1
|
Roh JD, Bae M, Kim H, Yang Y, Lee Y, Cho Y, Lee S, Li Y, Yang E, Jang H, Kim H, Kim H, Kang H, Ellegood J, Lerch JP, Bae YC, Kim JY, Kim E. Lithium normalizes ASD-related neuronal, synaptic, and behavioral phenotypes in DYRK1A-knockin mice. Mol Psychiatry 2025; 30:2584-2596. [PMID: 39633007 DOI: 10.1038/s41380-024-02865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Dyrk1A deficiency is linked to various neurodevelopmental disorders, including developmental delays, intellectual disability (ID) and autism spectrum disorders (ASD). Haploinsufficiency of Dyrk1a in mice reportedly leads to ASD-related phenotypes. However, the key pathological mechanisms remain unclear and human DYRK1A mutations remain uncharacterized in mice. Here, we generated and studied Dyrk1a-knockin mice carrying a human ASD patient mutation (Ile48LysfsX2; Dyrk1a-I48K mice). These mice display severe microcephaly, social and cognitive deficits, dendritic shrinkage, excitatory synaptic deficits, and altered phospho-proteomic patterns enriched for multiple signaling pathways and synaptic proteins. Early chronic lithium treatment of newborn mutant mice rescues the brain volume, behavior, dendritic, synaptic, and signaling/synapse phospho-proteomic phenotypes at juvenile and adult stages. These results suggest that signaling/synaptic alterations contribute to the phenotypic alterations seen in Dyrk1a-I48K mice, and that early correction of these alterations by lithium treatment has long-lasting effects in preventing juvenile and adult-stage phenotypes.
Collapse
Affiliation(s)
- Junyeop Daniel Roh
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Mihyun Bae
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Hyosang Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Yeunkeum Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
- Korea Institute of Drug Safety & Risk Management, Anyang, 14051, Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | | | | | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, 34141, Korea
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, M4G 1R8, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
| |
Collapse
|
2
|
A novel Gboxin analog induces OXPHOS inhibition and mitochondrial dysfunction-mediated apoptosis in diffuse large B-cell lymphoma. Bioorg Chem 2022; 127:106019. [PMID: 35849895 DOI: 10.1016/j.bioorg.2022.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell non-Hodgkin's lymphoma. Currently, moderate efficacy and limitations of approved drugs still exist, and it is necessary to develop newer and more effective drugs. Gboxin is a promising inhibitor of OXPHOS, which specifically inhibits the growth of many kinds of cancer cell lines. In the present study, 21 Gboxin analogs incorporating amide and ester moieties were designed and synthesized. Preliminary screening results show that 5d also has specific selectivity for cancer cells, particularly on the DLBCL cells, which is weaker than that of Gboxin but still good. Thus, the effect and underlying mechanism of 5d on DLBCL cells were further studied. The results showed that 5d exhibits potent proliferation inhibition and cell cycle arrest effects, and its IC50 to DLBCL cells is below 1 µM. In addition, 5d induces apoptosis of DLBCL cells in a time- and dose-dependent manner, and this effect is stronger than that of Gboxin and VP16. Mechanistically, 5d plays its role mainly through the stimulation of metabolic stress in DLBCL cell lines, which induces OXPHOS inhibition, inflammation, DNA damage and mitochondrial dysfunction. These data suggest that 5d has potential as a candidate agent for DLBCL alternative drug development.
