Rodakowska E, Walczak-Drzewiecka A, Borowiec M, Gorzkiewicz M, Grzesik J, Ratajewski M, Rozanski M, Dastych J, Ginalski K, Rychlewski L. Recombinant immunotoxin targeting GPC3 is cytotoxic to H446 small cell lung cancer cells. Oncol Lett 2021; 21:222. [PMID: 33613711 PMCID: PMC7859473 DOI: 10.3892/ol.2021.12483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glypican-3 (GPC3) is a cell membrane glycoprotein that regulates cell growth and proliferation. Aberrant expression or distribution of GPC3 underlies developmental abnormalities and the development of solid tumours. The strongest evidence for the participation of GPC3 in carcinogenesis stems from studies on hepatocellular carcinoma and lung squamous cell carcinoma. To the best of our knowledge, the role of the GPC3 protein and its potential therapeutic application have never been studied in small cell lung carcinoma (SCLC), despite the known involvement of associated pathways and the high mortality caused by this disease. Therefore, the aim of the present study was to examine GPC3 targeting for SCLC immunotherapy. An immunotoxin carrying an anti-GPC3 antibody (hGC33) and Pseudomonas aeruginosa exotoxin A 38 (PE38) was generated. This hGC33-PE38 protein was overexpressed in E. coli and purified. ADP-ribosylation activity was tested in vitro against eukaryotic translation elongation factor 2. Cell internalisation ability was confirmed by confocal microscopy. Cytotoxicity was analysed by treating liver cancer (HepG2, SNU-398 and SNU-449) and lung cancer (NCI-H510A, NCI-H446, A549 and SK-MES1) cell lines with hGC33-PE38 and estimating viable cells number. A BrdU assay was employed to verify anti-proliferative activity of hGC33-PE38 on treated cells. Fluorescence-activated cell sorting was used for the detection of cell membrane-bound GPC3. The hGC33-PE38 immunotoxin displayed enzymatic activity comparable to native PE38. The protein was efficiently internalised by GPC3-positive cells. Moreover, hGC33-PE38 was cytotoxic to HepG2 cells but had no effect on known GPC3-negative cell lines. The H446 cells were sensitive to hGC33-PE38 (IC50, 70.6±4.6 ng/ml), whereas H510A cells were resistant. Cell surface-bound GPC3 was abundant on the membranes of H446 cells, but absent on H510A. Altogether, the present findings suggested that GPC3 could be considered as a potential therapeutic target for SCLC immunotherapy.
Collapse
Affiliation(s)
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Marta Borowiec
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Michal Gorzkiewicz
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.,Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Joanna Grzesik
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Michal Rozanski
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Jaroslaw Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | | |
Collapse
|
19
|
Gan L, Gan Z, Dan Y, Li Y, Zhang P, Chen S, Ye Z, Pan T, Wan C, Hu X, Yu Y. Tetrazanbigen Derivatives as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Partial Agonists: Design, Synthesis, Structure-Activity Relationship, and Anticancer Activities. J Med Chem 2021; 64:1018-1036. [PMID: 33423463 DOI: 10.1021/acs.jmedchem.0c01512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrazanbigen (TNBG) is a novel sterol isoquinoline derivative with poor water solubility and moderate inhibitory effects on human cancer cell lines via lipoapoptosis induction. Herein, we developed a series of novel TNBG analogues with improved water solubility and antiproliferative activities. The CCK-8 assay enabled us to identify a novel compound, 14g, which strongly inhibited HepG2 and A549 cell growth with IC50 values of 0.54 and 0.47 μM, respectively. The anticancer effects might be explained by the partial activation and upregulation of PPARγ expression, as indicated by the transactivation assay and western blotting evaluation. Furthermore, the in vitro antiproliferative activity was verified in an in vivo xenograft model in which 14g strongly reduced tumor growth at a dose of 10 mg/kg. In line with these positive observations, 14g exhibited an excellent water solubility of 31.4 mg/mL, which was more than 1000-fold higher than that of TNBG (4 μg/mL). Together, these results suggest that 14g is a promising anticancer therapeutic that deserves further investigation.
Collapse
Affiliation(s)
- Linling Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zongjie Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yanrong Dan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yaowei Li
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peiming Zhang
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shanwen Chen
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zaijun Ye
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Pan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chunmei Wan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Hu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Yu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Zhang K, Yang X, Zhao Q, Li Z, Fu F, Zhang H, Zheng M, Zhang S. Molecular Mechanism of Stem Cell Differentiation into Adipocytes and Adipocyte Differentiation of Malignant Tumor. Stem Cells Int 2020; 2020:8892300. [PMID: 32849880 PMCID: PMC7441422 DOI: 10.1155/2020/8892300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Adipogenesis is the process through which preadipocytes differentiate into adipocytes. During this process, the preadipocytes cease to proliferate, begin to accumulate lipid droplets, and develop morphologic and biochemical characteristics of mature adipocytes. Mesenchymal stem cells (MSCs) are a type of adult stem cells known for their high plasticity and capacity to generate mesodermal and nonmesodermal tissues. Many mature cell types can be generated from MSCs, including adipocyte, osteocyte, and chondrocyte. The differentiation of stem cells into multiple mature phenotypes is at the basis for tissue regeneration and repair. Cancer stem cells (CSCs) play a very important role in tumor development and have the potential to differentiate into multiple cell lineages. Accumulating evidence has shown that cancer cells can be induced to differentiate into various benign cells, such as adipocytes, fibrocytes, osteoblast, by a variety of small molecular compounds, which may provide new strategies for cancer treatment. Recent studies have reported that tumor cells undergoing epithelial-to-mesenchymal transition can be induced to differentiate into adipocytes. In this review, molecular mechanisms, signal pathways, and the roles of various biological processes in adipose differentiation are summarized. Understanding the molecular mechanism of adipogenesis and adipose differentiation of cancer cells may contribute to cancer treatments that involve inducing differentiation into benign cells.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
21
|
Xu L, Xu F, Kong Q, Yang T, Tan D, Zhang X, Li N, Zhao S, Zhao J, Li M. Inhibition of p62/SQSTM1 sensitizes small-cell lung cancer cells to cisplatin-induced cytotoxicity by targeting NEDD9 expression. Mol Carcinog 2020; 59:967-979. [PMID: 32424979 DOI: 10.1002/mc.23215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Drug resistance is the leading cause for rapid progression and relapse in small-cell lung cancer (SCLC) patients. Thus overcoming drug resistance still remains to be urgently resolved during SCLC treatment. Here, we found p62/SQSTM1 was enriched in SCLC spheroids, a subpopulation possessing cancer stem-like properties, which is responsible for cancer relapse and metastasis. Subsequent functional assays in vitro showed that short hairpin RNA (shRNA)-mediated p62 knockdown increased sensitivity of SCLC cell lines to cisplatin (DDP), whereas lentivirus-mediated p62 ectopic overexpression diminished DDP-induced cytotoxicity in both NCI-H446 and NCI-H1688 cell lines. Moreover, ectopic p62 overexpression promoted DDP resistance of NCI-H446 cells-derived tumor xenografts in immunodeficient mice in vivo, as indicated by accelerated tumor growth rate and reduced fluorescent activity of cleaved caspase-3. Gene expression profiling analysis revealed that p62 was positively correlated with neuronal precursor cell-expressed, developmentally downregulated gene 9 (NEDD9) expression level. Consistently, NEDD9 messenger RNA (mRNA) level was decreased upon p62 suppression by small interfering RNA (siRNA) and increased with p62 transient overexpression in SCLC cell lines, suggesting that p62 positively regulated NEDD9 mRNA. Depletion of NEDD9 by siRNA, to a large extent, reversed p62-overexpressed SCLC cells to DDP-induced cytotoxicity, implying NEDD9 might act as a downstream target which was in charge of p62-mediated DDP resistance. Taken together, our findings uncovered a previously unknown role of p62 in the regulation of SCLC drug resistance, assigning p62 as an attractive target for SCLC treatment.
