1
|
Zhang H, Kong L, Li J, Liu Z, Zhao Y, Lv X, Wu L, Chai L, You H, Jin J, Cao X, Zheng Z, Liu Y, Yan Z, Jin X. SPOP mutations increase PARP inhibitor sensitivity via CK2/PIAS1/SPOP axis in prostate cancer. JCI Insight 2025; 10:e186871. [PMID: 40260915 PMCID: PMC12016936 DOI: 10.1172/jci.insight.186871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
It is well documented that impaired DNA damage repair (DDR) induces genomic instability that can efficiently increase the sensitivity of prostate cancer (PCa) cells to PARP inhibitors; however, the underlying mechanism remains elusive. Here, we found profound genomic instability in PCa cells with SPOP gene mutations and confirmed the sensitivity of SPOP-mutated PCa cells to olaparib-induced apoptosis. Mechanistically, we identified olaparib-induced CK2-mediated phosphorylation of PIAS1-S468, which in turn mediated SUMOylation of SPOP, thus promoting its E3 ligase activity in the DDR. Moreover, an abnormal CK2/PIAS1/SPOP axis due to SPOP mutations or defects in CK2-mediated phosphorylation of PIAS1, as well as SPOP inhibitor treatment, led to impaired DDR, thus increasing olaparib-induced apoptosis of PCa cells and enhancing olaparib sensitivity in animal models and patient-derived organoids. This suggested that disruption of the CK2/PIAS1/SPOP signaling axis could serve as an indicator for targeted therapy of PCa using a PARP inhibitor.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jinhui Li
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhihan Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiting Zhao
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiuyi Lv
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Liangpei Wu
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lin Chai
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hongjie You
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiabei Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyi Cao
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhong Zheng
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yadong Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zejun Yan
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaofeng Jin
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Chen Z, Liu J, Ma J, Yu X, Wang S, Wang Z. Role of zinc homeostasis in the prevention of prostate diseases. J Trace Elem Med Biol 2025; 88:127605. [PMID: 39864261 DOI: 10.1016/j.jtemb.2025.127605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The prostate gland is the largest accessory sex gland in the male reproductive system, and is recognized for its elevated zinc concentration. Recently, the incidence of prostate diseases has increased, posing a significant threat to the health of men. Increasing evidence suggests that maintaining normal prostate function requires proper zinc homeostasis. Prostate disease can cause changes in the regulation of zinc levels in the prostate. Studies have indicated that patients with prostatitis, prostate enlargement, or prostate cancer experience an imbalance in zinc homeostasis, resulting in changes in zinc levels in the body and altered distribution of zinc in tissues. Zinc prevents the malignant transformation of normal prostate tissue by blocking citric acid oxidation, inducing apoptosis, and exhibiting antioxidant activity. Therefore, studying changes in zinc homeostasis in prostate diseases is of great clinical value for diagnosing and treating these diseases. This article reviews the distribution and content of zinc in the prostate, the mechanism underlying zinc homeostasis regulation, the role of zinc homeostasis in prostate diseases, and the clinical applications of zinc.
Collapse
Affiliation(s)
- Ziqi Chen
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Junsheng Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei 050071, China
| | - Xiuqiao Yu
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei 050071, China.
| | - Zhenxian Wang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei General Hospital, Shijiazhuang, Hebei 050051, China.
