1
|
Lin J, Zhang X, Ge W, Duan Y, Zhang X, Zhang Y, Dai X, Jiang M, Zhang X, Zhang J, Qiang H, Sun D. Rnd3 Ameliorates Diabetic Cardiac Microvascular Injury via Facilitating Trim40-Mediated Rock1 Ubiquitination. Diabetes 2025; 74:569-584. [PMID: 39792251 DOI: 10.2337/db24-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
ARTICLE HIGHLIGHTS Impaired cardiac microvascular function is a significant contributor to diabetic cardiomyopathy. Rnd3 expression is notably downregulated in cardiac microvascular endothelial cells under diabetic conditions. Rnd3 overexpression mitigates diabetic myocardial microvascular injury and improves cardiac function through the Rock1/myosin light chain signaling pathway. Rnd3 facilitates the recruitment and interaction with Trim40 to promote Rock1 ubiquitination, thereby preserving endothelial barrier integrity in the diabetic heart.
Collapse
Affiliation(s)
- Jie Lin
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wen Ge
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiaohua Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Qiang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Wu L, Zhu X, Pan S, Chen Y, Luo C, Zhao Y, Xing J, Shi K, Zhang S, Li J, Chai J, Ling X, Qiu J, Wang Y, Shen Z, Jie W, Guo J. Diabetes Advances Cardiomyocyte Senescence Through Interfering Rnd3 Expression and Function. Aging Cell 2025:e70031. [PMID: 40025898 DOI: 10.1111/acel.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025] Open
Abstract
Rnd3 is a small Rho-GTPase that has been implicated in various cardiovascular diseases. Yet, its role in diabetes-induced cardiomyocyte senescence remains unknown. Here we tested the role of Rnd3 in cardiomyocyte senescence and diabetic cardiomyopathy (DCM). The expression of Rnd3 was found to be reduced in peripheral blood mononuclear cells from diabetic patients and correlated negatively with age but positively with cardiac function. In 96-week-old Sprague Dawley (SD) rats, cardiac function was impaired, accompanied by an increased number of SA-β-gal-positive cells and elevated levels of the senescence-associated secretory phenotype (SASP) related factors, compared to those of 12-week-old rats. Diabetes and high glucose (HG, 35 mmol/L D-glucose) suppressed Rnd3 expression in cardiomyocytes and induced cardiomyocyte senescence. The deficiency of Rnd3 exacerbated cardiomyocyte senescence in vitro and in vivo. MicroRNA sequencing in AC16 cells identified a conserved miR-103a-3p (present in humans and rats) as a key HG-upregulated microRNA that bound to the Rnd3 3'-UTR. In cultured cardiomyocytes, miR-103a-3p inhibitors antagonized HG-induced cardiomyocyte senescence dependent on Rnd3 expression. Treatment with AAV9 vectors carrying miR-103a-3p sponges and Rnd3-overexpressing plasmids alleviated cardiomyocyte senescence and restored cardiac function in diabetic SD rats. HG stimulation increased STAT3 (Tyr705) phosphorylation and promoted its nuclear translocation in H9C2 cells, an effect exacerbated by Rnd3 knockout. Mechanistically, Rnd3 interacted with p-STAT3 in the cytoplasm, facilitating proteasome-mediated ubiquitination and p-STAT3 degradation. The STAT3 inhibitor S3I-201 blocked HG-induced STAT3 activation and mitigated cardiomyocyte senescence. These findings suggest that diabetes induces cardiomyocyte senescence via the miR-103a-3p/Rnd3/STAT3 signaling pathway, highlighting a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Linxu Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
- Public Research Center of Hainan Medical University, Haikou, China
| | - Xinglin Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Shanshan Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Yan Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Cai Luo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Yangyang Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Jingci Xing
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, China
| | - Kaijia Shi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Shuya Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Jiaqi Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Jinxuan Chai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Xuebin Ling
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jianmin Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
| | - Yan Wang
- Public Research Center of Hainan Medical University, Haikou, China
| | - Zhihua Shen
- Department of Pathology and Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, China
| | - Wei Jie
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Ge W, Zhang X, Lin J, Wang Y, Zhang X, Duan Y, Dai X, Zhang J, Zhang Y, Jiang M, Qiang H, Zhao Z, Zhang X, Sun D. Rnd3 protects against doxorubicin-induced cardiotoxicity through inhibition of PANoptosis in a Rock1/Drp1/mitochondrial fission-dependent manner. Cell Death Dis 2025; 16:2. [PMID: 39755713 DOI: 10.1038/s41419-024-07322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics. This study aimed to investigate the impact of Rnd3 (a Rho family GTPase 3) on DIC, with a focus on mitochondrial dynamics. Cardiomyocyte-specific Rnd3 transgenic mice (Rnd3-Tg) and Rnd3LSP/LSP mice (N-Tg) were established for in vivo experiments, and adenoviruses harboring Rnd3 (Ad-Rnd3) or negative control (Ad-Control) were injected in the myocardium for in vitro experiments. The DIC model was established using wild-type, N-Tg, and Rnd3-Tg mice, with subsequent intraperitoneal injection of Dox for 4 weeks. The molecular mechanism was explored through RNA sequencing, immunofluorescence staining, co-immunoprecipitation assay, and protein-protein docking. Dox administration induced significant mitochondrial injury and cardiac dysfunction, which was ameliorated by Rnd3 overexpression. Further, the augmentation of Rnd3 expression mitigated mitochondrial fragmentation which is mediated by dynamin-related protein 1 (Drp1), thereby ameliorating the PANoptosis (pyroptosis, apoptosis, and necroptosis) response induced by Dox. Mechanically, the interaction between Rnd3 and Rho-associated kinase 1 (Rock1) may impede Rock1-induced Drp1 phosphorylation at Ser616, thus inhibiting mitochondrial fission and dysfunction. Interestingly, Rock1 knockdown nullified the effects of Rnd3 on cardiomyocytes PANoptosis, as well as Dox-induced cardiac remodeling and dysfunction elicited by Rnd3. Rnd3 enhances cardiac resilience against DIC by stabilizing mitochondrial dynamics and reducing PANoptosis. Our findings suggest that the Rnd3/Rock1/Drp1 signaling pathway represents a novel target for mitigating DIC, and modulating Rnd3 expression could be a strategic approach to safeguarding cardiac function in patients undergoing Dox treatment. The graphical abstract illustrated the cardioprotective role of Rnd3 in DIC. Rnd3 directly binds to Rock1 in cytoplasm and ameliorates mitochondrial fission by inhibiting Drp1 phosphorylation at ser616, thereby alleviating PANoptosis (apoptosis, pyroptosis, and necroptosis) in DIC.