Collapse
|
3
|
Tian J, Tang Y, Yang L, Ren J, Qing Q, Tao Y, Xu J, Zhu J. Molecular Mechanisms for Anti-aging of Low-Vacuum Cold Plasma Pretreatment in Caenorhabditis elegans. Appl Biochem Biotechnol 2022; 194:4817-4835. [PMID: 35666378 DOI: 10.1007/s12010-022-03989-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Cold plasma pretreatment has the potential of anti-aging. However, its molecular mechanism is still not clear. Here, cold plasma pretreatment was firstly used to investigate the anti-aging effects of Caenorhabditis elegans using transcriptomic technique. It showed that the optimal parameters of discharge power, processing time, and working pressure for cold plasma pretreatment were separately 100 W, 15 s, and 135 Pa. The released 0.32 mJ/cm2 of the moderate apparent energy density was possibly beneficial to the strong positive interaction between plasma and C. elegans. The longest lifespan (13.67 ± 0.50 for 30 days) was obviously longer than the control (10.37 ± 0.46 for 23 days). Furthermore, compared with the control, frequencies of head thrashes with an increase of 26.01% and 37.31% and those of body bends with an increase of 33.37% and 34.51% on the fourth and eighth day, respectively, indicated movement behavior was improved. In addition, the variation of the enzyme activity of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) hinted that the cold plasma pretreatment contributed to the enhanced anti-aging effects in nematodes. Transcriptomics analysis revealed that cold plasma pretreatment resulted in specific gene expression. Anatomical structure morphogenesis, response to stress, regulation of biological quality, phosphate-containing compound metabolic process, and phosphorus metabolic process were the most enriched biological process for GO analysis. Cellular response to heat stress and HSF1-dependent transactivation were the two most enriched KEGG pathways. This work would provide the methodological basis using cold plasma pretreatment and the potential gene modification targets for anti-aging study.
Collapse
Affiliation(s)
- Jiamei Tian
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China.,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yumeng Tang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China.,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Linsong Yang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qing Qing
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yuheng Tao
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jieting Xu
- Wimi Biotechnology (Jiangsu) Co., Ltd, Changzhou, 213032, Jiangsu, China
| | - Jie Zhu
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China. .,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
4
|
Alkhatabi HA, Zohny SF, Shait Mohammed MR, Choudhry H, Rehan M, Ahmad A, Ahmed F, Khan MI. Venetoclax-Resistant MV4-11 Leukemic Cells Activate PI3K/AKT Pathway for Metabolic Reprogramming and Redox Adaptation for Survival. Antioxidants (Basel) 2022; 11:461. [PMID: 35326111 PMCID: PMC8944541 DOI: 10.3390/antiox11030461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Venetoclax (ABT199) is a selective B-cell lymphoma 2 (BCL-2) inhibitor. The US FDA recently approved it to be used in combination with low-dose cytarabine or hypomethylating agents in acute myeloid leukemia (AML) or elderly patients non-eligible for chemotherapy. However, acquiring resistance to venetoclax in AML patients is the primary cause of treatment failure. To understand the molecular mechanisms inherent in the resistance to BCL-2 inhibitors, we generated a venetoclax-resistant cell line model and assessed the consequences of this resistance on its metabolic pathways. Untargeted metabolomics data displayed a notable impact of resistance on the PI3K/AKT pathway, the Warburg effect, glycolysis, the TCA cycle, and redox metabolism. The resistant cells showed increased NADPH and reduced glutathione levels, switching their energy metabolism towards glycolysis. PI3K/AKT pathway inhibition shifted resistant cells towards oxidative phosphorylation (OXPHOS). Our results provide a metabolic map of resistant cells that can be used to design novel metabolic targets to challenge venetoclax resistance in AML.
Collapse
Affiliation(s)
- Hind A. Alkhatabi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (S.F.Z.); (M.R.S.M.); (H.C.)
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Samir F. Zohny
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (S.F.Z.); (M.R.S.M.); (H.C.)
| | - Mohammed Razeeth Shait Mohammed
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (S.F.Z.); (M.R.S.M.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (S.F.Z.); (M.R.S.M.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Centre, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia;
| | - Aamir Ahmad
- Translational Research Institute, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (S.F.Z.); (M.R.S.M.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Laranjeiro R, Harinath G, Pollard AK, Gaffney CJ, Deane CS, Vanapalli SA, Etheridge T, Szewczyk NJ, Driscoll M. Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans. iScience 2021; 24:102105. [PMID: 33659873 PMCID: PMC7890410 DOI: 10.1016/j.isci.2021.102105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Extended space travel is a goal of government space agencies and private companies. However, spaceflight poses risks to human health, and the effects on the nervous system have to be better characterized. Here, we exploited the unique experimental advantages of the nematode Caenorhabditis elegans to explore how spaceflight affects adult neurons in vivo. We found that animals that lived 5 days of adulthood on the International Space Station exhibited hyperbranching in PVD and touch receptor neurons. We also found that, in the presence of a neuronal proteotoxic stress, spaceflight promotes a remarkable accumulation of neuronal-derived waste in the surrounding tissues, suggesting an impaired transcellular degradation of debris released from neurons. Our data reveal that spaceflight can significantly affect adult neuronal morphology and clearance of neuronal trash, highlighting the need to carefully assess the risks of long-duration spaceflight on the nervous system and to develop adequate countermeasures for safe space exploration.