Collapse
Affiliation(s)
- Lingzhi Xu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fan Xu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qingxia Kong
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ting Yang
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dewei Tan
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaoling Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shanshan Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jinbo Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Schröder C, Khatri R, Petry SF, Linn T. Class I and II Histone Deacetylase Inhibitor LBH589 Promotes Endocrine Differentiation in Bone Marrow Derived Human Mesenchymal Stem Cells and Suppresses Uncontrolled Proliferation. Exp Clin Endocrinol Diabetes 2020; 129:357-364. [PMID: 32052390 DOI: 10.1055/a-1103-1900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells are useful tools employed in clinical and preclinical medicine. Their beneficial potential in especially degenerative as well as autoimmune diseases is a constant focus of research. Regarding diabetes mellitus, transplantation of stem cells is seen as a possible therapeutic approach to overcome the loss of endocrine pancreatic cells. It was reported that co-transplantation of mesenchymal stem cells with pancreatic islet cells improves function and survival of the graft. However, these multipotent progenitors may be able to form tumors, especially under immunosuppressed conditions. Histone deacetylase inhibitors might offer the potential to overcome this issue. These small molecules can induce cell differentiation and control proliferation. Their potential to control lineage development of stem cells has been distinctly demonstrated in the treatment of cancer, mainly in hematopoietic neoplasias.In this study, we demonstrate that human bone marrow-derived mesenchymal stem cells exhibit low carcinogenic potential in an immunosuppressed condition in vivo. Further, the effect of histone deacetylase inhibitors LBH589, MS-275, and MGCD0103 was examined after normalizing histone deacetylase activities in culture. Interestingly, transcripts of insulin gene enhancer protein and paired-box-gene 6, two markers of pancreatic endocrine differentiation were constitutively expressed in the cell line. The broad spectrum inhibitor of class I and class II histone deacetylases LBH589 upregulated the expression of these transcription factors in a significant way, whereas addition of selective class I histone deacetylase inhibitors MS-275 and MGCD0103 did not result in significant changes in gene expression.In conclusion, we deliver evidence that a combined class I and II histone deacetylase inhibition is able to modulate the transcripts of differentiation markers of mesenchymal stem cells. The treatment holds the capability to facilitate endocrine differentiation in future approaches to replace endocrine cells by stem cell therapy.
Collapse
Affiliation(s)
- Christoph Schröder
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Rahul Khatri
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Germany
| | | | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Germany
| |
Collapse
|
23
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
24
|
Bauer TM, Besse B, Martinez-Marti A, Trigo JM, Moreno V, Garrido P, Ferron-Brady G, Wu Y, Park J, Collingwood T, Kruger RG, Mohammad HP, Ballas MS, Dhar A, Govindan R. Phase I, Open-Label, Dose-Escalation Study of the Safety, Pharmacokinetics, Pharmacodynamics, and Efficacy of GSK2879552 in Relapsed/Refractory SCLC. J Thorac Oncol 2019; 14:1828-1838. [DOI: 10.1016/j.jtho.2019.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/28/2019] [Accepted: 06/21/2019] [Indexed: 11/24/2022]
|
25
|
Hochmair M, Rath B, Klameth L, Ulsperger E, Weinlinger C, Fazekas A, Plangger A, Zeillinger R, Hamilton G. Effects of salinomycin and niclosamide on small cell lung cancer and small cell lung cancer circulating tumor cell lines. Invest New Drugs 2019; 38:946-955. [PMID: 31446534 PMCID: PMC7340652 DOI: 10.1007/s10637-019-00847-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Tumor dissemination and recurrence is attributed to highly resistant cancer stem cells (CSCs) which may constitute a fraction of circulating tumor cells (CTCs). Small cell lung cancer (SCLC) constitutes a suitable model to investigate the relation of CTCs and CSCs due to rapid tumor spread and a high number of CTCs. Expansion of five SCLC CTC lines (BHGc7, 10, 16, 26 and UHGc5) in vitro at our institution allowed for the analysis of CSC markers and cytotoxicity of the CSC-selective drugs salinomycin and niclosamide against CTC single cell suspensions or CTC spheroids/ tumorospheres (TOS). Salinomycin exerted dose-dependent cytotoxicity against the SCLC lines but, with exception of BHGc7 TOS, there was no markedly enhanced activity against TOS. Similarly, niclosamide exhibits high activity against BHGc7 TOS and UHGc5 TOS but not against the other CTC spheroids. High expression of the CSC marker CD133 was restricted to three SCLC tumor lines and the BHGc10 CTC line. All SCLC CTCs are CD24-positive but lack expression of CD44 and ABCG2 in contrast to the SCLC tumor lines which show a phenotype more similar to that of CSCs. The stem cell marker SOX2 was found in all CTC lines and SCLC GLC14/16, whereas elevated expression of Oct-3/4 and Nanog was restricted to BHGc26 and UHGc5. In conclusion, the SCLC CTCs established from patients with relapsed disease lack a typical CSC phenotype in respect to chemosensitivity to CSC-selective drugs, surface markers, expression of pluripotent stem cell and transcription factors.