| |
Collapse
|
3
|
Wu J, Yang Z, Ding J, Hao S, Chen H, Jin K, Zhang C, Zheng X. Proteome-wide Mendelian randomization identifies causal plasma proteins in prostate cancer development. Hum Genomics 2025; 19:17. [PMID: 39994764 PMCID: PMC11853923 DOI: 10.1186/s40246-025-00724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The etiology of prostate cancer remained elusive, whether plasma protein levels are associated with prostate cancer is still unknown. METHODS We have performed Mendelian randomization analyses to calculate the causal effects of plasma proteins on the risk of prostate cancer in the PRACTICAL consortium dataset using cis-protein quantitative trait loci (cis-pQTL) variants as instrumental variables for plasma proteins, and cis-expression quantitative trait locus (cis-eQTL) for the circulating gene expression. We also replicated the findings in the FinnGen consortium. RESULTS Genetically proxied levels of 4 plasma proteins (CREB3L4, HDGF, SERPINA3, GNPNAT1) were identified as positively correlated with an increased risk of prostate cancer, while an increase in genetically proxied levels of 5 plasma proteins (TNFRSF6B, GSK3A, EIF4B, CLIC1, SMAD2) were significantly associated with a decreased risk of prostate cancer in the PRACTICAL consortium. Among the identified proteins, the causal effects of six proteins including CREB3L4, HDGF, SERPINA3, TNFRSF6B, EIF4B, and SMAD2 remained significant in the replication analyses in the FinnGen consortium and when combined with meta-analyses (SMAD2: OR 0.710, 95% CI 0.578-0.873, p-value = 0.001; CREB3L4: OR 1.260, 95% CI 1.164-1.364, p-value < 0.0001; HDGF: OR 1.072, 95% CI 1.021-1.125, p-value = 0.005; SERPINA3: OR 1.138, 95% CI 1.091-1.187, p-value < 0.0001; TNFRSF6B: OR 0.656, 95% CI 0.496-0.869, p-value = 0.003; EIF4B: OR 0.701, 95% CI 0.618-0.796, p-value < 0.0001). SMAD2 and CREB3L4 gene expressions proxied with cis-expression quantitative trait loci are also significantly associated with the risk of prostate cancer in both consortiums and when combined with meta-analyses (SMAD2: OR 0.787, 95% CI 0.719-0.861, p-value = 1.00 × 10-4; CREB3L4: OR 1.219, 95% CI 1.033-1.438, p-value = 0.019). CONCLUSIONS Our consistent results highlighted the important roles of plasma SMAD2 and CREB3L4 in the risk of prostate cancer. Further investigations on these proteins may reveal their potential in the prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
- Jian Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Zitong Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Department of Urology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Jiafeng Ding
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Department of Urology, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Sida Hao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Hong Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Ke Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Cheng Zhang
- Department of Urology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
4
|
Yuan Z, Lei Y, Wan B, Yang M, Jiang Y, Tian C, Wang Z, Wang W. Cadmium exposure elicited dynamic RNA m 6A modification and epi-transcriptomic regulation in the Pacific whiteleg shrimp Litopenaeus vannamei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101307. [PMID: 39126882 DOI: 10.1016/j.cbd.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent post-transcriptional RNA modification in eukaryotic organisms, but its roles in the regulation of physiological resistance of marine crustaceans to heavy metal pollutants are poorly understood. In this study, the transcriptome-wide m6A RNA methylation profiles and dynamic m6A changes induced by acute Cd2+ exposure in the the pacific whiteleg shrimp Litopenaeus vannamei were comprehensively analyzed. Cd2+ toxicity caused a significant reduction in global RNA m6A methylation level, with major m6A regulators including the m6A methyltransferase METTL3 and the m6A binding protein YTHDF2 showing declined expression. Totally, 11,467 m6A methylation peaks from 6415 genes and 17,291 peaks within 7855 genes were identified from the Cd2+ exposure group and the control group, respectively. These m6A peaks were predominantly enriched in the 3' untranslated region (UTR) and around the start codon region of the transcripts. 7132 differentially expressed genes (DEGs) and 7382 differentially m6A-methylated genes (DMGs) were identified. 3186 genes showed significant changes in both gene expression and m6A methylation levels upon cadmium exposure, and they were related to a variety of biological processes and gene pathways. Notably, an array of genes associated with antioxidation homeostasis, transmembrane transporter activity and intracellular detoxification processes were significantly enriched, demonstrating that m6A modification may mediate the physiological responses of shrimp to cadmium toxicity via regulating ROS balance, Cd2+ transport and toxicity mitigation. The study would contribute to a deeper understanding of the evolutionary and functional significance of m6A methylation to the physiological resilience of decapod crustaceans to heavy metal toxicants.
Collapse
Affiliation(s)
- Zhixiang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yiguo Lei
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Boquan Wan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Miao Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yue Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongduo Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Ma X, Ru Y, Luo Y, Kuai L, Chen QL, Bai Y, Liu YQ, Chen J, Luo Y, Song JK, Zhou M, Li B. Post-Translational Modifications in Atopic Dermatitis: Current Research and Clinical Relevance. Front Cell Dev Biol 2022; 10:942838. [PMID: 35874824 PMCID: PMC9301047 DOI: 10.3389/fcell.2022.942838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and relapsing cutaneous disorder characterized by compromised immune system, excessive inflammation, and skin barrier disruption. Post-translational modifications (PTMs) are covalent and enzymatic modifications of proteins after their translation, which have been reported to play roles in inflammatory and allergic diseases. However, less attention has been paid to the effect of PTMs on AD. This review summarized the knowledge of six major classes (including phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, o-glycosylation, and glycation) of PTMs in AD pathogenesis and discussed the opportunities for disease management.