Collapse
Affiliation(s)
- Ricardo Laranjeiro
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Girish Harinath
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amelia K. Pollard
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Christopher J. Gaffney
- Sport and Health Sciences, University of Exeter, Exeter, EX1 2LU, UK
- Lancaster Medical School, Health Innovation One, Lancaster University, Lancaster, LA1 4AT, UK
| | - Colleen S. Deane
- Sport and Health Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Nathaniel J. Szewczyk
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurologic Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Saberi-Bosari S, Flores KB, San-Miguel A. Deep learning-enabled analysis reveals distinct neuronal phenotypes induced by aging and cold-shock. BMC Biol 2020; 18:130. [PMID: 32967665 PMCID: PMC7510121 DOI: 10.1186/s12915-020-00861-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Access to quantitative information is crucial to obtain a deeper understanding of biological systems. In addition to being low-throughput, traditional image-based analysis is mostly limited to error-prone qualitative or semi-quantitative assessment of phenotypes, particularly for complex subcellular morphologies. The PVD neuron in Caenorhabditis elegans, which is responsible for harsh touch and thermosensation, undergoes structural degeneration as nematodes age characterized by the appearance of dendritic protrusions. Analysis of these neurodegenerative patterns is labor-intensive and limited to qualitative assessment. RESULTS In this work, we apply deep learning to perform quantitative image-based analysis of complex neurodegeneration patterns exhibited by the PVD neuron in C. elegans. We apply a convolutional neural network algorithm (Mask R-CNN) to identify neurodegenerative subcellular protrusions that appear after cold-shock or as a result of aging. A multiparametric phenotypic profile captures the unique morphological changes induced by each perturbation. We identify that acute cold-shock-induced neurodegeneration is reversible and depends on rearing temperature and, importantly, that aging and cold-shock induce distinct neuronal beading patterns. CONCLUSION The results of this work indicate that implementing deep learning for challenging image segmentation of PVD neurodegeneration enables quantitatively tracking subtle morphological changes in an unbiased manner. This analysis revealed that distinct patterns of morphological alteration are induced by aging and cold-shock, suggesting different mechanisms at play. This approach can be used to identify the molecular components involved in orchestrating neurodegeneration and to characterize the effect of other stressors on PVD degeneration.
Collapse
Affiliation(s)
- Sahand Saberi-Bosari
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kevin B Flores
- Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
7
|
Richard SA, Jia-Hao Z. Elucidating the pathogenic and biomarker potentials of FOXG1 in glioblastoma. Oncol Rev 2020; 14:444. [PMID: 32395201 PMCID: PMC7204822 DOI: 10.4081/oncol.2020.444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GB) is an extremely pugnacious brain cancer originating from neural stem (NS) cell-like cells. Forkhead box G1 (FOXG1; previously recognized as BF-1, qin, Chicken Brain Factor 1, or XBF-1 and renamed FOXG1 for mouse and human, and FoxG1 for other chordates) is an evolutionary preserved transcription factor driven from the forkhead box group of proteins FOXG1 modulates the speed of neurogenesis by maintaining progenitor cells in a proliferative mode as well as obstructing their differentiation into neurons during the initial periods of cortical formation. FOXG1 has been implicated in the formation of central nervous system (CNS) tumors and precisely GBs. Pathophysiologically, joint actions of FOXG1 and phosphatidylinositol- 3-kinases (PI3K) intermediate in intrinsic resistance of human GB cells to transforming growth factor-beta (TGF-β) stimulation of cyclin-dependent kinase inhibitor 1(p21Cip1) as well as growth inhibition. FOXG1 and NOTCH signaling pathways may functionally interrelate at different stages to facilitate gliomagenesis. Furthermore, FoxG1 actively contributed to the formation of transcription suppression complexes with corepressors of the Groucho/transducin-like Enhancer of split (Gro/TLEs). Also, FOXG1 was stimulated by Gro/TLE1 and abridged by Grg6. FOXG1 silencing in brain tumor-initiating cells (BTICs) also resulted in diminished secretion of markers characteristic undifferentiated natural neural stem/progenitor cells (NSPC) states, such as Oligodendrocyte transcription factor (OLIG2), (sex determining region Y)-box 2. (SOX2) and B lymphoma Mo-MLV insertion region 1 homolog (BMI1). This review therefore focuses on the pathogenic and biomarker potentials of FOXG1 in GB.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China.,Department of Medicine, Princefield University, Ho-Volta Region, Ghana, West Africa