Collapse
Affiliation(s)
- Wen Ge
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohua Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangyang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Qiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Wu L, Zhu X, Luo C, Zhao Y, Pan S, Shi K, Chen Y, Qiu J, Shen Z, Guo J, Jie W. Mechanistic role of RND3-regulated IL33/ST2 signaling on cardiomyocyte senescence. Life Sci 2024; 348:122701. [PMID: 38724005 DOI: 10.1016/j.lfs.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Hyperinflammatory responses are pivotal in the cardiomyocyte senescence pathophysiology, with IL33 serving as a crucial pro-inflammatory mediator. Our previous findings highlighted RND3's suppressive effect on IL33 expression. This study aims to explore the role of RND3 in IL33/ST2 signaling activation and in cardiomyocyte senescence. Intramyocardial injection of exogenous IL33 reduces the ejection fraction and fractional shortening of rats, inducing the appearance of senescence-associated secretory phenotype (SASP) in myocardial tissues. Recombinant IL33 treatment of AC16 cardiomyocytes significantly upregulated expression of SASP factors like IL1α, IL6, and MCP1, and increased the p-p65/p65 ratio and proportions of SA-β-gal and γH2AX-positive cells. NF-κB inhibitor pyrrolidinedithiocarbamate ammonium (PDTC) and ST2 antibody astegolimab treatments mitigated above effects. RND3 gene knockout H9C2 cardiomyocytes using CRISPR/Cas9 technology upregulated IL33, ST2L, IL1α, IL6, and MCP1 levels, decreased sST2 levels, and increased SA-β-gal and γH2AX-positive cells. A highly possibility of binding between RND3 and IL33 proteins was showed by molecular docking and co-immunoprecipitation, and loss of RND3 attenuated ubiquitination mediated degradation of IL33; what's more, a panel of ubiquitination regulatory genes closely related to RND3 were screened using qPCR array. In contrast, RND3 overexpression in rats by injection of AAV9-CMV-RND3 particles inhibited IL33, ST2L, IL1α, IL6, and MCP1 expression in cardiac tissues, decreased serum IL33 levels, and increased sST2 levels. These results suggest that RND3 expression in cardiomyocytes modulates cell senescence by inhibiting the IL33/ST2/NF-κB signaling pathway, underscoring its potential as a therapeutic target in cardiovascular senescence.
Collapse
Affiliation(s)
- Linxu Wu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China; Public Research Center of Hainan Medical University, Haikou 571199, P.R. China
| | - Xinglin Zhu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Cai Luo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Yangyang Zhao
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Shanshan Pan
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Kaijia Shi
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Yan Chen
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Jianmin Qiu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Zhihua Shen
- Department of Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, P.R. China.
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China.
| | - Wei Jie
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China.
| |
Collapse
|
5
|
Abbey CA, Duran CL, Chen Z, Chen Y, Roy S, Coffell A, Sveeggen TM, Chakraborty S, Wells GB, Chang J, Bayless KJ. Identification of New Markers of Angiogenic Sprouting Using Transcriptomics: New Role for RND3. Arterioscler Thromb Vasc Biol 2024; 44:e145-e167. [PMID: 38482696 PMCID: PMC11043006 DOI: 10.1161/atvbaha.123.320599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.
Collapse
Affiliation(s)
- Colette A. Abbey
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Camille L. Duran
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Yanping Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Sukanya Roy
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Ashley Coffell
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Timothy M. Sveeggen
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Sanjukta Chakraborty
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Gregg B. Wells
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, TX
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Kayla J. Bayless
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| |
Collapse
|
6
|
Shi J, Wei L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch Immunol Ther Exp (Warsz) 2022; 70:4. [PMID: 35043239 PMCID: PMC8766376 DOI: 10.1007/s00005-022-00642-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contraction, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interference approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse models, and stem cell research.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
7
|
Wu N, Zheng F, Li N, Han Y, Xiong XQ, Wang JJ, Chen Q, Li YH, Zhu GQ, Zhou YB. RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biol 2021; 48:102204. [PMID: 34883403 PMCID: PMC8661704 DOI: 10.1016/j.redox.2021.102204] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
Superoxide and vascular smooth muscle cells (VSMCs) migration and proliferation play crucial roles in the vascular remodeling. Vascular remodeling contributes to the development and complications of hypertension. Rho family GTPase 3 (RND3 or RhoE), an atypical small Rho-GTPase, is known to be involved in cancer development and metastasis. However, the roles of RND3 in superoxide production and cardiovascular remodeling are unknown. Here, we uncovered the critical roles of RND3 in attenuating superoxide production, VSMCs migration and proliferation, and vascular remodeling in hypertension and its underline mechanisms. VSMCs were isolated and prepared from thoracic aorta of Male Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). RND3 mRNA and protein expressions in arteries and VSMCs were down-regulated in SHR. RND3 overexpression in VSMCs reduced NAD(P)H oxidase (NOX) activity, NOX1 and NOX2 expressions, mitochondria superoxide generation, and H2O2 production in SHR. Moreover, the RND3 overexpression inhibited VSMCs migration and proliferation in SHR, which were similar to the effects of NOX1 inhibitor ML171 plus NOX2 inhibitor GSK2795039. Rho-associated kinase 1 (ROCK1) and RhoA expressions and myosin phosphatase targeting protein 1 (MYPT1) phosphorylation in VSMCs were increased in SHR, which were prevented by RND3 overexpression. ROCK1 overexpression promoted NOX1 and NOX2 expressions, superoxide and H2O2 production, VSMCs migration and proliferation in both WKY and SHR, which were attenuated by RND3 overexpression. Adenoviral-mediated RND3 overexpression in SHR attenuated hypertension, vascular remodeling and oxidative stress. These results indicate that RND3 attenuates VSMCs migration and proliferation, hypertension and vascular remodeling in SHR via inhibiting ROCK1-NOX1/2 and mitochondria superoxide signaling.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Na Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
8
|
Huang L, Ma Y, Chen L, Chang J, Zhong M, Wang Z, Sun Y, Chen X, Sun F, Xiao L, Chen J, Lai Y, Yan C, Yue X. Maternal RND3/RhoE deficiency impairs placental mitochondrial function in preeclampsia by modulating the PPARγ-UCP2 cascade. FASEB J 2021; 35:e21555. [PMID: 34046947 DOI: 10.1096/fj.202002639rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022]
Abstract
Preeclampsia (PE) is a life-threatening disease of pregnant women associated with severe hypertension, proteinuria, or multi-organ injuries. Mitochondrial-mediated placental oxidative stress plays a key role in the pathogenesis of PE. However, the underlying mechanism remains to be revealed. Here, we identify Rnd3, a small Rho GTPase, regulating placental mitochondrial reactive oxygen species (ROS). We showed that Rnd3 is down-regulated in primary trophoblasts isolated from PE patients. Loss of Rnd3 in trophoblasts resulted in excessive ROS generation, cell apoptosis, mitochondrial injury, and proton leakage from the respiratory chain. Moreover, Rnd3 overexpression partially rescues the mitochondrial defects and oxidative stress in human PE primary trophoblasts. Rnd3 physically interacts with the peroxisome proliferators-activated receptor γ (PPARγ) and promotes the PPARγ-mitochondrial uncoupling protein 2 (UCP2) cascade. Forced expression of PPARγ rescues deficiency of Rnd3-mediated mitochondrial dysfunction. We conclude that Rnd3 acts as a novel protective factor in placental mitochondria through PPARγ-UCP2 signaling and highlight that downregulation of Rnd3 is a potential factor involved in PE pathogenesis.