Collapse
Affiliation(s)
- Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Long Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yun Bai
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Ye-Qiang Liu
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jia Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Mi Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| | - Bin Li
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| |
Collapse
|
6
|
Nie Q, Chen H, Zou M, Wang L, Hou M, Xiang JW, Luo Z, Gong XD, Fu JL, Wang Y, Zheng SY, Xiao Y, Gan YW, Gao Q, Bai YY, Wang JM, Zhang L, Tang XC, Hu X, Gong L, Liu Y, Li DWC. The E3 Ligase PIAS1 Regulates p53 Sumoylation to Control Stress-Induced Apoptosis of Lens Epithelial Cells Through the Proapoptotic Regulator Bax. Front Cell Dev Biol 2021; 9:660494. [PMID: 34195189 PMCID: PMC8237824 DOI: 10.3389/fcell.2021.660494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Protein sumoylation is one of the most important post-translational modifications regulating many biological processes (Flotho A & Melchior F. 2013. Ann Rev. Biochem. 82:357–85). Our previous studies have shown that sumoylation plays a fundamental role in regulating lens differentiation (Yan et al., 2010. PNAS, 107(49):21034-9.; Gong et al., 2014. PNAS. 111(15):5574–9). Whether sumoylation is implicated in lens pathogenesis remains elusive. Here, we present evidence to show that the protein inhibitor of activated STAT-1 (PIAS1), a E3 ligase for sumoylation, is implicated in regulating stress-induced lens pathogenesis. During oxidative stress-induced cataractogenesis, expression of PIAS1 is significantly altered at both mRNA and protein levels. Upregulation and overexpression of exogenous PIAS1 significantly enhances stress-induced apoptosis. In contrast, silence of PIAS1 with CRISPR/Cas9 technology attenuates stress-induced apoptosis. Mechanistically, different from other cells, PIAS1 has little effect to activate JNK but upregulates Bax, a major proapoptotic regulator. Moreover, Bax upregulation is derived from the enhanced transcription activity of the upstream transcription factor, p53. As revealed previously in other cells by different laboratories, our data also demonstrate that PIAS1 promotes SUMO1 conjugation of p53 at K386 residue in lens epithelial cells and thus enhances p53 transcription activity to promote Bax upregulation. Silence of Bax expression largely abrogates PIAS1-mediated enhancement of stress-induced apoptosis. Thus, our results demonstrated that PIAS1 promotes oxidative stress-induced apoptosis through positive control of p53, which specifically upregulates expression of the downstream proapoptotic regulator Bax. As a result, PIAS1-promoted apoptosis induced by oxidative stress is implicated in lens pathogenesis.
Collapse
Affiliation(s)
- Qian Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huimin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ming Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ling Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Dong Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qian Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue-Yue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Cheng Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
He K, Zhang J, Liu J, Cui Y, Liu LG, Ye S, Ban Q, Pan R, Liu D. Functional genomics study of protein inhibitor of activated STAT1 in mouse hippocampal neuronal cells revealed by RNA sequencing. Aging (Albany NY) 2021; 13:9011-9027. [PMID: 33759814 PMCID: PMC8034905 DOI: 10.18632/aging.202749] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Protein inhibitor of activated STAT1 (PIAS1), a small ubiquitin-like modifier (SUMO) E3 ligase, was considered to be an inhibitor of STAT1 by inhibiting the DNA-binding activity of STAT1 and blocking STAT1-mediated gene transcription in response to cytokine stimulation. PIAS1 has been determined to be involved in modulating several biological processes such as cell proliferation, DNA damage responses, and inflammatory responses, both in vivo and in vitro. However, the role played by PIAS1 in regulating neurodegenerative diseases, including Alzheimer’s disease (AD), has not been determined. In our study, significantly different expression levels of PIAS1 between normal controls and AD patients were detected in four regions of the human brain. Based on a functional analysis of Pias1 in undifferentiated mouse hippocampal neuronal HT-22 cells, we observed that the expression levels of several AD marker genes could be inhibited by Pias1 overexpression. Moreover, the proliferation ability of HT-22 cells could be promoted by the overexpression of Pias1. Furthermore, we performed RNA sequencing (RNA-seq) to evaluate and quantify the gene expression profiles in response to Pias1 overexpression in HT-22 cells. As a result, 285 significantly dysregulated genes, including 