| | - Zhou Jia-Hao
- Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China
| |
Collapse
|
8
|
Hou PS, hAilín DÓ, Vogel T, Hanashima C. Transcription and Beyond: Delineating FOXG1 Function in Cortical Development and Disorders. Front Cell Neurosci 2020; 14:35. [PMID: 32158381 PMCID: PMC7052011 DOI: 10.3389/fncel.2020.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Forkhead Box G1 (FOXG1) is a member of the Forkhead family of genes with non-redundant roles in brain development, where alteration of this gene's expression significantly affects the formation and function of the mammalian cerebral cortex. FOXG1 haploinsufficiency in humans is associated with prominent differences in brain size and impaired intellectual development noticeable in early childhood, while homozygous mutations are typically fatal. As such, FOXG1 has been implicated in a wide spectrum of congenital brain disorders, including the congenital variant of Rett syndrome, infantile spasms, microcephaly, autism spectrum disorder (ASD) and schizophrenia. Recent technological advances have yielded greater insight into phenotypic variations observed in FOXG1 syndrome, molecular mechanisms underlying pathogenesis of the disease, and multifaceted roles of FOXG1 expression. In this review, we explore the emerging mechanisms of FOXG1 in a range of transcriptional to posttranscriptional events in order to evolve our current view of how a single transcription factor governs the assembly of an elaborate cortical circuit responsible for higher cognitive functions and neurological disorders.
Collapse
Affiliation(s)
- Pei-Shan Hou
- Laboratory for Developmental Biology, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan.,Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Darren Ó hAilín
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carina Hanashima
- Laboratory for Developmental Biology, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan.,Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University Center for Advanced Biomedical Sciences, Tokyo, Japan
| |
Collapse
|
9
|
Gioran A, Piazzesi A, Bertan F, Schroer J, Wischhof L, Nicotera P, Bano D. Multi-omics identify xanthine as a pro-survival metabolite for nematodes with mitochondrial dysfunction. EMBO J 2019; 38:embj.201899558. [PMID: 30796049 PMCID: PMC6418696 DOI: 10.15252/embj.201899558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 12/10/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF‐1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi‐omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans. We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP‐saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA‐approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short‐lived mitochondrial mutant animals.
Collapse
Affiliation(s)
- Anna Gioran
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jonas Schroer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
10
|
Kim H, Perentis RJ, Caldwell GA, Caldwell KA. Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C. elegans Parkinson's models. Cell Death Dis 2018; 9:555. [PMID: 29748634 PMCID: PMC5945629 DOI: 10.1038/s41419-018-0619-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD) is a complex multifactorial disorder where environmental factors interact with genetic susceptibility. Accumulating evidence suggests that mitochondria have a central role in the progression of neurodegeneration in sporadic and/or genetic forms of PD. We previously reported that exposure to a secondary metabolite from the soil bacterium, Streptomyces venezuelae, results in age- and dose-dependent dopaminergic (DA) neurodegeneration in Caenorhabditis elegans and human SH-SY5Y neurons. Initial characterization of this environmental factor indicated that neurodegeneration occurs through a combination of oxidative stress, mitochondrial complex I impairment, and proteostatic disruption. Here we present extended evidence to elucidate the interaction between this bacterial metabolite and mitochondrial dysfunction in the development of DA neurodegeneration. We demonstrate that it causes a time-dependent increase in mitochondrial