Collapse
Affiliation(s)
- Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Lu Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Chang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Sun
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingjun Lai
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Yue
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Xu Y, Guo W, Zeng D, Fang Y, Wang R, Guo D, Qi B, Xue Y, Xue F, Jin Z, Li Y, Zhang M. Inhibiting miR-205 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Function, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9986506. [PMID: 34306321 PMCID: PMC8263220 DOI: 10.1155/2021/9986506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND miR-205 is important for oxidative stress, mitochondrial dysfunction, and apoptosis. The roles of miR-205 in cardiac ischemia/reperfusion (I/R) injury remain unknown. The aim of this research is to reveal whether miR-205 could regulate cardiac I/R injury by focusing upon the oxidative stress, mitochondrial function, and apoptosis. METHODS Levels of miR-205 and Rnd3 were examined in the hearts with I/R injury. Myocardial infarct size, cardiac function, oxidative stress, mitochondria function, and cardiomyocyte apoptosis were detected in mice with myocardial ischemia/reperfusion (MI/R) injury. The primary neonatal cardiomyocytes underwent hypoxia/reoxygenation (H/R) to simulate MI/R injury. RESULTS miR-205 levels were significantly elevated in cardiac tissues from I/R in comparison with those from Sham. In comparison with controls, levels of Rnd3 were significantly decreased in the hearts from mice with MI/R injury. Furthermore, inhibiting miR-205 alleviated MI/R-induced apoptosis, reduced infarct size, prevented oxidative stress increase and mitochondrial fragmentation, and improved mitochondrial functional capacity and cardiac function. Consistently, overexpression of miR-205 increased infarct size and promoted apoptosis, oxidative stress, and mitochondrial dysfunction in mice with MI/R injury. In cultured mouse neonatal cardiomyocytes, downregulation of miR-205 reduced oxidative stress in H/R-treated cardiomyocytes. Finally, inhibiting Rnd3 ablated the cardioprotective effects of miR-205 inhibitor in MI/R injury. CONCLUSIONS We conclude that inhibiting miR-205 reduces infarct size, improves cardiac function, and suppresses oxidative stress, mitochondrial dysfunction, and apoptosis by promoting Rnd3 in MI/R injury. miR-205 inhibitor-induced Rnd3 activation is a valid target to treat MI/R injury.
Collapse
Affiliation(s)
- Yuerong Xu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wangang Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Di Zeng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yugang Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Feng Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zuolin Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Cheng C, Xu DL, Liu XB, Bi SJ, Zhang J. MicroRNA-145-5p inhibits hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes by targeting ROCK1. Exp Ther Med 2021; 22:796. [PMID: 34093752 PMCID: PMC8170661 DOI: 10.3892/etm.2021.10228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence that microRNAs (miRs) play critical roles in the pathological and physiological processes associated with myocardial ischemia reperfusion (I/R). miR-145 has been extensively studied in the cardiovascular system; however, the role of miR-145 in myocardial I/R remains unclear. Therefore, the present study aimed to investigate the role and mechanism of miR-145-5p in myocardial I/R by establishing a hypoxia/reoxygenation (H/R) model using H9c2 cardiomyocytes. The expression of miR-145-5p was regulated by transfection and the potential target of miR-145-5p was identified. In addition, apoptosis of the cardiomyocytes was evaluated using flow cytometry and the detection of cleaved caspase-3 by western blotting. The results revealed that miR-145-5p expression was decreased while cell apoptosis and Rho-associated coiled-coil-containing kinase 1 (ROCK1) expression were increased in H/R-stimulated H9c2 cardiomyocytes. The upregulation of miR-145-5p reduced apoptosis and the expression of ROCK1 in H/R-stimulated H9c2 cardiomyocytes. Furthermore, the overexpression of ROCK1 significantly attenuated the miR-145-5p-induced reduction of apoptosis following H/R. In conclusion, the present study indicates that the overexpression of miR-145-5p inhibits H/R-induced cardiomyocyte apoptosis by targeting ROCK1.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dong-Ling Xu
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiao-Bo Liu
- Shandong Blood Center, Jinan, Shandong 250012, P.R. China
| | - Shao-Jie Bi
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Juan Zhang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
11
|
Lian R, Zhang G, Yan S, Sun L, Zhang G. Identification of Molecular Regulatory Features and Markers for Acute Type A Aortic Dissection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6697848. [PMID: 33953793 PMCID: PMC8057891 DOI: 10.1155/2021/6697848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Acute type A aortic dissection (ATAAD) is one of the most lethal cardiovascular diseases, and its molecular mechanism remains unclear. METHODS Differentially expressed genes (DEGs) between ATAAD and control were detected by limma R package in GSE52093, GSE153434, GSE98770, and GSE84827, respectively. The coexpression network of DEGs was identified by the WGCNA package. Enrichment analysis was performed for module genes that were positively correlated with ATAAD using clusterProfiler R package. In addition, differentially methylated markers between aortic dissection and control were identified by ChAMP package. After comparing with ATAAD-related genes, a protein-protein interaction (PPI) network was established based on the STRING database. The genes with the highest connectivity were identified as hub genes. Finally, differential immune cell infiltration between ATAAD and control was identified by ssGSEA. RESULTS From GSE52093 and GSE153434, 268 module genes were obtained with consistent direction of differential expression and high correlation with ATAAD. They were significantly enriched in T cell activation, HIF-1 signaling pathway, and cell cycle. In addition, 2060 differentially methylated markers were obtained from GSE84827. Among them, 77 methylation markers were ATAAD-related DEGs. Using the PPI network, we identified MYC, ITGA2, RND3, BCL2, and PHLPP2 as hub genes. Finally, we identified significantly differentially infiltrated immune cells in ATAAD. CONCLUSION The hub genes we identified may be regulated by methylation and participate in the development of ATAAD through immune inflammation and oxidative stress response. The findings may provide new insights into the molecular mechanisms and therapeutic targets for ATAAD.