79 upregulated genes and 206 downregulated genes, were identified by the comparison of Pias1/+ cells with WT cells. Among these genes, five overlapping genes, including early growth response 1 (Egr1), early growth response 2 (Egr2), early growth response 3 (Egr3), FBJ osteosarcoma oncogene (Fos) and fos-like antigen 1 (Fosl1), were identified by comparison of the transcription factor binding site (TFBS) prediction results for STAT1, whose expression was evaluated by qPCR. Three cell cycle inhibitors, p53, p18 and p21, were significantly downregulated with the overexpression of Pias1. Analysis of functional enrichment and expression levels showed that basic region leucine zipper domain-containing transcription factors including zinc finger C2H2 (zf-C2H2), homeobox and basic/helix-loop-helix (bHLH) in several signaling pathways were significantly involved in PIAS1 regulation in HT-22 cells. A reconstructed regulatory network under PIAS1 overexpression demonstrated that there were 43 related proteins, notably Nr3c2, that directly interacted with PIAS1.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jian Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Justin Liu
- Department of Statistics, University of California, Riverside, CA 92521, USA
| | - Yandi Cui
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | | | - Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qian Ban
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Ruolan Pan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Dahai Liu
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan 528000, Guangdong, China
| |
Collapse
|
8
|
Advances of Zinc Signaling Studies in Prostate Cancer. Int J Mol Sci 2020; 21:ijms21020667. [PMID: 31963946 PMCID: PMC7014440 DOI: 10.3390/ijms21020667] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and the second leading cause of cancer-related death among men worldwide. Despite progresses in early diagnosis and therapeutic strategies, prognosis for patients with advanced PCa remains poor. Noteworthily, a unique feature of healthy prostate is its highest level of zinc content among all soft tissues in the human body, which dramatically decreases during prostate tumorigenesis. To date, several reviews have suggested antitumor activities of zinc and its potential as a therapeutic strategy of PCa. However, an overview about the role of zinc and its signaling in PCa is needed. Here, we review literature related to the content, biological function, compounds and clinical application of zinc in PCa. We first summarize zinc content in prostate tissue and sera of PCa patients with their clinical relevance. We then elaborate biological functions of zinc signaling in PCa on three main aspects, including cell proliferation, death and tumor metastasis. Finally, we discuss clinical applications of zinc-containing compounds and proteins involved in PCa signaling pathways. Based on currently available studies, we conclude that zinc plays a tumor suppressive role and can serve as a biomarker in PCa diagnosis and therapies.
Collapse
|
9
|
Xue YN, Yu BB, Liu YN, Guo R, Li JL, Zhang LC, Su J, Sun LK, Li Y. Zinc promotes prostate cancer cell chemosensitivity to paclitaxel by inhibiting epithelial-mesenchymal transition and inducing apoptosis. Prostate 2019; 79:647-656. [PMID: 30714183 DOI: 10.1002/pros.23772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Paclitaxel (PTX) is a first-line chemotherapeutic drug for the treatment of prostate cancer. However, most patients develop resistance and metastasis, and thus new therapeutic approaches are urgently required. Recent studies have identified widespread anti-tumor effects of zinc (Zn) in various tumor cell lines, especially prostate cancer cells. In this study, we examined the effects of Zn as an adjuvant to PTX in prostate cancer cells. METHODS PC3 and DU145 cells were treated with different concentrations of Zn and/or PTX. MTT assay was used to detect cell viability. Real-time cell analysis (RTCA) and microscopy were used to observe morphological changes in cells. Western blotting was used to detect the expression of epithelial-mesenchymal transition (EMT)-related proteins. qPCR (reverse transcription-polymerase chain reaction) was used to examine changes in TWIST1 mRNA levels. Cell invasion and migration were detected by scratch and transwell assays. shRNA against TWIST1 was used to knockdown TWIST1. Colony formation assay was used to detect cell proliferation, while Annexin V and propidium iodide (PI) staining was used to detect cell apoptosis. RESULTS Zn and PTX increased proliferation inhibition in a dose- and time-dependent manner in prostate cancer cells, while Zn increased prostate cancer cell chemosensitivity to PTX. Combined Zn and PTX inhibited prostate cancer cell invasion and migration by downregulating the expression of TWIST1. Furthermore, knockdown of TWIST1 increased the sensitivity of prostate cancer cells to PTX. In addition, Zn and PTX reduced cell proliferation and induced apoptosis in prostate cancer cells. CONCLUSIONS Our results demonstrated that Zn and PTX combined therapy inhibits EMT by reducing the expression of TWIST1, which reduces the invasion and migration of prostate cancer cells. SiTWIST1 increased the sensitivity of prostate cancer cells to PTX. In addition, with prolonged treatment, Zn and PTX inhibited proliferation and led to prostate cancer cell apoptosis. Therefore, Zn may be a potential adjuvant of PTX in treating prostate cancer and combined treatment may offer a promising therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Ya-Nan Xue