Collapse
Affiliation(s)
- Maximilian Hochmair
- Respiratory Oncology Unit, Otto Wagner Hospital, Baumgartner Höhe, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Spitalgasse, Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Weinlinger
- Respiratory Oncology Unit, Otto Wagner Hospital, Baumgartner Höhe, Vienna, Austria
| | - Andreas Fazekas
- Respiratory Oncology Unit, Otto Wagner Hospital, Baumgartner Höhe, Vienna, Austria
| | - Adelina Plangger
- Department of Surgery, Medical University of Vienna, Spitalgasse, Vienna, Austria
| | - Robert Zeillinger
- Department of Gynecology and Obstetrics, Molecular Oncology Group, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Spitalgasse, Vienna, Austria.
| |
Collapse
|
26
|
Jin Y, Ma D, Gramyk T, Guo C, Fang R, Ji H, Shi YG. Kdm1a promotes SCLC progression by transcriptionally silencing the tumor suppressor Rest. Biochem Biophys Res Commun 2019; 515:214-221. [DOI: 10.1016/j.bbrc.2019.05.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 01/22/2023]
|
27
|
Kim YJ, Yu DB, Kim M, Choi YL. Adipogenesis induces growth inhibition of dedifferentiated liposarcoma. Cancer Sci 2019; 110:2676-2683. [PMID: 31069877 PMCID: PMC6676121 DOI: 10.1111/cas.14036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023] Open
Abstract
Well‐differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS) are the most common types of liposarcoma. Although WDLPS and DDLPS patients receive intensive treatment including radical surgery and systemic therapy, their overall 5‐year survival rates are 90% and 30%, respectively, indicating that DDLPS is clinically more aggressive. We examined whether adipogenic stimulation induces adipogenesis in human WDLPS/DDLPS cells by using dexamethasone, indomethacin, insulin, and 3‐isobutyl‐1‐methylxanthine (IBMX), all putative medications or drugs. Functional in vitro experiments showed that treatment with these four compounds induced adipogenic potency by transcriptional and translational upregulation of genes related to the maintenance of stemness and adipogenic differentiation. Using in vivo xenograft models, we found that the induction of stemness and adipogenesis inhibited the tumorigenic potency of DDLPS. This study suggests a potential application of drug repositioning in which adipogenesis‐inducing compounds could be used to treat DDLPS patients in a clinical setting.
Collapse
Affiliation(s)
- Yu Jin Kim
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dan Bi Yu
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Mingi Kim
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Yoon-La Choi
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 2019; 69:73-92. [PMID: 31028771 DOI: 10.1016/j.mam.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal carcinogenesis is a multistep process involving the accumulation of genetic alterations over time that ultimately leads to disease progression and metastasis. Binding of transcription factors to gene promoter regions alone cannot explain the complex regulation pattern of gene expression during this process. It is the chromatin structure that allows for a high grade of regulatory flexibility for gene expression. Posttranslational modifications on histone proteins such as acetylation, methylation, or phosphorylation determine the accessibility of transcription factors to DNA. DNA methylation, a chemical modification of DNA that modulates chromatin structure and gene transcription acts in concert with these chromatin conformation alterations. Another epigenetic mechanism regulating gene expression is represented by small non-coding RNAs. Only very recently epigenetic alterations have been included in molecular subtype classification of colorectal cancer (CRC). In this chapter, we will provide examples of the different epigenetic players, focus on their role for epithelial-mesenchymal transition and metastatic processes and discuss their prognostic value in CRC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, (IGTP-PMPPC), Campus Can Ruti, 08916, Badalona, Barcelona, Spain
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 22, 91054, Erlangen, Germany.
| |
Collapse
|
29
|
Zhou Y, Su Y, Zhu H, Wang X, Li X, Dai C, Xu C, Zheng T, Mao C, Chen D. Interleukin-23 receptor signaling mediates cancer dormancy and radioresistance in human esophageal squamous carcinoma cells via the Wnt/Notch pathway. J Mol Med (Berl) 2018; 97:177-188. [PMID: 30483821 PMCID: PMC6348073 DOI: 10.1007/s00109-018-1724-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023]
Abstract
Abstract In the tumor microenvironment, inflammatory cells and molecules influence almost every process; among them, interleukin-23 (IL-23) is a pro-inflammatory molecule that exhibits pro- or anti-tumor properties, but both activities remain poorly understood. In this study, we investigated the effect of extracellular IL-23 in IL-23 receptor-positive (IL-23R+) esophageal squamous cell carcinoma (ESCC) and explored the mechanisms underlying this effect. We analyzed ESCC tumor tissues by immunohistochemical and immunofluorescence staining and found that IL-23, which was highly expressed, co-localized with Oct-4A in IL-23R+ ESCC cells. In addition, IL-23 treatment significantly increased the accumulation of CD133+ cells and activated the Wnt and Notch signaling pathways in CD133−IL-23R+ ESCC cell lines. Consistently, CD133−IL-23R+ cells pretreated with IL-23 showed stronger anti-apoptosis activity when exposed to radiation and higher survival than untreated groups. Moreover, the inhibition of Wnt/Notch signaling by a small-molecule inhibitor or siRNA abolished the effect of IL-23-induced dormancy and consequent radioresistance. Taken together, these results suggested that IL-23 facilitates radioresistance in ESCC by activating Wnt/Notch-mediated G0/1 phase arrest, and attenuating these detrimental changes by blocking the formation of dormancy may prove to be an effective pretreatment for radiotherapy. Key messages IL-23/IL-23R is correlated with the acquisition of stem-like potential in ESCC. CD133−IL-23R+ ESCCs acquired dormancy via IL-23. Radioresistance depends on IL-23-mediated Wnt/Notch pathway activation in vitro and vivo.
Electronic supplementary material The online version of this article (10.1007/s00109-018-1724-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Yuting Su
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiaoqin Li
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Chunhua Dai
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Tingting Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China.