Collapse
Affiliation(s)
- Rui Lian
- Graduate School of Peking Union Medical College, Beijing, China
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Guochao Zhang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Shengtao Yan
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Lichao Sun
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Guoqiang Zhang
- Graduate School of Peking Union Medical College, Beijing, China
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Joshi H, Vastrad B, Joshi N, Vastrad C, Tengli A, Kotturshetti I. Identification of Key Pathways and Genes in Obesity Using Bioinformatics Analysis and Molecular Docking Studies. Front Endocrinol (Lausanne) 2021; 12:628907. [PMID: 34248836 PMCID: PMC8264660 DOI: 10.3389/fendo.2021.628907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity is an excess accumulation of body fat. Its progression rate has remained high in recent years. Therefore, the aim of this study was to diagnose important differentially expressed genes (DEGs) associated in its development, which may be used as novel biomarkers or potential therapeutic targets for obesity. The gene expression profile of E-MTAB-6728 was downloaded from the database. After screening DEGs in each ArrayExpress dataset, we further used the robust rank aggregation method to diagnose 876 significant DEGs including 438 up regulated and 438 down regulated genes. Functional enrichment analysis was performed. These DEGs were shown to be significantly enriched in different obesity related pathways and GO functions. Then protein-protein interaction network, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. The module analysis was performed based on the whole PPI network. We finally filtered out STAT3, CORO1C, SERPINH1, MVP, ITGB5, PCM1, SIRT1, EEF1G, PTEN and RPS2 hub genes. Hub genes were validated by ICH analysis, receiver operating curve (ROC) analysis and RT-PCR. Finally a molecular docking study was performed to find small drug molecules. The robust DEGs linked with the development of obesity were screened through the expression profile, and integrated bioinformatics analysis was conducted. Our study provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- Harish Joshi
- Department of Endocrinology, Endocrine and Diabetes Care Center, Hubbali, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | - Nidhi Joshi
- Department of Medicine, Dr. D. Y. Patil Medical College, Kolhapur, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, India
- *Correspondence: Chanabasayya Vastrad,
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, India
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, India
| |
Collapse
|
13
|
Abstract
Rnd proteins constitute a subfamily of Rho GTPases represented in mammals by Rnd1, Rnd2 and Rnd3. Despite their GTPase structure, their specific feature is the inability to hydrolyse GTP-bound nucleotide. This aspect makes them atypical among Rho GTPases. Rnds are regulated for their expression at the transcriptional or post-transcriptional levels and they are activated through post-translational modifications and interactions with other proteins. Rnd proteins are mainly involved in the regulation of the actin cytoskeleton and cell proliferation. Whereas Rnd3 is ubiquitously expressed, Rnd1 and 2 are tissue-specific. Increasing data has described their important role during development and diseases. Herein, we describe their involvement in physiological and pathological conditions with a focus on the neuronal and vascular systems, and summarize their implications in tumorigenesis.
Collapse
Affiliation(s)
- Sara Basbous
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| | - Roberta Azzarelli
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Emilie Pacary
- INSERM, U1215 - Neurocentre Magendie, F-33077, Univ. Bordeaux, Bordeaux, France
| | - Violaine Moreau
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Identification and characterization of a new isoform of small GTPase RhoE. Commun Biol 2020; 3:572. [PMID: 33060740 PMCID: PMC7562701 DOI: 10.1038/s42003-020-01295-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/04/2020] [Indexed: 11/09/2022] Open
Abstract
The Rho family of GTPases consists of 20 members including RhoE. Here, we discover the existence of a short isoform of RhoE designated as RhoEα, the first Rho GTPase isoform generated from alternative translation. Translation of this new isoform is initiated from an alternative start site downstream of and in-frame with the coding region of the canonical RhoE. RhoEα exhibits a similar subcellular distribution while its protein stability is higher than RhoE. RhoEα contains binding capability to RhoE effectors ROCK1, p190RhoGAP and Syx. The distinct transcriptomes of cells with the expression of RhoE and RhoEα, respectively, are demonstrated. The data propose distinctive and overlapping biological functions of RhoEα compared to RhoE. In conclusion, this study reveals a new Rho GTPase isoform generated from alternative translation. The discovery provides a new scope of understanding the versatile functions of small GTPases and underlines the complexity and diverse roles of small GTPases. Dai et al. report the identification and characterization of a new isoform of RhoE (RhoEα), a member of the Rho GTPase family, which is generated from the same gene by alternative translation initiation at the downstream ATG codon 46. Compared to RhoE, RhoEα does not differ in the subcellular localization but has increased protein stability and distinct molecular signalling profile.
Collapse
|
15
|
Shao Z, Wang K, Zhang S, Yuan J, Liao X, Wu C, Zou Y, Ha Y, Shen Z, Guo J, Jie W. Ingenuity pathway analysis of differentially expressed genes involved in signaling pathways and molecular networks in RhoE gene‑edited cardiomyocytes. Int J Mol Med 2020; 46:1225-1238. [PMID: 32705255 PMCID: PMC7388835 DOI: 10.3892/ijmm.2020.4661] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
RhoE/Rnd3 is an atypical member of the Rho superfamily of proteins, However, the global biological function profile of this protein remains unsolved. In the present study, a RhoE‑knockout H9C2 cardiomyocyte cell line was established using CRISPR/Cas9 technology, following which differentially expressed genes (DEGs) between the knockout and wild‑type cell lines were screened using whole genome expression gene chips. A total of 829 DEGs, including 417 upregulated and 412 downregulated, were identified using the threshold of fold changes ≥1.2 and P<0.05. Using the ingenuity pathways analysis system with a threshold of ‑Log (P‑value)>2, 67 canonical pathways were found to be enriched. Many of the detected signaling pathways, including that of oncostatin M signaling, were found to be associated with the inflammatory response. Subsequent disease and function analysis indicated that apart from cardiovascular disease and development function, RhoE may also be involved in other diseases and function, including organismal survival, cancer, organismal injury and abnormalities, cell‑to‑cell signaling and interaction, and molecular transport. In addition, 885 upstream regulators were enriched, including 59 molecules that were predicated to be strongly activated (Z‑score >2) and 60 molecules that were predicated to be significantly inhibited (Z‑scores <‑2). In particular, 33 regulatory effects and 25 networks were revealed to be associated with the DEGs. Among them, the most significant regulatory effects were 'adhesion of endothelial cells' and 'recruitment of myeloid cells' and the top network was 'neurological disease', 'hereditary disorder, organismal injury and abnormalities'. In conclusion, the present study successfully edited the RhoE gene in H9C2 cells using CRISPR/Cas9 technology and subsequently analyzed the enriched DEGs along with their associated canonical signaling pathways, diseases and functions classification, upstream regulatory molecules, regulatory effects and interaction networks. The results of the present study should facilitate the discovery of the global biological and functional properties of RhoE and provide new insights into role of RhoE in human diseases, especially those in the cardiovascular system.