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Bing-Bing Yu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Ya-Nan Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Rui Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiu-Ling Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Li-Chao Zhang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jing Su
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lian-Kun Sun
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yang Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Feng XL, Fei HZ, Hu L. Dexamethasone induced apoptosis of A549 cells via the TGF-β1/Smad2 pathway. Oncol Lett 2017; 15:2801-2806. [PMID: 29435007 PMCID: PMC5778831 DOI: 10.3892/ol.2017.7696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Lung cancers are the most commonly diagnosed malignant tumors, and are one of the leading causes of morbidity and mortality worldwide. Dexamethasone (DEX) serves an important function in the regulation of lung cancer cell proliferation; however, the mechanisms involved still remain unknown. In the present study, the effects of DEX on A549 cell proliferation and apoptosis were examined, in addition to the potential downstream regulatory mechanisms underlying these effects. A549 cells were treated with different concentrations of DEX at 12, 24 and 48 h time points, followed by the addition of SB431542, an inhibitor of the TGF-β1 receptor, to block the TGF-β1 signaling pathway. Cell proliferation was analyzed using a 3-(4,5-diethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt. The apoptosis rate was measured by Hoechst 33342 and Annexin V/propidium iodide staining and the expression of transforming growth factor (TGF)-β1, Smad family member 2 (Smad2) and caspase-3 were assessed by western blot. The results from the present study demonstrated that the proliferation of A549 cells decreased and the apoptosis rate significantly increased following DEX treatment (P<0.05). Furthermore, the expression of TGF-β1, Smad2 and caspase-3 were significantly increased following DEX stimulation (P<0.05), the effects of which were abrogated by the addition of the TGF-β1 receptor inhibitor, SB431542 (P<0.05). DEX-induced apoptosis in A549 cells, and this effect was abrogated by SB431542, an inhibitor of TGF-β1 receptor signaling, which indicated that the TGF-β1/Smad2 pathway may be associated with this process and SB431542 may function as an antitumor drug in the future.
Collapse
Affiliation(s)
- Xiao-Ling Feng
- Department of Anatomy, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| | - Hui-Zhi Fei
- Department of Pharmacology, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| | - Ling Hu
- Department of Pathology, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| |
Collapse
|
11
|
Hsu WL, Ma YL, Liu YC, Lee EHY. Smad4 SUMOylation is essential for memory formation through upregulation of the skeletal myopathy gene TPM2. BMC Biol 2017; 15:112. [PMID: 29183317 PMCID: PMC5706330 DOI: 10.1186/s12915-017-0452-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/07/2017] [Indexed: 11/22/2022] Open
Abstract
Background Smad4 is a critical effector of TGF-β signaling that regulates a variety of cellular functions. However, its role in the brain has rarely been studied. Here, we examined the molecular mechanisms underlying the post-translational regulation of Smad4 function by SUMOylation, and its role in spatial memory formation. Results In the hippocampus, Smad4 is SUMOylated by the E3 ligase PIAS1 at Lys-113 and Lys-159. Both spatial training and NMDA injection enhanced Smad4 SUMOylation. Inhibition of Smad4 SUMOylation impaired spatial learning and memory in rats by downregulating TPM2, a gene associated with skeletal myopathies. Similarly, knockdown of TPM2 expression impaired spatial learning and memory, while TPM2 mRNA and protein expression increased after spatial training. Among the TPM2 mutations associated with skeletal myopathies, the TPM2E122K mutation was found to reduce TPM2 expression and impair spatial learning and memory in rats. Conclusions We have identified a novel role of Smad4 SUMOylation and TPM2 in learning and memory formation. These results suggest that patients with skeletal myopathies who carry the TPM2E122K mutation may also have deficits in learning and memory functions. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0452-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei L Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yun L Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yen C Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Eminy H Y Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. .,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