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China.
| |
Collapse
|
30
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
31
|
Salgia R, Mambetsariev I, Hewelt B, Achuthan S, Li H, Poroyko V, Wang Y, Sattler M. Modeling small cell lung cancer (SCLC) biology through deterministic and stochastic mathematical models. Oncotarget 2018; 9:26226-26242. [PMID: 29899855 PMCID: PMC5995226 DOI: 10.18632/oncotarget.25360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Mathematical cancer models are immensely powerful tools that are based in part on the fractal nature of biological structures, such as the geometry of the lung. Cancers of the lung provide an opportune model to develop and apply algorithms that capture changes and disease phenotypes. We reviewed mathematical models that have been developed for biological sciences and applied them in the context of small cell lung cancer (SCLC) growth, mutational heterogeneity, and mechanisms of metastasis. The ultimate goal is to develop the stochastic and deterministic nature of this disease, to link this comprehensive set of tools back to its fractalness and to provide a platform for accurate biomarker development. These techniques may be particularly useful in the context of drug development research, such as combination with existing omics approaches. The integration of these tools will be important to further understand the biology of SCLC and ultimately develop novel therapeutics.
Collapse
Affiliation(s)
- Ravi Salgia
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | - Isa Mambetsariev
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | - Blake Hewelt
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | | | - Haiqing Li
- City of Hope, Center for Informatics, Duarte 91010, CA, USA
| | - Valeriy Poroyko
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte 91010, CA, USA
| | - Yingyu Wang
- City of Hope, Center for Informatics, Duarte 91010, CA, USA
| | - Martin Sattler
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston 02215, MA, USA.,Harvard Medical School, Department of Medicine, Boston 02115, MA, USA
| |
Collapse
|
32
|
Šlekienė L, Stakišaitis D, Balnytė I, Valančiūtė A. Sodium Valproate Inhibits Small Cell Lung Cancer Tumor Growth on the Chicken Embryo Chorioallantoic Membrane and Reduces the p53 and EZH2 Expression. Dose Response 2018; 16:1559325818772486. [PMID: 29760602 PMCID: PMC5944146 DOI: 10.1177/1559325818772486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022] Open
Abstract
The study aims to test the effect of different sodium valproate (NaVP) doses on small cell lung cancer NCI-H146 cells tumor in chicken embryo chorioallantoic membrane (CAM) model. Xenografts were investigated in the following groups: nontreated control and 5 groups treated with different NaVP doses (2, 3, 4, 6, and 8 mmol/L). Invasion of tumors into CAM in the nontreated group reached 76%. Tumors treated with 8 mmol/L NaVP doses significantly differed in tumor invasion frequency from the control and those treated with 2 mmol/L (P < .01). The calculated probability of 50% tumor noninvasion into CAM was when tumors were treated with 4 mmol/L of NaVP. Number of p53-positive cells in tumors was significantly reduced when treated with NaVP doses from 3 to 8 mmol/L as compared with control; number of EZH2-positive cells in control significantly differed from all NaVP-treated groups. No differences in p53- and EZH2-positive cell numbers were found among 4, 6, and 8 mmol/L NaVP-treated groups. Invaded tumors had an increased N-cadherin and reduced E-cadherin expression. The results indicate the increasing NaVP dose to be able to inhibit tumors progression. Expression of p53 and EZH2 may be promising target markers of therapeutic efficacy evaluation.
Collapse
Affiliation(s)
- Lina Šlekienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
33
|
Luo H, Liu WH, Liang HY, Yan HT, Lin N, Li DY, Wang T, Tang LJ. Differentiation-inducing therapeutic effect of Notch inhibition in reversing malignant transformation of liver normal stem cells via MET. Oncotarget 2018; 9:18885-18895. [PMID: 29721169 PMCID: PMC5922363 DOI: 10.18632/oncotarget.24421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/01/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Liver cancer stem cells (LCSCs) are the key factors for cancer metastasis, recurrent, and drug resistance. LCSCs are originated from either hepatocytes dedifferentiation or differentiation arresting of liver normal stem cells (LNSCs). Differentiation-inducing therapy is a novel strategy in solid tumors. Furthermore, Notch signaling pathway has been proved to play important role in the process of hepatocytes differentiation. In previous study, a malignant transformation cellular model of LNSCs has been built up, and in this study we are trying to illustrate whether inhibition of Notch can reverse this malignant tendency and drive these malignant cells back to differentiate into mature hepatocytes. RESULTS Inhibition of Notch signaling pathway can down-regulate the stemness-related cancer markers, lower the proliferative status, alleviate the invasive characteristic, or attenuate the metastasis tendency. What is more, it can help the malignantly transformed cells to regain the mature hepatic function of glucagon synthesis, urea metabolism, albumin production, and indocyanine-green (ICG) clearance. MATERIALS AND METHODS HOX transcript antisense RNA (HOTAIR) expression was enhanced in LNSCs via lentivirus transduction to set up the malignant transformation cellular model. Then, a Notch inhibitor was applied to induce malignantly transformed cells differentiate into mature hepatocytes, and malignant abilities of proliferation, invasiveness, tumorigenesis as well as mature hepatocyte function were observed and compared. CONCLUSIONS The data demonstrate that the anti-tumor effects of Notch inhibition may lie not only on killing the cancer cells or LCSCs directly, it can also induce the LCSCs differentiation into mature hepatocytes via mesenchymal-epithelial transition (MET) progress or downgrade the malignancy.
Collapse
Affiliation(s)
- Hao Luo
- Third Military Medical University, Chongqing 400038, China
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, China
| | - Wei-Hui Liu
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, China
| | - Hong-Yin Liang
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, China
| | - Hong-Tao Yan
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, China
| | - Ning Lin
- Department of Clinical Nutrition, Chengdu Military General Hospital, Chengdu 610083, China
| | - Dong-Yu Li
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, China
| | - Tao Wang
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, China
| | - Li-Jun Tang
- Third Military Medical University, Chongqing 400038, China
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, China
| |
Collapse
|
34
|
Zhao M, Li L, Zhou J, Cui X, Tian Q, Jin Y, Zhu Y. MiR-2861 Behaves as a Biomarker of Lung Cancer Stem Cells and Regulates the HDAC5-ERK System Genes. Cell Reprogram 2018; 20:99-106. [PMID: 29620443 DOI: 10.1089/cell.2017.0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for cancer initiating, recurrence, and drug resistance. Discovery of novel biomarkers for CSCs is helpful for early diagnosis and prognosis. Lung cancer stem cells (LCSCs) were closely related to the occurrence and development of lung cancer. In our study, the important role of miR-2861 in maintaining the stemness of LCSCs was investigated. The LCSC differentiation model was established through introducing serum into the medium of H460 spheres. miR-2861 expression was significantly higher in LCSCs no matter compared to the differentiation cells or normal cells. HDAC5 expression was positively correlated with miR-2861 in LCSCs, and knockdown of miR-2861 decreased the expression of HDAC5, which implied that HDAC5 may be involved in the differentiation of LCSCs mediated by miR-2861. The role of HDAC5 in the regulation of LCSC differentiation was further verified by the inhibitory effect of LMK-235 on the phosphorylation of ERK1/2, which was recognized as the regulator of CSC differentiation. Our study provided a better understanding of miR-2861 and HDAC5 axis in maintaining the stemness of LCSCs and laid a foundation for molecular targeted therapy.