Collapse
Affiliation(s)
- Zhongming Shao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Keke Wang
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Shuya Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jianling Yuan
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaoming Liao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Caixia Wu
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yuan Zou
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yanping Ha
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Wei Jie
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
16
|
Yu B, Sladojevic N, Blair JE, Liao JK. Targeting Rho-associated coiled-coil forming protein kinase (ROCK) in cardiovascular fibrosis and stiffening. Expert Opin Ther Targets 2020; 24:47-62. [PMID: 31906742 PMCID: PMC7662835 DOI: 10.1080/14728222.2020.1712593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Pathological cardiac fibrosis, through excessive extracellular matrix protein deposition from fibroblasts and pro-fibrotic immune responses and vascular stiffening is associated with most forms of cardiovascular disease. Pathological cardiac fibrosis and stiffening can lead to heart failure and arrythmias and vascular stiffening may lead to hypertension. ROCK, a serine/threonine kinase downstream of the Rho-family of GTPases, may regulate many pro-fibrotic and pro-stiffening signaling pathways in numerous cell types.Areas covered: This article outlines the molecular mechanisms by which ROCK in fibroblasts, T helper cells, endothelial cells, vascular smooth muscle cells, and macrophages mediate fibrosis and stiffening. We speculate on how ROCK could be targeted to inhibit cardiovascular fibrosis and stiffening.Expert opinion: Critical gaps in knowledge must be addressed if ROCK inhibitors are to be used in the clinic. Numerous studies indicate that each ROCK isoform may play differential roles in regulating fibrosis and may have opposing roles in specific tissues. Future work needs to highlight the isoform- and tissue-specific contributions of ROCK in fibrosis, and how isoform-specific ROCK inhibitors in murine models and in clinical trials affect the pathophysiology of cardiac fibrosis and stiffening. This could progress knowledge regarding new treatments for heart failure, arrythmias and hypertension and the repair processes after myocardial infarction.
Collapse
Affiliation(s)
- Brian Yu
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nikola Sladojevic
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John E Blair
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James K Liao
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Dai Y, Song J, Li W, Yang T, Yue X, Lin X, Yang X, Luo W, Guo J, Wang X, Lai S, Andrade KC, Chang J. RhoE Fine-Tunes Inflammatory Response in Myocardial Infarction. Circulation 2019; 139:1185-1198. [PMID: 30586715 DOI: 10.1161/circulationaha.118.033700] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Inflammatory response after myocardial infarction (MI) is essential for cardiac healing, whereas excessive and prolonged inflammation extends the infarction and promotes adverse cardiac remodeling. Understanding the mechanistic insight of these tightly controlled inflammatory processes has a significant impact on post-MI recovery and therapy. Here, we uncover the critical role of small GTPase RhoE in post-MI recovery and its clinical implication. METHODS Three genetic mouse lines are used: global RhoE knockout, cardiomyocyte-specific RhoE heterozygous, and cardiomyocyte-specific RhoE overexpression mice. A set of molecular signaling experiments, including bimolecular fluorescence complementation, immunoprecipitation, electrophoretic mobility shift assay, and mRNA microarray analysis, were conducted. Permanent ligation of the left anterior descending artery was performed, followed by the assessments of cardiac function, inflammation, and survival in the first week after MI. Finally, we examined the correlation of the expression levels of RhoE in MI patient heart and patient prognosis. RESULTS RhoE deficiency turns on a group of proinflammatory gene expressions in mouse heart. Mice with cardiomyocyte-specific haploinsufficiency exhibit excessive inflammatory response with deleterious cardiac function after MI. A profound increase in nuclear factor-κB activity is detected in the mutant heart and the isolated cardiomyocytes. We further find that the expression of RhoE is upregulated in response to MI. Mechanistically, RhoE interacts with p65 and p50 individually in cytosol and blocks their nuclear translocation. RhoE also occupies the dimerization domain of p65 and subsequently disrupts the heterodimerization between p65 and p50. Cardiac RhoE overexpression inhibits nuclear factor-κB activity, restrains post-MI inflammation, and improves cardiac function and survival. Consistently, we find that the expression level of RhoE is elevated in the heart of patients with MI and that the patients with a higher expression level of RhoE exhibit a better prognosis in cardiac function recovery. CONCLUSIONS The study uncovers RhoE as a new fine-tuning factor modulating MI-induced inflammation and promoting injured heart recovery. RhoE may serve as a new potential biomarker for the assessment of MI patient prognosis. Manipulation of RhoE could be as a potential therapeutic approach for MI and other inflammatory diseases.
Collapse
Affiliation(s)
- Yuan Dai
- Center for Translational Cancer Research, Texas A&M University Institute of Biosciences and Technology, Houston (Y.D., W.L., T.Y., X.L., W.L., K.C.A., J.C.)
| | - Jiangping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S., X.W., S.L.)
| | - Wenjiao Li
- Center for Translational Cancer Research, Texas A&M University Institute of Biosciences and Technology, Houston (Y.D., W.L., T.Y., X.L., W.L., K.C.A., J.C.)
| | - Tingli Yang
- Center for Translational Cancer Research, Texas A&M University Institute of Biosciences and Technology, Houston (Y.D., W.L., T.Y., X.L., W.L., K.C.A., J.C.)
| | - Xiaojing Yue
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X. Yue)
| | - Xi Lin
- Center for Translational Cancer Research, Texas A&M University Institute of Biosciences and Technology, Houston (Y.D., W.L., T.Y., X.L., W.L., K.C.A., J.C.)
| | - Xiangsheng Yang
- Guangzhou Biotron Technology Co Ltd, Guangzhou, China (X. Yang)
| | - Weijia Luo
- Center for Translational Cancer Research, Texas A&M University Institute of Biosciences and Technology, Houston (Y.D., W.L., T.Y., X.L., W.L., K.C.A., J.C.)
| | - Junli Guo
- Cardiovascular Disease and Research Institute, First Affiliated Hospital, Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China (J.G.)
| | - Xin Wang
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S., X.W., S.L.)
| | - Songqing Lai
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (J.S., X.W., S.L.)
| | - Kelsey C Andrade
- Center for Translational Cancer Research, Texas A&M University Institute of Biosciences and Technology, Houston (Y.D., W.L., T.Y., X.L., W.L., K.C.A., J.C.)
| | - Jiang Chang
- Center for Translational Cancer Research, Texas A&M University Institute of Biosciences and Technology, Houston (Y.D., W.L., T.Y., X.L., W.L., K.C.A., J.C.)
| |
Collapse
|
18
|
Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V. RhoGTPase in Vascular Disease. Cells 2019; 8:E551. [PMID: 31174369 PMCID: PMC6627336 DOI: 10.3390/cells8060551] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
Ras-homologous (Rho)A/Rho-kinase pathway plays an essential role in many cellular functions, including contraction, motility, proliferation, and apoptosis, inflammation, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Given its role in many physiological and pathological functions, targeting can result in adverse effects and limit its use for therapy. In this review, we have summarized the role of RhoGTPases with an emphasis on RhoA in vascular disease and its impact on endothelial, smooth muscle, and heart and lung fibroblasts. It is clear from the various studies that understanding the regulation of RhoGTPases and their regulators in physiology and pathological conditions is required for effective targeting of Rho.