12
|
Qin H, Rasul A, Li X, Masood M, Yang G, Wang N, Wei W, He X, Watanabe N, Li J, Li X. CD147-induced cell proliferation is associated with Smad4 signal inhibition. Exp Cell Res 2017; 358:279-289. [DOI: 10.1016/j.yexcr.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/01/2017] [Indexed: 01/01/2023]
|
13
|
Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 2017; 35:265-290. [PMID: 27829171 DOI: 10.1016/j.arr.2016.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| |
Collapse
|
14
|
Altholactone Inhibits NF-κB and STAT3 Activation and Induces Reactive Oxygen Species-Mediated Apoptosis in Prostate Cancer DU145 Cells. Molecules 2017; 22:molecules22020240. [PMID: 28178219 PMCID: PMC6155856 DOI: 10.3390/molecules22020240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/29/2017] [Accepted: 02/02/2017] [Indexed: 12/21/2022] Open
Abstract
Altholactone, a natural compound isolated from Goniothalamus spp., has demonstrated anti-inflammatory and anticancer activities, but its molecular mechanisms are still not fully defined. Nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play pivotal roles in the cell survival of many human tumors. The objective of this study was to elucidate the mechanism of action of altholactone against prostate cancer DU145 cells and to evaluate whether its effects are mediated by inhibition of NF-κB and STAT3 activity. Altholactone inhibited proliferation of DU145 cells and induced cell cycle arrest in S phase and triggered apoptosis. Reporter assays revealed that altholactone repressed p65- and TNF-α-enhanced NF-κB transcriptional activity and also inhibited both constitutive and IL-6-induced transcriptional activity of STAT3. Consistent with this, altholactone down-regulated phosphorylation of STAT3 and moreover, decreased constitutively active mutant of STAT3 (STAT3C)-induced transcriptional activity. Altholactone treatment also results in down-regulation of STAT3 target genes such as survivin, and Bcl-2 followed by up regulation of pro-apoptotic Bax protein. However, pre-treatment with the antioxidant N-acetylcysteine (NAC) significantly inhibited the activation of Bax and prevented down-regulation of STAT3 target genes. Collectively, our findings suggest that altholactone induces DU145 cells death through inhibition of NF-κB and STAT3 activity.
Collapse
|
15
|
DLX1 acts as a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-β/SMAD4 signaling. Oncogene 2016; 36:1404-1416. [PMID: 27593933 PMCID: PMC5348575 DOI: 10.1038/onc.2016.307] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 07/11/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
Abstract
Recent evidence from a comprehensive genome analysis and functional studies have revealed that FOXM1 is a crucial metastatic regulator that drives cancer progression. However, the regulatory mechanism by which FOXM1 exerts its metastatic functions in cancer cells remains obscure. Here, we report that DLX1 acts as a FOXM1 downstream target, exerting pro-metastatic function in ovarian cancers. Both FOXM1 isoforms (FOXM1B or FOXM1C) could transcriptionally upregulate DLX1 through two conserved binding sites, located at +61 to +69bp downstream (TFBS1) and −675 to −667bp upstream (TFBS2) of the DLX1 promoter, respectively. This regulation was further accentuated by the significant correlation between the nuclear expression of FOXM1 and DLX1 in high-grade serous ovarian cancers. Functionally, the ectopic expression of DLX1 promoted ovarian cancer cell growth, cell migration/invasion and intraperitoneal dissemination of ovarian cancer in mice, whereas small interfering RNA-mediated DLX1 knockdown in FOXM1-overexpressing ovarian cancer cells abrogated these oncogenic capacities. In contrast, depletion of FOXM1 by shRNAi only partially attenuated tumor growth and exerted almost no effect on cell migration/invasion and the intraperitoneal dissemination of DLX1-overexpressing ovarian cancer cells. Furthermore, the mechanistic studies showed that DLX1 positively modulates transforming growth factor-β (TGF-β) signaling by upregulating PAI-1 and JUNB through direct interaction with SMAD4 in the nucleus upon TGF-β1 induction. Taken together, these data strongly suggest that DLX1 has a pivotal role in FOXM1 signaling to promote cancer aggressiveness through intensifying TGF-β/SMAD4 signaling in high-grade serous ovarian cancer cells.