Collapse
Affiliation(s)
- Mengya Zhao
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,2 College of Life Sciences, Shanghai University , Shanghai, China
| | - Lin Li
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China
| | - Jundong Zhou
- 3 Department of Radio Oncology, Affiliated Suzhou Hospital, Nanjing Medical University , Suzhou, China
| | - Xueyuan Cui
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,2 College of Life Sciences, Shanghai University , Shanghai, China
| | - Qingmei Tian
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,4 School of Pharmacy, Xi'an Jiaotong University , Xi'an, China
| | - Yaqing Jin
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,5 University of Chinese Academy of Sciences , Beijing, China
| | - Yimin Zhu
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
35
|
Inoue H, Kato T, Olugbile S, Tamura K, Chung S, Miyamoto T, Matsuo Y, Salgia R, Nakamura Y, Park JH. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer. Oncotarget 2017; 7:13621-33. [PMID: 26871945 PMCID: PMC4924666 DOI: 10.18632/oncotarget.7297] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC.
Collapse
Affiliation(s)
- Hiroyuki Inoue
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Taigo Kato
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sope Olugbile
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kenji Tamura
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Suyoun Chung
- OncoTherapy Science, Inc., Kawasaki, 213-0012, Japan
| | | | - Yo Matsuo
- OncoTherapy Science, Inc., Kawasaki, 213-0012, Japan
| | - Ravi Salgia
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Scimeca M, Bonfiglio R, Montanaro M, Bonanno E. Osteoblast-like cells in human cancers: new cell type and reliable markers for bone metastasis. Future Oncol 2017; 14:9-11. [PMID: 29219614 DOI: 10.2217/fon-2017-0472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine & Surgery, University of Rome "Tor Vergata", Rome, Italy.,OrchideaLab SRL, Via del Grecale 6, Morlupo, Rome, Italy.,IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine & Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine & Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine & Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
37
|
Chen Q, Zhou H, Hu P. Stemness distinctions between the ectomesenchymal stem cells from neonatal and adult mice. Acta Histochem 2017; 119:822-830. [PMID: 29107325 DOI: 10.1016/j.acthis.2017.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022]
Abstract
Ectomesenchymal stem cells (EMSCs), a type of adult stem cells derived from cranial neural crest, can be non-invasively harvested from respiratory mucosa and play vital roles in therapies based on their stemness. However, whether donor age has any impact on the stemness of EMSCs remains elusive and is essential for EMSCs-based therapies. To address this, we first cultivated EMSCs from neonatal mice aged 1 week and adult mice aged 3 months or 6 months, and then compared their morphology, proliferative capacity, and pluripotency through various induced differentiation assays. The results showed that neonatal EMSCs were fibroblast-like, more regular compared to adult EMSCs; the proliferative capacity of neonatal EMSCs was higher than that of adult EMSCs. More importantly, after neural, adipogenic, chondrogenic, and osteogenic differentiation, neonatal EMSCs differentiated into respective cell types significantly better than adult EMSCs. Notably, EMSCs from mice aged 3 months differentiated into mesodermal lineages better than those from 6 months old mice after induction. Collectively, these results suggest donor ages have significant impact on the EMSCs from respiratory mucosa.
Collapse
Affiliation(s)
- Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huangao Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Pingping Hu
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
38
|
Park JH, Inoue H, Kato T, Zewde M, Miyamoto T, Matsuo Y, Salgia R, Nakamura Y. TOPK (T-LAK cell-originated protein kinase) inhibitor exhibits growth suppressive effect on small cell lung cancer. Cancer Sci 2017; 108:488-496. [PMID: 28075524 PMCID: PMC5378278 DOI: 10.1111/cas.13160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023] Open
Abstract
T-lymphokine-activated killer cell-originated protein kinase (TOPK) plays critical roles in cancer cell proliferation as well as maintenance of cancer stem cells (CSC). Small cell lung cancer (SCLC) has highly aggressive phenotype, reveals early spread to distant sites, and results in dismal prognosis with little effective treatment. In this study, we demonstrate that TOPK expression was highly upregulated in both SCLC cell lines and primary tumors. Similar to siRNA-mediated TOPK knockdown effects, treatment with a potent TOPK inhibitor, OTS514, effectively suppressed growth of SCLC cell lines (IC50 ; 0.4-42.6 nM) and led to their apoptotic cell death. TOPK inhibition caused cell morphologic changes in SCLC cells, elongation of intercellular bridges caused by cytokinesis defects or neuronal protrusions induced by neuronal differentiation in a subset of CSC-like SCLC cells. Treatment with OTS514 suppressed forkhead box protein M1 (FOXM1) activity, which was involved in stemness of CSC. Furthermore, OTS514 treatment reduced CD90-positive SCLC cells and showed higher cytotoxic effect against lung sphere-derived CSC-like SCLC cells. Collectively, our results suggest that targeting TOPK is a promising approach for SCLC therapy.
Collapse
Affiliation(s)
- Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Hiroyuki Inoue
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Taigo Kato
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Makda Zewde
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Yo Matsuo
- OncoTherapy Science Inc., Kawasaki, Japan
| | - Ravi Salgia
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Huang Z, Wu T, Liu AY, Ouyang G. Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget 2016; 6:39550-63. [PMID: 26474460 PMCID: PMC4741845 DOI: 10.18632/oncotarget.6098] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/05/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor cells actively contribute to constructing their own microenvironment during tumorigenesis and tumor progression. The tumor microenvironment contains multiple types of stromal cells that work together with the extracellular matrix and local and systemic factors to coordinately contribute to tumor initiation and progression. Tumor cells and their stromal compartments acquire many genetic and/or epigenetic alternations to facilitate tumor growth and metastasis. The cancer stem cell (CSC) concept has been widely applied to interpreting tumor initiation, growth, metastasis, dormancy and relapse. CSCs have differentiation abilities to generate the original lineage cells that are similar to their normal stem cell counterparts. Interestingly, recent evidence demonstrates that CSCs also have the potential to transdifferentiate into vascular endothelial cells and pericytes, indicating that CSCs can transdifferentiate into other lineage cells for promoting tumor growth and metastasis in some tissue contexts instead of only recruiting stromal cells from local or distant tissues. Although the transdifferentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity, many aspects of CSC transdifferentiation remain elusive. In this review, we summarize the multi-lineage differentiation and transdifferentiation potentials of CSCs as well as discuss their potential contributions to tumor heterogeneity and tumor microenvironment in tumor progression.