Collapse
Affiliation(s)
- Derek Strassheim
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - David Irwin
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Edward C Dempsey
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA.
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
RND3 promotes Snail 1 protein degradation and inhibits glioblastoma cell migration and invasion. Oncotarget 2018; 7:82411-82423. [PMID: 27705942 PMCID: PMC5347701 DOI: 10.18632/oncotarget.12396] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/24/2016] [Indexed: 01/01/2023] Open
Abstract
Activation of Snail1 signaling promotes the migration and invasion of multiple tumors, including glioblastoma multiforme (GBM). However, the molecular mechanism that augments Snail1 signaling during GBM cell migration and invasion remains largely unknown. Identification of the factors that regulate Snail1 signaling is critical to block tumor cell migration and invasion. By screening human GBM specimens, we found that the expression levels of small GTPase RND3 positively correlated with the expression levels of E-cadherin and claudin, the glioblastoma migration biomarkers negatively regulated by Snail1. Downregulation of E-cadherin and claudin has been associated with the migration and invasion of GBM cells. We demonstrated that RND3 functioned as an endogenous inhibitor of the Snail-directed transcriptional regulation. RND3 physically interacted with Snail1 protein, enhanced Snail1 ubiquitination, and facilitated the protein degradation. Forced expression of RND3 inhibited Snail1 activity, which in turn blocked glioblastoma cell migration and invasion in vitro in cell culture and in vivo in GBM xenograft mice. In contrast, downregulation of RND3 augmented Snail1 activity, and subsequently decreased E-cadherin expression, eventually promoted glioblastoma cell migration and invasion. The pro-migration induced by RND3 downregulation was attenuated by Snail1 knockdown. The findings partially explain why Snail1 activity is augmented in GBM, and defines a new function of RND3 in GBM cell migration and invasion.
Collapse
|
20
|
Decreased expression of fibroblast growth factor 13 in early-onset preeclampsia is associated with the increased trophoblast permeability. Placenta 2018; 62:43-49. [DOI: 10.1016/j.placenta.2017.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
|
21
|
Abstract
Rho kinases (ROCKs) are the first discovered RhoA effectors that are now widely known for their effects on actin organization. Recent studies have shown that ROCKs play important roles in cardiac physiology. Abnormal activation of ROCKs participate in multiple cardiovascular pathological processes, including cardiac hypertrophy, apoptosis, fibrosis, systemic hypertension, and pulmonary hypertension. ROCK inhibitors, fasudil and statins, have shown beneficial cardiovascular effects in many animal studies, clinical trials, and applications. Here, we mainly discuss the current understanding of the physiological roles of Rho kinase signaling in the heart, and briefly summarize the roles of ROCKs in cardiac-related vascular dysfunctions. We will also discuss the clinical application of ROCK inhibitors.
Collapse
Affiliation(s)
- Yuan Dai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Weijia Luo
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Jiang Chang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| |
Collapse
|
22
|
Wang Y, Gong GH, Xu YN, Yu LJ, Wei CX. Sugemule-3 Protects against Isoprenaline-induced Cardiotoxicity In vitro. Pharmacogn Mag 2017; 13:517-522. [PMID: 28839382 PMCID: PMC5551375 DOI: 10.4103/0973-1296.211018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/19/2016] [Indexed: 12/25/2022] Open
Abstract
Background: Sugemule-3 (SD) is a traditional Chinese medicine with protective effect of myocardium. However, the underlying mechanisms of the effect had not been elucidated. Materials and Methods: In the present study, the serum of SD was prepared. A model of β-adrenergic agonist isoprenaline (ISO)-induced H9c2 cardiomyocytes injury was established in vitro. The changes in cell viability were examined to determine the available concentration of ISO and serum of SD. ELISA, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, and flow cytometry were used to detect the effect of serum of SD on oxidative stress and apoptosis. The expression levels of the mitochondria-dependent apoptotic pathway and mitogen-activated protein kinase signalling-related proteins were analyzed. Results: Incubation with different dose of ISO (0.015, 0.01, 0.005, and 0.0025 mol/L) for 24 h caused dose-dependent loss of cell viability and 0.01 mol/L of ISO approximately reduced the cell viability to 50%. Pretreatment with 50 μ mol/L serum of SD effectively decreased the levels of ISO-induced cell toxicity. Serum of SD relived ISO-induced oxidative stress and apoptosis in H9c2 cardiomyocytes. A further mechanism study indicated that serum of SD inhibited the mitochondria-dependent apoptotic pathways and regulated the expression levels of Bcl-2 family. ISO activated ERK and P38, whereas serum of SD inhibited their activation. Conclusion: Serum of SD inhibits the ISO-induced activation of the mitochondria-dependent apoptotic pathway, oxidative stress, and ERK, P38 inactivation. Serum of SD is used for the treatment of ISO-induced cardiomyopathy. SUMMARY The serum of SD pretreatment significantly ameliorated ISO-induced H9c2 cardiomyocytes injuries. The protective effect related with apoptosis and oxidative stress Inhibition of MAPK pathway was involed in serum of SD induced cardioprotection. The serum of SD is used for the treatment of ISO-induced cardiomyopathy.
Abbreviations used: ELISA: Enzyme-linked Immunosorbent Assay; TUNEL: TdT-mediated dUTP nick end labeling; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, DMSO: dimethyl sulfoxide; MDA: Malondialdehyde; SOD: Superoxide Dismutase; GSH-Px: Glutathione peroxidase.