Collapse
|
16
|
Majewska A, Gajewska M, Dembele K, Maciejewski H, Prostek A, Jank M. Lymphocytic, cytokine and transcriptomic profiles in peripheral blood of dogs with atopic dermatitis. BMC Vet Res 2016; 12:174. [PMID: 27553600 PMCID: PMC4995625 DOI: 10.1186/s12917-016-0805-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
Background Canine atopic dermatitis (cAD) is a common chronic and pruritic skin disease in dogs. The development of cAD involves complex interactions between environmental antigens, genetic predisposition and a number of disparate cell types. The aim of the present study was to perform comprehensive analyses of peripheral blood of AD dogs in relation to healthy subjects in order to determine the changes which would be characteristic for cAD. Results The number of cells in specific subpopulations of lymphocytes was analyzed by flow cytometry, concentration of chosen pro- and anti-inflammatory cytokines (IL-4, IL-10, IL-13, TNF-α, TGF-β1) was determined by ELISA; and microarray analysis was performed on RNA samples isolated from peripheral blood nuclear cells of AD and healthy dogs. The number of Th cells (CD3+CD4+) in AD and healthy dogs was similar, whereas the percentage of Tc (CD3+CD8+) and Treg (CD4+CD25+ Foxp3+) cells increased significantly in AD dogs. Increased concentrations of IL-13 and TNF-α, and decreased levels of IL-10 and TGF-β1 was observed in AD dogs. The level of IL-4 was similar in both groups of animals. Results of the microarray experiment revealed differentially expressed genes involved in transcriptional regulation (e.g., transcription factors: SMAD2, RORA) or signal transduction pathways (e.g., VEGF, SHB21, PROC) taking part in T lymphocytes lineages differentiation and cytokines synthesis. Conclusions Results obtained indicate that CD8+ T cells, beside CD4+ T lymphocytes, contribute to the development of the allergic response. Increased IL-13 concentration in AD dogs suggests that this cytokine may play more important role than IL-4 in mediating changes induced by allergic inflammation. Furthermore, observed increase in Treg cells in parallel with high concentrations of TNF-α and low levels of IL-10 and TGF-β1 in the peripheral blood of AD dogs point at the functional insufficiency of Treg cells in patients with AD. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0805-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland.
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Kourou Dembele
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Henryk Maciejewski
- Department of Computer Engineering, Wroclaw University of Technology, Wrocław, Poland
| | - Adam Prostek
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Michał Jank
- Veterinary Institute, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
17
|
Grider A, Lewis RD, Laing EM, Bakre AA, Tripp RA. Zinc affects miR-548n, SMAD4, SMAD5 expression in HepG2 hepatocyte and HEp-2 lung cell lines. Biometals 2015; 28:959-66. [PMID: 26409456 DOI: 10.1007/s10534-015-9880-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 01/11/2023]
Abstract
MicroRNAs affect disease progression and nutrient status. miR-548n increased 57 % in Zn supplemented plasma from adolescent females (ages 9 to 13 years). The purpose of this study was to determine the effects of Zn concentration in cell culture on the expression of miR-548n, SMAD4 and SMAD5 in hepatocyte (HepG2) and lung epithelium (HEp-2) cell lines. Cells were incubated for 48 h in media containing 10 % Chelex 100-treated FBS (0 μM Zn), or with 15 or 50 μM Zn, before isolation of total RNA and cDNA. Expression of miR-548n, SMAD4 and SMAD5 was measured by qPCR. The ΔΔCT method was used to calculate the fold-change, and 15 µM expression levels were used as reference values. HepG2 miR-548n expression decreased 5-fold, and SMAD4 expression increased 4-fold in the absence of Zn, while HEp-2 miR-548n expression increased 10.5-fold, and SMAD5 expression increased 20-fold in the absence of Zn. HEp-2 miR-548n expression increased 23-fold, while SMAD4 expression decreased twofold, in 50 μM Zn-treated cells. However, SMAD4 and SMAD5 expression was not correlated. These data indicate that miR-548n expression is in part regulated by Zn in a cell-specific manner. SMAD4 and SMAD5 are genes in the TGF-β/BMP signaling pathway, and SMAD5 is a putative target for miR-548n; Zn participates in regulating this pathway through controlling SMAD4 and SMAD5 expression. However, SMAD5 expression may be more sensitive to Zn than to miR-548n since SMAD5 expression was not inversely correlated with miR-548n expression.