Collapse
Affiliation(s)
- Zhengjie Huang
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tiantian Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Allan Yi Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Deus CM, Serafim TL, Magalhães-Novais S, Vilaça A, Moreira AC, Sardão VA, Cardoso SM, Oliveira PJ. Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells. Arch Toxicol 2016; 91:1261-1278. [DOI: 10.1007/s00204-016-1784-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
|
41
|
Sex determination by SRY PCR and sequencing of Tasmanian devil facial tumour cell lines reveals non-allograft transmission. Biochem Biophys Res Commun 2016; 474:29-34. [PMID: 27084454 DOI: 10.1016/j.bbrc.2016.04.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022]
Abstract
Devil facial tumour disease (DFTD) is an infectious tumour disease and was hypothesised to be transmitted by allograft during biting based on two cytogenetic findings of DFTD tumours in 2006. It was then believed that DFTD tumours were originally from a female devil. In this study the devil sex-determining region Y (SRY) gene was PCR amplified and sequenced, and six pairs of devil SRY PCR primers were used for detection of devil SRY gene fragments in purified DFTD tumour cell lines. Using three pairs of devil SRY PCR primers, devil SRY gene sequence was detected by PCR and sequencing in genomic DNA of DFTD tumour cell lines from six male devils, but not from six female devils. Four out of six DFTD tumour cell lines from male devils contained nucleotides 288-482 of the devil SRY gene, and another two DFTD tumour cell lines contained nucleotides 381-577 and 493-708 of the gene, respectively. These results indicate that the different portions of the SRY gene in the DFTD tumours of the male devils were originally from the male hosts, rejecting the currently believed DFTD allograft transmission theory. The reasons why DFTD transmission was incorrectly defined as allograft are discussed.
Collapse
|
42
|
Hofer M, Falk M, Komůrková D, Falková I, Bačíková A, Klejdus B, Pagáčová E, Štefančíková L, Weiterová L, Angelis KJ, Kozubek S, Dušek L, Galbavý Š. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. J Med Chem 2016; 59:3003-17. [PMID: 26978566 DOI: 10.1021/acs.jmedchem.5b01628] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amifostine protects normal cells from DNA damage induction by ionizing radiation or chemotherapeutics, whereas cancer cells typically remain uninfluenced. While confirming this phenomenon, we have revealed by comet assay and currently the most sensitive method of DNA double strand break (DSB) quantification (based on γH2AX/53BP1 high-resolution immunofluorescence microscopy) that amifostine treatment supports DSB repair in γ-irradiated normal NHDF fibroblasts but alters it in MCF7 carcinoma cells. These effects follow from the significantly lower activity of alkaline phosphatase measured in MCF7 cells and their supernatants as compared with NHDF fibroblasts. Liquid chromatography-mass spectrometry confirmed that the amifostine conversion to WR-1065 was significantly more intensive in normal NHDF cells than in tumor MCF cells. In conclusion, due to common differences between normal and cancer cells in their abilities to convert amifostine to its active metabolite WR-1065, amifostine may not only protect in multiple ways normal cells from radiation-induced DNA damage but also make cancer cells suffer from DSB repair alteration.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Denisa Komůrková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Iva Falková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic.,Department of Medical Technology, St. Elisabeth University of Health and Social Sciences , Palackého 1, SK-810 00 Bratislava, Slovak Republic
| | - Alena Bačíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | - Eva Pagáčová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Lenka Štefančíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Lenka Weiterová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences , Na Karlovce 1, CZ-160 00 Prague 6, Czech Republic
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Masaryk University , Kamenice 126/3, CZ-625 00 Brno, Czech Republic
| | - Štefan Galbavý
- Department of Medical Technology, St. Elisabeth University of Health and Social Sciences , Palackého 1, SK-810 00 Bratislava, Slovak Republic
| |
Collapse
|
43
|
Codony-Servat J, Verlicchi A, Rosell R. Cancer stem cells in small cell lung cancer. Transl Lung Cancer Res 2016; 5:16-25. [PMID: 26958490 PMCID: PMC4758966 DOI: 10.3978/j.issn.2218-6751.2016.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is one of the most aggressive lung tumors, with poor survival rates. Although patients may initially respond to treatment, this is followed by rapid development of drug resistance and disease progression. SCLC patients often present with metastasis at time of diagnosis, ruling out surgery as a treatment option. Currently, treatment options for this disease remain limited and platinum-based chemotherapy is the treatment of choice. A better understanding of the biology of SCLC could allow us to identify new therapeutic targets. Cancer stem cell (CSC) theory is currently crucial in cancer research and could provide a viable explanation for the heterogeneity, drug resistance, recurrence and metastasis of several types of tumors. Some characteristics of SCLC, such as aggressiveness, suggest that this kind of tumor could be enriched in CSCs, and drug resistance in SCLC could be attributable to the existence of a CSC subpopulation in SCLC. Herein we summarize current understanding of CSC in SCLC, including the evidence for CSC markers and signaling pathways involved in stemness. We also discuss potential ongoing strategies and areas of active research in SCLC, such as immunotherapy, that focus on inhibition of signaling pathways and targeting molecules driving stemness. Understanding of signaling pathways and the discovery of new therapeutic markers specific to CSCs will lead to new advances in therapy and improvements in prognosis of SCLC patients. Therefore, evaluation of these CSC-specific molecules and pathways may become a routine part of SCLC diagnosis and therapy.