fragmentation through concomitant changes in the gene expression of mitochondrial fission and fusion components. In particular, the outer mitochondrial membrane fission and fusion genes, drp-1 (a dynamin-related GTPase) and fzo-1 (a mitofusin homolog), are up- and down-regulated, respectively. Additionally, eat-3, an inner mitochondrial membrane fusion component, an OPA1 homolog, is also down regulated. These changes are associated with a metabolite-induced decline in mitochondrial membrane potential and enhanced DA neurodegeneration that is dependent on PINK-1 function. Genetic analysis also indicates an association between the cell death pathway and drp-1 following S. ven exposure. Metabolite-induced neurotoxicity can be suppressed by DA-neuron-specific RNAi knockdown of eat-3. AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) ameliorated metabolite- or PINK-1-induced neurotoxicity; however, it enhanced neurotoxicity under normal conditions. These studies underscore the critical role of mitochondrial dynamics in DA neurodegeneration. Moreover, given the largely undefined environmental components of PD etiology, these results highlight a response to an environmental factor that defines distinct mechanisms underlying a potential contributor to the progressive DA neurodegeneration observed in PD.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Rylee J Perentis
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Abstract
Impaired mitochondrial energy metabolism contributes to a wide range of pathologic conditions, including neurodegenerative diseases. Mitochondrial apoptosis-inducing factor (AIF) is required for the correct maintenance of mitochondrial electron transport chain. An emerging body of clinical evidence indicates that several mutations in the AIFM1 gene are causally linked to severe forms of mitochondrial disorders. Here we investigate the consequence of WAH-1/AIF deficiency in the survival of the nematode Caenorhabditis elegans. Moreover, we assess the survival of C. elegans strains expressing a disease-associated WAH-1/AIF variant. We demonstrate that wah-1 downregulation compromises the function of the oxidative phosphorylation system and reduces C. elegans lifespan. Notably, the loss of respiratory subunits induces a nuclear-encoded mitochondrial stress response independently of an evident increase of oxidative stress. Overall, our data pinpoint an evolutionarily conserved role of WAH-1/AIF in the maintenance of proper mitochondrial activity.
Collapse
|
12
|
Hilton BJ, Bradke F. Can injured adult CNS axons regenerate by recapitulating development? Development 2017; 144:3417-3429. [PMID: 28974639 DOI: 10.1242/dev.148312] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS.
Collapse
Affiliation(s)
- Brett J Hilton
- Laboratory for Axon Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| |
Collapse
|
13
|
Herndon LA, Wolkow CA, Driscoll M, Hall DH. Effects of Ageing on the Basic Biology and Anatomy of C. elegans. HEALTHY AGEING AND LONGEVITY 2017. [DOI: 10.1007/978-3-319-44703-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Bergman O, Ben-Shachar D. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:457-69. [PMID: 27412728 PMCID: PMC4959648 DOI: 10.1177/0706743716648290] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca(+2), neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder.
Collapse
Affiliation(s)
- Oded Bergman
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Technion-IIT, Haifa, Israel B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Technion-IIT, Haifa, Israel B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| |
Collapse
|
15
|
Imaging of neuronal mitochondria in situ. Curr Opin Neurobiol 2016; 39:152-63. [PMID: 27454347 DOI: 10.1016/j.conb.2016.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 11/21/2022]
Abstract
Neuronal mitochondria are receiving a rapidly increasing level of attention. This is to a significant part due to the ability to visualize neuronal mitochondria in novel ways, especially in vivo. Such an approach allows studying neuronal mitochondria in an intact tissue context, during different developmental states and in various genetic backgrounds and disease conditions. Hence, in vivo imaging of mitochondria in the nervous system can reveal aspects of the 'mitochondrial life cycle' in neurons that hitherto have remained obscure or could only be inferred indirectly. In this survey of the current literature, we review the new insights that have emerged from studies using mitochondrial imaging in intact neural preparations ranging from worms to mice.