Collapse
Affiliation(s)
- Arthur Grider
- Department of Foods and Nutrition, The University of Georgia, Athens, GA, 30602, USA.
| | - Richard D Lewis
- Department of Foods and Nutrition, The University of Georgia, Athens, GA, 30602, USA
| | - Emma M Laing
- Department of Foods and Nutrition, The University of Georgia, Athens, GA, 30602, USA
| | - Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
18
|
Gur I, Fujiwara K, Hasegawa K, Yoshikawa K. Necdin promotes ubiquitin-dependent degradation of PIAS1 SUMO E3 ligase. PLoS One 2014; 9:e99503. [PMID: 24911587 PMCID: PMC4049815 DOI: 10.1371/journal.pone.0099503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/15/2014] [Indexed: 01/09/2023] Open
Abstract
Necdin, a pleiotropic protein that promotes differentiation and survival of mammalian neurons, is a member of MAGE (melanoma antigen) family proteins that share a highly conserved MAGE homology domain. Several MAGE proteins interact with ubiquitin E3 ligases and modulate their activities. However, it remains unknown whether MAGE family proteins interact with SUMO (small ubiquitin-like modifier) E3 ligases such as PIAS (protein inhibitor of activated STAT) family, Nsmce2/Mms21 and Cbx4/Pc2. In the present study, we examined whether necdin interacts with these SUMO E3 ligases. Co-immunoprecipitation analysis revealed that necdin, MAGED1, MAGEF1 and MAGEL2 bound to PIAS1 but not to Nsmce2 or Cbx4. These SUMO E3 ligases bound to MAGEA1 but failed to interact with necdin-like 2/MAGEG1. Necdin bound to PIAS1 central domains that are highly conserved among PIAS family proteins and suppressed PIAS1-dependent sumoylation of the substrates STAT1 and PML (promyelocytic leukemia protein). Remarkably, necdin promoted degradation of PIAS1 via the ubiquitin-proteasome pathway. In transfected HEK293A cells, amino- and carboxyl-terminally truncated mutants of PIAS1 bound to necdin but failed to undergo necdin-dependent ubiquitination. Both PIAS1 and necdin were associated with the nuclear matrix, where the PIAS1 terminal deletion mutants failed to localize, implying that the nuclear matrix is indispensable for necdin-dependent ubiquitination of PIAS1. Our data suggest that necdin suppresses PIAS1 both by inhibiting SUMO E3 ligase activity and by promoting ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Ibrahim Gur
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazushiro Fujiwara
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Koichi Hasegawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazuaki Yoshikawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
19
|
Xu S, Yang Y, Han S, Wu Z. ZIP1 and zinc inhibits fluoride-induced apoptosis in MC3T3-E1 cells. Biol Trace Elem Res 2014; 159:399-409. [PMID: 24752969 DOI: 10.1007/s12011-014-9935-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/04/2014] [Indexed: 12/01/2022]
Abstract
Excess fluoride intake could induce apoptosis in the cells. As an essential micronutrient and cytoprotectant, zinc is involved in many types of apoptosis. Here, we studied the effects of zinc and ZIP1 on fluoride-induced apoptosis in mouse MC3T3-E1 cells and examined the underlying molecular mechanisms. Our study found that fluoride not only inhibited cell proliferation and increased the intracellular reactive oxygen species (ROS) but also induced cell apoptosis. Whereas pretreatment with zinc significantly attenuated fluoride-induced ROS production and partly protected cells against fluoride-induced apoptosis through MAPK/ERK signaling pathway. Our study also found that fluoride upregulated the expression of ZIP1 in a time-dependent manner. Moreover, overexpression of ZIP1 also inhibited fluoride-induced apoptosis by activation of PI3K/Akt pathway. This cytoprotective effect of zinc and ZIP1 may be new factors that affect the physiological activity of fluoride and need study further.
Collapse
Affiliation(s)
- Shihong Xu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | | | | | | |
Collapse
|