Collapse
Affiliation(s)
- Yu Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao.,Inner Mongolia Autonomous Region Key laboratory of Mongolian medicine pharmacology for cardio-cerebral vascular system, Tongliao, Inner Mongolia, P. R. China
| | - Guo-Hua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao.,Inner Mongolia Autonomous Region Key laboratory of Mongolian medicine pharmacology for cardio-cerebral vascular system, Tongliao, Inner Mongolia, P. R. China
| | - Ya-Nan Xu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao.,Inner Mongolia Autonomous Region Key laboratory of Mongolian medicine pharmacology for cardio-cerebral vascular system, Tongliao, Inner Mongolia, P. R. China
| | - Li-Jun Yu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao.,Inner Mongolia Autonomous Region Key laboratory of Mongolian medicine pharmacology for cardio-cerebral vascular system, Tongliao, Inner Mongolia, P. R. China
| | - Cheng-Xi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao.,Inner Mongolia Autonomous Region Key laboratory of Mongolian medicine pharmacology for cardio-cerebral vascular system, Tongliao, Inner Mongolia, P. R. China
| |
Collapse
|
23
|
Breslin JW, Daines DA, Doggett TM, Kurtz KH, Souza-Smith FM, Zhang XE, Wu MH, Yuan SY. Rnd3 as a Novel Target to Ameliorate Microvascular Leakage. J Am Heart Assoc 2016; 5:e003336. [PMID: 27048969 PMCID: PMC4859298 DOI: 10.1161/jaha.116.003336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Microvascular leakage of plasma proteins is a hallmark of inflammation that leads to tissue dysfunction. There are no current therapeutic strategies to reduce microvascular permeability. The purpose of this study was to identify the role of Rnd3, an atypical Rho family GTPase, in the control of endothelial barrier integrity. The potential therapeutic benefit of Rnd3 protein delivery to ameliorate microvascular leakage was also investigated. Methods and Results Using immunofluorescence microscopy, Rnd3 was observed primarily in cytoplasmic areas around the nuclei of human umbilical vein endothelial cells. Permeability to fluorescein isothiocyanate–albumin and transendothelial electrical resistance of human umbilical vein endothelial cell monolayers served as indices of barrier function, and RhoA, Rac1, and Cdc42 activities were determined using G‐LISA assays. Overexpression of Rnd3 significantly reduced the magnitude of thrombin‐induced barrier dysfunction, and abolished thrombin‐induced Rac1 inactivation. Depleting Rnd3 expression with siRNA significantly extended the time course of thrombin‐induced barrier dysfunction and Rac1 inactivation. Time‐lapse microscopy of human umbilical vein endothelial cells expressing GFP‐actin showed that co‐expression of mCherry‐Rnd3 attenuated thrombin‐induced reductions in local lamellipodia that accompany endothelial barrier dysfunction. Lastly, a novel Rnd3 protein delivery method reduced microvascular leakage in a rat model of hemorrhagic shock and resuscitation, assessed by both intravital microscopic observation of extravasation of fluorescein isothiocyanate–albumin from the mesenteric microcirculation, and direct determination of solute permeability in intact isolated venules. Conclusions The data suggest that Rnd3 can shift the balance of RhoA and Rac1 signaling in endothelial cells. In addition, our findings suggest the therapeutic, anti‐inflammatory potential of delivering Rnd3 to promote endothelial barrier recovery during inflammatory challenge.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA
| | - Travis M Doggett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Kristine H Kurtz
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Flavia M Souza-Smith
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Xun E Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Mack H Wu
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
24
|
Yue X, Lin X, Yang T, Yang X, Yi X, Jiang X, Li X, Li T, Guo J, Dai Y, Shi J, Wei L, Youker KA, Torre-Amione G, Yu Y, Andrade KC, Chang J. Rnd3/RhoE Modulates Hypoxia-Inducible Factor 1α/Vascular Endothelial Growth Factor Signaling by Stabilizing Hypoxia-Inducible Factor 1α and Regulates Responsive Cardiac Angiogenesis. Hypertension 2016; 67:597-605. [PMID: 26781283 DOI: 10.1161/hypertensionaha.115.06412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022]
Abstract
The insufficiency of compensatory angiogenesis in the heart of patients with hypertension contributes to heart failure transition. The hypoxia-inducible factor 1α-vascular endothelial growth factor (HIF1α-VEGF) signaling cascade controls responsive angiogenesis. One of the challenges in reprograming the insufficient angiogenesis is to achieve a sustainable tissue exposure to the proangiogenic factors, such as HIF1α stabilization. In this study, we identified Rnd3, a small Rho GTPase, as a proangiogenic factor participating in the regulation of the HIF1α-VEGF signaling cascade. Rnd3 physically interacted with and stabilized HIF1α, and consequently promoted VEGFA expression and endothelial cell tube formation. To demonstrate this proangiogenic role of Rnd3 in vivo, we generated Rnd3 knockout mice. Rnd3 haploinsufficient (Rnd3(+/-)) mice were viable, yet developed dilated cardiomyopathy with heart failure after transverse aortic constriction stress. The poststress Rnd3(+/-) hearts showed significantly impaired angiogenesis and decreased HIF1α and VEGFA expression. The angiogenesis defect and heart failure phenotype were partially rescued by cobalt chloride treatment, a HIF1α stabilizer, confirming a critical role of Rnd3 in stress-responsive angiogenesis. Furthermore, we generated Rnd3 transgenic mice and demonstrated that Rnd3 overexpression in heart had a cardioprotective effect through reserved cardiac function and preserved responsive angiogenesis after pressure overload. Finally, we assessed the expression levels of Rnd3 in the human heart and detected significant downregulation of Rnd3 in patients with end-stage heart failure. We concluded that Rnd3 acted as a novel proangiogenic factor involved in cardiac responsive angiogenesis through HIF1α-VEGFA signaling promotion. Rnd3 downregulation observed in patients with heart failure may explain the insufficient compensatory angiogenesis involved in the transition to heart failure.
Collapse
Affiliation(s)
- Xiaojing Yue
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xi Lin
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Tingli Yang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xiangsheng Yang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xin Yi
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xuejun Jiang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xiaoyan Li
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Tianfa Li
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Junli Guo
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Yuan Dai
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Jianjian Shi
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Lei Wei
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Keith A Youker
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Guillermo Torre-Amione
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Yanhong Yu
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Kelsey C Andrade
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Jiang Chang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.).
| |
Collapse
|
25
|
Jiang DS, Yi X, Huo B, Liu XX, Li R, Zhu XH, Wei X. The potential role of lysosome-associated membrane protein 3 (LAMP3) on cardiac remodelling. Am J Transl Res 2016; 8:37-48. [PMID: 27069538 PMCID: PMC4759414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
Lysosome-associated membrane protein 3 (LAMP3) was first identified as a cell surface marker of mature dendritic cells and specifically expressed in lung tissues. Recently studies demonstrated that LAMP3 plays a critical role in several cancers, and regulated by hypoxia. However, whether LAMP3 expressed in the heart and cardiomyocytes and changed its expression level in the hearts with cardiac remodelling was largely unknown. In this study, we first cultured H9C2 (a clonal muscle cell line from rat heart) and stimulated with 1 μM angiotensin II (Ang II), or 100 μM isoproterenol (ISO), or 100 μM phenylephrine (PE) for indicated times. We found that LAMP3 expression level was significantly increased after these stimulation. Next, the pressure overload-induced cardiac remodelling mouse model was performed in the wild type C57BL/6J mice. After 4 and 8 weeks of transverse aortic constriction (TAC), obvious cardiac remodelling was observed in the wild type mice compared with sham group. Importantly, LAMP3 expression level was gradually elevated from 2 weeks to 8 weeks after TAC surgery. Furthermore, in human dilated cardiomyopathy (DCM) hearts, severe cardiac remodelling was observed, as evidenced by remarkably increased cardiomyocytes cross sectional area and collagen deposition. Notably, the mRNA and protein level of LAMP3 were significantly increased in the DCM hearts compared with donor hearts. Immunohistochemistry assay showed that LAMP3 was expression in the cardiomyocytes and responsible for its increased expression in the hearts. Our data indicated that LAMP3 might have a potential role in the process of cardiac remodelling.