Collapse
|
16
|
Pir GJ, Choudhary B, Mandelkow E, Mandelkow EM. Tau mutant A152T, a risk factor for FTD/PSP, induces neuronal dysfunction and reduced lifespan independently of aggregation in a C. elegans Tauopathy model. Mol Neurodegener 2016; 11:33. [PMID: 27118310 PMCID: PMC4847334 DOI: 10.1186/s13024-016-0096-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/08/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A certain number of mutations in the Microtubule-Associated Protein Tau (MAPT) gene have been identified in individuals with high risk to develop neurodegenerative diseases, collectively called tauopathies. The mutation A152TMAPT was recently identified in patients diagnosed with frontotemporal spectrum disorders, including Progressive Supranuclear Palsy (PSP), Frontotemporal Dementia (FTD), Corticobasal Degeneration (CBD), and Alzheimer disease (AD). The A152TMAPT mutation is unusual since it lies within the N-terminal region of Tau protein, far outside the repeat domain that is responsible for physiological Tau-microtubule interactions and pathological Tau aggregation. How A152TMAPT causes neurodegeneration remains elusive. RESULTS To understand the pathological consequences of this mutation, here we present a new Caenorhabditis elegans model expressing the mutant A152TMAPT in neurons. While expression of full-length wild-type human tau (Tau(wt), 2N4R) in C. elegans neurons induces a progressive mild uncoordinated locomotion in a dose-dependent manner, mutant tau (Tau(A152T), 2N4R) induces a severe paralysis accompanied by acute neuronal dysfunction. Mutant Tau(A152T) worms display morphological changes in neurons reminiscent of neuronal aging and a shortened life-span. Moreover, mutant A152T overexpressing neurons show mislocalization of pre-synaptic proteins as well as distorted mitochondrial distribution and trafficking. Strikingly, mutant tau-transgenic worms do not accumulate insoluble tau aggregates, although soluble oligomeric tau was detected. In addition, the full-length A152T-tau remains in a pathological conformation that accounts for its toxicity. Moreover, the N-terminal region of tau is not toxic per se, despite the fact that it harbours the A152T mutation, but requires the C-terminal region including the repeat domain to move into the neuronal processes in order to execute the pathology. CONCLUSION In summary, we show that the mutant Tau(A152T) induces neuronal dysfunction, morphological alterations in neurons akin to aging phenotype and reduced life-span independently of aggregation. This comprehensive description of the pathology due to Tau(A152T) opens up multiple possibilities to identify cellular targets involved in the Tau-dependent pathology for a potential therapeutic intervention.
Collapse
Affiliation(s)
- Ghulam Jeelani Pir
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| | - Bikash Choudhary
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
- Caesar Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Caesar Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| |
Collapse
|
17
|
Peng Y, Liu J, Shi L, Tang Y, Gao D, Long J, Liu J. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons. J Neurochem 2016; 137:701-13. [DOI: 10.1111/jnc.13563] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology and Medicine; Frontier Institute of Science and Technology and The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an 710049 China
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine; Frontier Institute of Science and Technology and The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an 710049 China
| | - Le Shi
- Center for Mitochondrial Biology and Medicine; Frontier Institute of Science and Technology and The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an 710049 China
| | - Ying Tang
- Center for Mitochondrial Biology and Medicine; Frontier Institute of Science and Technology and The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an 710049 China
| | - Dan Gao
- Center for Mitochondrial Biology and Medicine; Frontier Institute of Science and Technology and The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an 710049 China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine; Frontier Institute of Science and Technology and The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an 710049 China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine; Frontier Institute of Science and Technology and The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
18
|
Agostini M, Romeo F, Inoue S, Niklison-Chirou MV, Elia AJ, Dinsdale D, Morone N, Knight RA, Mak TW, Melino G. Metabolic reprogramming during neuronal differentiation. Cell Death Differ 2016; 23:1502-14. [PMID: 27058317 PMCID: PMC5072427 DOI: 10.1038/cdd.2016.36] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.
Collapse
Affiliation(s)
- M Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.,Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - F Romeo
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.,Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Catanzaro 88100, Italy
| | - S Inoue
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - M V Niklison-Chirou
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - A J Elia
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - D Dinsdale
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - N Morone
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - R A Knight
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - T W Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - G Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.,Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy.,Biochemistry Laboratory IDI-IRCC, c/o Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| |
Collapse
|
19
|
Pancrazi L, Di Benedetto G, Colombaioni L, Della Sala G, Testa G, Olimpico F, Reyes A, Zeviani M, Pozzan T, Costa M. Foxg1 localizes to mitochondria and coordinates cell differentiation and bioenergetics. Proc Natl Acad Sci U S A 2015; 112:13910-5. [PMID: 26508630 PMCID: PMC4653140 DOI: 10.1073/pnas.1515190112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Forkhead box g1 (Foxg1) is a nuclear-cytosolic transcription factor essential for the forebrain development and involved in neurodevelopmental and cancer pathologies. Despite the importance of this protein, little is known about the modalities by which it exerts such a large number of cellular functions. Here we show that a fraction of Foxg1 is localized within the mitochondria in cell lines, primary neuronal or glial cell cultures, and in the mouse cortex. Import of Foxg1 in isolated mitochondria appears to be membrane potential-dependent. Amino acids (aa) 277-302 were identified as critical for mitochondrial localization. Overexpression of full-length Foxg1 enhanced mitochondrial membrane potential (ΔΨm) and promoted mitochondrial fission and mitosis. Conversely, overexpression of the C-term Foxg1 (aa 272-481), which is selectively localized in the mitochondrial matrix, enhanced organelle fusion and promoted the early phase of neuronal differentiation. These findings suggest that the different subcellular localizations of Foxg1 control the machinery that brings about cell differentiation, replication, and bioenergetics, possibly linking mitochondrial functions to embryonic development and pathological conditions.