Collapse
|
44
|
Li H, Wang Q, Dong L, Liu C, Sun Z, Gao L, Wang X. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J Exp Clin Cancer Res 2015; 34:137. [PMID: 26538209 PMCID: PMC4634597 DOI: 10.1186/s13046-015-0252-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/05/2023] Open
Abstract
Background Breast cancer is the most fatal malignant cancer among women, the conventional therapeutic modalities of it are limited. Morusin possesses cytotoxicity against some cancer cells in vitro. The purpose of this study is to test the growth inhibition effect of morusin on human breast cancer growth in vitro and in vivo and to explore the potential mechanism of its action. Methods The growth inhibition effect of morusin on human breast cancer cells in vitro and in vivo were tested by cell cytotoxicity, colony formation inhibition, adipogenic differentiation, apoptosis induction, and tumor growth inhibition in vivo assays. The potential molecular mechanisms underlying the growth inhibition effect of morusin on human breast cancer cells in vitro and in vivo were investigated with Western blotting evaluation of expression levels of transcription factors, C/EBPβ and PPARγ, adipogenic and apoptotic proteins in morusin treated breast cancer cells and tumor tissues. Results Morusin inhibited breast cancer cells growth in vitro and in vivo; it induced adipogenic differentiation, apoptosis and lipoapoptosis of cancer cells. Conclusions Morusin has the potential to inhibit human breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis.
Collapse
Affiliation(s)
- Haiyan Li
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Qiaoping Wang
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Lihua Dong
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Chuanlan Liu
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhen Sun
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Ling Gao
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiujie Wang
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
45
|
Karaman A, Durur-Subasi I, Alper F, Araz O, Subasi M, Demirci E, Albayrak M, Polat G, Akgun M, Karabulut N. Correlation of diffusion MRI with the Ki-67 index in non-small cell lung cancer. Radiol Oncol 2015; 49:250-5. [PMID: 26401130 PMCID: PMC4577221 DOI: 10.1515/raon-2015-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The primary objective of the study was to evaluate the association between the minimum apparent diffusion coefficient (ADCmin) and Ki-67, an index for cellular proliferation, in non-small cell lung cancers. Also, we aimed to assess whether ADCmin values differ between tumour subtypes and tissue sampling method. METHODS The patients who had diffusion weighted magnetic resonance imaging (DW-MRI) were enrolled retrospectively. The correlation between ADCmin and the Ki-67 index was evaluated. RESULTS Ninety three patients, with a mean age 65 ± 11 years, with histopathologically proven adenocarcinoma and squamous cell carcinoma of the lungs and had technically successful DW-MRI were included in the study. The numbers of tumour subtypes were 47 for adenocarcinoma and 46 for squamous cell carcinoma. There was a good negative correlation between ADCmin values and the Ki-67 proliferation index (r = -0.837, p < 0.001). The mean ADCmin value was higher and the mean Ki-67 index was lower in adenocarcinomas compared to squamous cell carcinoma (p < 0.0001). There was no statistical difference between tissue sampling methods. CONCLUSIONS Because ADCmin shows a good but negative correlation with Ki-67 index, it provides an opportunity to evaluate tumours and their aggressiveness and may be helpful in the differentiation of subtypes non-invasively.
Collapse
Affiliation(s)
- Adem Karaman
- Department of Radiology, Ataturk University, Medical Faculty, Erzurum, Turkey
| | - Irmak Durur-Subasi
- Department of Radiology, Ataturk University, Medical Faculty, Erzurum, Turkey
| | - Fatih Alper
- Department of Radiology, Ataturk University, Medical Faculty, Erzurum, Turkey
| | - Omer Araz
- Department of Pulmonary Diseases, Ataturk University, Medical Faculty, Erzurum, Turkey
| | - Mahmut Subasi
- Department of Thoracic Surgery, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Elif Demirci
- Department of Pathology, Ataturk University, Medical Faculty, Erzurum, Turkey
| | - Mevlut Albayrak
- Department of Pathology, Ataturk University, Medical Faculty, Erzurum, Turkey
| | - Gökhan Polat
- Department of Radiology, Ataturk University, Medical Faculty, Erzurum, Turkey
| | - Metin Akgun
- Department of Pulmonary Diseases, Ataturk University, Medical Faculty, Erzurum, Turkey
| | - Nevzat Karabulut
- Department of Radiology, Pamukkale University, Medical Faculty, Denizli, Turkey
| |
Collapse
|
46
|
Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, Van Aller GS, Schneck JL, Carson JD, Liu Y, Butticello M, Bonnette WG, Gorman SA, Degenhardt Y, Bai Y, McCabe MT, Pappalardi MB, Kasparec J, Tian X, McNulty KC, Rouse M, McDevitt P, Ho T, Crouthamel M, Hart TK, Concha NO, McHugh CF, Miller WH, Dhanak D, Tummino PJ, Carpenter CL, Johnson NW, Hann CL, Kruger RG. A DNA Hypomethylation Signature Predicts Antitumor Activity of LSD1 Inhibitors in SCLC. Cancer Cell 2015; 28:57-69. [PMID: 26175415 DOI: 10.1016/j.ccell.2015.06.002] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/04/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022]
Abstract
Epigenetic dysregulation has emerged as an important mechanism in cancer. Alterations in epigenetic machinery have become a major focus for targeted therapies. The current report describes the discovery and biological activity of a cyclopropylamine containing inhibitor of Lysine Demethylase 1 (LSD1), GSK2879552. This small molecule is a potent, selective, orally bioavailable, mechanism-based irreversible inactivator of LSD1. A proliferation screen of cell lines representing a number of tumor types indicated that small cell lung carcinoma (SCLC) is sensitive to LSD1 inhibition. The subset of SCLC lines and primary samples that undergo growth inhibition in response to GSK2879552 exhibit DNA hypomethylation of a signature set of probes, suggesting this may be used as a predictive biomarker of activity.