Collapse
Affiliation(s)
- Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Heart-Lung Transplantation Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan UniversityWuhan 430060, China
- Cardiovascular Research Institute, Wuhan UniversityWuhan 430060, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Heart-Lung Transplantation Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xin-Xin Liu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Heart-Lung Transplantation Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Rui Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Heart-Lung Transplantation Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Heart-Lung Transplantation Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Heart-Lung Transplantation Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| |
Collapse
|
26
|
Abstract
Rnd3, also known as RhoE, belongs to the Rnd subclass of the Rho family of small guanosine triphosphate (GTP)-binding proteins. Rnd proteins are unique due to their inability to switch from a GTP-bound to GDP-bound conformation. Even though studies of the biological function of Rnd3 are far from being concluded, information is available regarding its expression pattern, cellular localization, and its activity, which can be altered depending on the conditions. The compiled data from these studies implies that Rnd3 may not be a traditional small GTPase. The basic role of Rnd3 is to report as an endogenous antagonist of RhoA signaling-mediated actin cytoskeleton dynamics, which specifically contributes to cell migration and neuron polarity. In addition, Rnd3 also plays a critical role in arresting cell cycle distribution, inhibiting cell growth, and inducing apoptosis and differentiation. Increasing data have shown that aberrant Rnd3 expression may be the leading cause of some systemic diseases; particularly highlighted in apoptotic cardiomyopathy, developmental arrhythmogenesis and heart failure, hydrocephalus, as well as tumor metastasis and chemotherapy resistance. Therefore, a better understanding of the function of Rnd3 under different physiological and pathological conditions, through the use of suitable models, would provide a novel insight into the origin and treatment of multiple human diseases.
Collapse
Affiliation(s)
- Wei Jie
- Department of Pathology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang, Guangdong Province, China
| | - Kelsey C Andrade
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Xi Lin
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Xiangsheng Yang
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Xiaojing Yue
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Jiang Chang
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| |
Collapse
|
27
|
Hartmann S, Ridley AJ, Lutz S. The Function of Rho-Associated Kinases ROCK1 and ROCK2 in the Pathogenesis of Cardiovascular Disease. Front Pharmacol 2015; 6:276. [PMID: 26635606 PMCID: PMC4653301 DOI: 10.3389/fphar.2015.00276] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/03/2015] [Indexed: 01/26/2023] Open
Abstract
Rho-associated kinases ROCK1 and ROCK2 are serine/threonine kinases that are downstream targets of the small GTPases RhoA, RhoB, and RhoC. ROCKs are involved in diverse cellular activities including actin cytoskeleton organization, cell adhesion and motility, proliferation and apoptosis, remodeling of the extracellular matrix and smooth muscle cell contraction. The role of ROCK1 and ROCK2 has long been considered to be similar; however, it is now clear that they do not always have the same functions. Moreover, depending on their subcellular localization, activation, and other environmental factors, ROCK signaling can have different effects on cellular function. With respect to the heart, findings in isoform-specific knockout mice argue for a role of ROCK1 and ROCK2 in the pathogenesis of cardiac fibrosis and cardiac hypertrophy, respectively. Increased ROCK activity could play a pivotal role in processes leading to cardiovascular diseases such as hypertension, pulmonary hypertension, angina pectoris, vasospastic angina, heart failure, and stroke, and thus ROCK activity is a potential new biomarker for heart disease. Pharmacological ROCK inhibition reduces the enhanced ROCK activity in patients, accompanied with a measurable improvement in medical condition. In this review, we focus on recent findings regarding ROCK signaling in the pathogenesis of cardiovascular disease, with a special focus on differences between ROCK1 and ROCK2 function.
Collapse
Affiliation(s)
- Svenja Hartmann
- Institute of Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research, Göttingen, Germany
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| | - Susanne Lutz
- Institute of Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research, Göttingen, Germany
| |
Collapse
|
28
|
Yang X, Wang T, Lin X, Yue X, Wang Q, Wang G, Fu Q, Ai X, Chiang DY, Miyake CY, Wehrens XHT, Chang J. Genetic deletion of Rnd3/RhoE results in mouse heart calcium leakage through upregulation of protein kinase A signaling. Circ Res 2014; 116:e1-e10. [PMID: 25348166 DOI: 10.1161/circresaha.116.304940] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Rnd3, a small Rho GTPase, is involved in the regulation of cell actin cytoskeleton dynamics, cell migration, and proliferation. The biological function of Rnd3 in the heart remains unexplored. OBJECTIVE To define the functional role of the Rnd3 gene in the animal heart and investigate the associated molecular mechanism. METHODS AND RESULTS By loss-of-function approaches, we discovered that Rnd3 is involved in calcium regulation in cardiomyocytes. Rnd3-null mice died at the embryonic stage with fetal arrhythmias. The deletion of Rnd3 resulted in severe Ca(2+) leakage through destabilized ryanodine receptor type 2 Ca(2+) release channels. We further found that downregulation of Rnd3 attenuated β2-adrenergic receptor lysosomal targeting and ubiquitination, which in turn resulted in the elevation of β2-adrenergic receptor protein levels leading to the hyperactivation of protein kinase A (PKA) signaling. The PKA activation destabilized ryanodine receptor type 2 channels. This irregular spontaneous Ca(2+) release can be curtailed by PKA inhibitor treatment. Increases in the PKA activity along with elevated cAMP levels were detected in Rnd3-null embryos, in neonatal rat cardiomyocytes, and noncardiac cell lines with Rnd3 knockdown, suggesting a general mechanism for Rnd3-mediated PKA signaling activation. β2-Adrenergic receptor blocker treatment reduced arrhythmia and improved cardiac function. CONCLUSIONS Rnd3 is a novel factor involved in intracellular Ca(2+) homeostasis regulation in the heart. Deficiency of the protein induces ryanodine receptor type 2 dysfunction by a mechanism that attenuates Rnd3-mediated β2-adrenergic receptor ubiquitination, which leads to the activation of PKA signaling. Increased PKA signaling in turn promotes ryanodine receptor type 2 hyperphosphorylation, which contributes to arrhythmogenesis and heart failure.
Collapse
Affiliation(s)
- Xiangsheng Yang
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030
| | - Tiannan Wang
- Department of Molecular Physiology & Biophysics, and Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030
| | - Xi Lin
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030
| | - Xiaojing Yue
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030
| | - Qiongling Wang
- Department of Molecular Physiology & Biophysics, and Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030
| | - Guoliang Wang
- Department of Molecular Physiology & Biophysics, and Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030
| | - Qin Fu
- Department of Pharmacology, University of California at Davis, CA 95616
| | - Xun Ai
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - David Y Chiang
- Department of Molecular Physiology & Biophysics, and Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030
| | - Christina Y Miyake
- Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Xander H T Wehrens
- Department of Molecular Physiology & Biophysics, and Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030
| | - Jiang Chang
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030
| |
Collapse
|