Collapse
Affiliation(s)
| | - Giulietta Di Benedetto
- Institute of Neuroscience, Italian National Research Council, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Laura Colombaioni
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy
| | - Grazia Della Sala
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | | | - Francesco Olimpico
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy
| | - Aurelio Reyes
- Mitochondrial Biology Unit, Medical Research Council, Cambridge CB20XY, United Kingdom
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council, Cambridge CB20XY, United Kingdom
| | - Tullio Pozzan
- Institute of Neuroscience, Italian National Research Council, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Mario Costa
- Scuola Normale Superiore, 56126 Pisa, Italy; Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
20
|
Telopodes of telocytes are influenced in vitro by redox conditions and ageing. Mol Cell Biochem 2015; 410:165-74. [PMID: 26335900 DOI: 10.1007/s11010-015-2548-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Abstract
Telocytes (TCs) are a novel cell type identified among interstitial cells in various organs. TCs are characterized by very long cell processes (tens to hundreds micrometres) named telopodes (Tps) with uneven calibre: dilations (podoms) and very thin segments (podomers). However, little is known about the factors which influence Tps conformation. Recently, extracellular matrix proteins were found to influence Tps extension, adherence and spreading. Here, we show that oxidative stress and ageing influence formation of new Tps of TCs cultivated from human non-pregnant myometrium. Using real-time videomicroscopy, we found that ageing the TCs to passage 21 increased the ratio of Tps/TC number with about 50 %, whereas oxidative stress hindered formation of new Tps in both aged and young TCs (passage 7). Under oxidative stress, newly formed cell processes were up to 25 % shorter. Migration pathway length was decreased by 30-40 % for both young and aged cells in an oxidative stress environment. Contrary, addition of N-acetyl cysteine in cell culture medium shifted TCs morphology to a long and slender profile. In conclusion, we showed that TCs specific morphology in vitro is influenced by oxidative status balance, as well as ageing.
Collapse
|
21
|
Zhang J, Wang C, Yu S, Luo Z, Chen Y, Liu Q, Hua F, Xu G, Yu P. Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci Rep 2014; 4:7317. [PMID: 25471136 PMCID: PMC4255182 DOI: 10.1038/srep07317] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/17/2014] [Indexed: 12/28/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway plays a key role in myocardial ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin (mTOR), a downstream target of PI3K/AKT signaling, is necessary and sufficient to protect the heart from I/R injury. Inhaled anesthetic sevoflurane is widely used in cardiac surgeries because its induction and recovery are faster and smoother than other inhaled anesthetics. Sevoflurane proved capable of inducing postconditioning effects in the myocardium. However, the underlying molecular mechanisms for sevoflurane-induced postconditioning (SPC) were largely unclear. In the present study, we demonstrated that SPC protects myocardium from I/R injury with narrowed cardiac infarct focus, increased ATP content, and decreased cardiomyocyte apoptosis, which are mainly due to the activation of PI3K/AKT/mTOR signaling and the protection of mitochondrial energy metabolism. Application of dactolisib (BEZ235), a PI3K/mTOR dual inhibitor, abolishes the up-regulation of pho-AKT, pho-GSK, pho-mTOR, and pho-p70s6k induced by SPC, hence abrogating the anti-apoptotic effect of sevoflurane and reducing SPC-mediated protection of heart from I/R injury. As such, this study proved that PI3K/AKT/mTOR pathway plays an important role in SPC induced cardiac protection against I/R injury.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Chen Wang
- Department of Anesthesiology, the Second Affiliate Hospital of Soochow University, Suzhou, 215000, China
| | - Shuchun Yu
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhenzhong Luo
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Yong Chen
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Qin Liu
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Guohai Xu
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Peng Yu
- Department of Cardiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| |
Collapse
|