Collapse
Affiliation(s)
- Helai P Mohammad
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | | | - David Soong
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Kelly E Federowicz
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Glenn S Van Aller
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Jess L Schneck
- Platform Technology and Sciences, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Jeffrey D Carson
- Platform Technology and Sciences, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Yan Liu
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Michael Butticello
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - William G Bonnette
- Platform Technology and Sciences, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Shelby A Gorman
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Yan Degenhardt
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Yuchen Bai
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Michael T McCabe
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | - Jiri Kasparec
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Xinrong Tian
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Kenneth C McNulty
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Meagan Rouse
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Patrick McDevitt
- Platform Technology and Sciences, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Thau Ho
- Platform Technology and Sciences, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | - Timothy K Hart
- Safety Assessment Department, GlaxoSmithKline, Upper Merion, PA 19406, USA
| | - Nestor O Concha
- Platform Technology and Sciences, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Charles F McHugh
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - William H Miller
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Dashyant Dhanak
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Peter J Tummino
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | - Neil W Johnson
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Christine L Hann
- Oncology Department, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ryan G Kruger
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA 19426, USA.
| |
Collapse
|
47
|
Chen D, Li W, Liu S, Su Y, Han G, Xu C, Liu H, Zheng T, Zhou Y, Mao C. Interleukin-23 promotes the epithelial-mesenchymal transition of oesophageal carcinoma cells via the Wnt/β-catenin pathway. Sci Rep 2015; 5:8604. [PMID: 25721268 PMCID: PMC4342574 DOI: 10.1038/srep08604] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
As the eighth most common malignant tumour worldwide, oesophageal cancer (OC) is often diagnosed during the metastasis of its advanced stage. Interleukin (IL)-23 is an immunomodulatory cytokine that has recently been identified as a cancer-associated factor. However, the role of IL-23 in the evolution of OC remains unclear. In the present study, we found that IL-23 was significantly expressed in the tumours of OC patients suffering metastasis and demonstrated that IL-23 contributed to epithelial-mesenchymal transition (EMT) through the Wnt/β-catenin pathway, promoting the migration and invasion of OC cells. In conclusion, IL-23 plays a pivotal role in the development of OC via EMT.
Collapse
Affiliation(s)
- Deyu Chen
- Institute of Oncology, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China
| | - Wei Li
- 1] Institute of Oncology, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China [2] Department of Oncology, Jintan Hospital Affiliated to Jiangsu University, Changzhou. 213200, China
| | - Shenzha Liu
- Institute of Oncology, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China
| | - Yuting Su
- Institute of Oncology, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China
| | - Guohu Han
- Institute of Oncology, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China
| | - Chenchen Xu
- Department of Nuclear Medicine, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China
| | - Hongli Liu
- Department of Nuclear Medicine, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China
| | - Tingting Zheng
- Department of Nuclear Medicine, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China
| | - Yuepeng Zhou
- Institute of Oncology, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China
| | - Chaoming Mao
- 1] Institute of Oncology, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China [2] Department of Nuclear Medicine, the Hospital Affiliated to Jiangsu University, Zhenjiang. 212001, China
| |
Collapse
|
48
|
Guo H, Liu C, Yang L, Dong L, Wang L, Wang Q, Li H, Zhang J, Lin P, Wang X. Morusin inhibits glioblastoma stem cell growth in vitro and in vivo through stemness attenuation, adipocyte transdifferentiation, and apoptosis induction. Mol Carcinog 2014; 55:77-89. [PMID: 25557841 DOI: 10.1002/mc.22260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Huijie Guo
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
- Department of Immunology; School of Basic Medical Sciences, Chengdu Medical College; Chengdu China
| | - Chuanlan Liu
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
| | - Liuqi Yang
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
| | - Lihua Dong
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
| | - Li Wang
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
| | - Qiaoping Wang
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
| | - Haiyan Li
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
| | - Jie Zhang
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
| | - Ping Lin
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
| | - Xiujie Wang
- Laboratory of Experimental Oncology; State Key Laboratory of Biotherapy; West China Hospital; West China Clinical Medical School; Sichuan University; Chengdu China
| |
Collapse
|
49
|
Mattoo AR, Zhang J, Espinoza LA, Jessup JM. Inhibition of NANOG/NANOGP8 downregulates MCL-1 in colorectal cancer cells and enhances the therapeutic efficacy of BH3 mimetics. Clin Cancer Res 2014; 20:5446-55. [PMID: 25208882 DOI: 10.1158/1078-0432.ccr-14-1134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE High levels of BCL-2 family members in colorectal carcinoma cause resistance to treatment. Inhibition of NANOG or its paralog NANOGP8 reduces the proliferation, stemness, and tumorigenicity of colorectal carcinoma cells. Our hypothesis was that inhibition of NANOG/NANOGP8 enhances the cytotoxic effect of BH3 mimetics targeting BCL-2 family members in colorectal carcinoma cells through reducing expression of MCL-1, a prosurvival BCL-2 protein. EXPERIMENTAL DESIGN Lentiviral vector (LV) shRNA to NANOG (shNG-1) or NANOGP8 (shNp8-1) transduced colorectal carcinoma cells that were also exposed to the BH3 mimetics ABT-737 or ABT-199 in vivo in colorectal carcinoma xenografts and in vitro where proliferation, protein and gene expression, and apoptosis were measured. RESULTS Clone A and CX-1 were sensitive to ABT-737 and ABT-199 at IC50s of 2 to 9 μmol/L but LS174T was resistant with IC50s of 18 to 30 μmol/L. Resistance was associated with high MCL-1 expression in LS174T. LVshNG-1 or LVshNp8-1 decreased MCL-1 expression, increased apoptosis, and decreased replating efficiency in colorectal carcinoma cells treated with either ABT-737 or ABT-199 compared with the effects of either BH3 mimetic alone. Inhibition or overexpression of MCL-1 alone replicated the effects of LVshNG-1 or LVshNp8-1 in increasing or decreasing the apoptosis caused with the BH3 mimetic. The combination therapy inhibited the growth of LS174T xenografts in vivo compared with untreated controls or treatment with only LV shRNA or ABT-737. CONCLUSIONS Inhibition of NANOGP8 or NANOG enhances the cytotoxicity of BH3 mimetics that target BCL-2 family members. Gene therapy targeting the NANOGs may increase the efficacy of BH3 mimetics in colorectal carcinoma.
Collapse
Affiliation(s)
- Abid R Mattoo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jingyu Zhang
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Luis A Espinoza
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - J Milburn Jessup
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland. Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
50
|
Aparicio LA, Castosa R, Haz-Conde M, Rodríguez M, Blanco M, Valladares M, Figueroa A. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells. BMC Cancer 2014; 14:507. [PMID: 25012153 PMCID: PMC4107965 DOI: 10.1186/1471-2407-14-507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/28/2014] [Indexed: 11/18/2022] Open
Abstract
Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Angélica Figueroa
- Translational Cancer Research Group, Instituto de Investigación Biomédica A Coruña (INIBIC), Complejo Hospitalario Universitario A Coruña (CHUAC), Sergas, As Xubias, 15006 A Coruña, España.
| |
Collapse
|