1
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
2
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
3
|
Forsythe SD, Pu T, Andrews SG, Madigan JP, Sadowski SM. Models in Pancreatic Neuroendocrine Neoplasms: Current Perspectives and Future Directions. Cancers (Basel) 2023; 15:3756. [PMID: 37568572 PMCID: PMC10416968 DOI: 10.3390/cancers15153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are a heterogeneous group of tumors derived from multiple neuroendocrine origin cell subtypes. Incidence rates for pNENs have steadily risen over the last decade, and outcomes continue to vary widely due to inability to properly screen. These tumors encompass a wide range of functional and non-functional subtypes, with their rarity and slow growth making therapeutic development difficult as most clinically used therapeutics are derived from retrospective analyses. Improved molecular understanding of these cancers has increased our knowledge of the tumor biology for pNENs. Despite these advances in our understanding of pNENs, there remains a dearth of models for further investigation. In this review, we will cover the current field of pNEN models, which include established cell lines, animal models such as mice and zebrafish, and three-dimensional (3D) cell models, and compare their uses in modeling various disease aspects. While no study model is a complete representation of pNEN biology, each has advantages which allow for new scientific understanding of these rare tumors. Future efforts and advancements in technology will continue to create new options in modeling these cancers.
Collapse
Affiliation(s)
- Steven D. Forsythe
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Tracey Pu
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stephen G. Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - James P. Madigan
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Samira M. Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| |
Collapse
|
4
|
Pozas J, Alonso-Gordoa T, Román MS, Santoni M, Thirlwell C, Grande E, Molina-Cerrillo J. Novel therapeutic approaches in GEP-NETs based on genetic and epigenetic alterations. Biochim Biophys Acta Rev Cancer 2022; 1877:188804. [PMID: 36152904 DOI: 10.1016/j.bbcan.2022.188804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies with distinct prognosis based on primary tumor localization, grade, stage and functionality. Surgery remains the only curative option in localized tumors, but systemic therapy is the mainstay of treatment for patients with advanced disease. For decades, the therapeutic landscape of GEP-NETs was limited to chemotherapy regimens with low response rates. The arrival of novel agents such as somatostatin analogues, peptide receptor radionuclide therapy, tyrosine kinase inhibitors or mTOR-targeted drugs, has changed the therapeutic paradigm of GEP-NETs. However, the efficacy of these agents is limited in time and there is scarce knowledge of optimal treatment sequencing. In recent years, massive parallel sequencing techniques have started to unravel the genomic intricacies of these tumors, allowing us to better understand the mechanisms of resistance to current treatments and to develop new targeted agents that will hopefully start an era for personalized treatment in NETs. In this review we aim to summarize the most relevant genomic aberrations and signaling pathways underlying GEP-NET tumorigenesis and potential therapeutic strategies derived from them.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain
| | - Maria San Román
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain
| | | | | | - Enrique Grande
- Medical Oncology Ddepartment. MD Anderson Cancer Center Madrid, 28033 Madrid, Spain
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Medicine School, Alcalá University, Madrid, Spain.
| |
Collapse
|
5
|
Murthy SRK, Cheng X, Zhuang T, Ly L, Jones O, Basadonna G, Keidar M, Canady J. BCL2A1 regulates Canady Helios Cold Plasma-induced cell death in triple-negative breast cancer. Sci Rep 2022; 12:4038. [PMID: 35260587 PMCID: PMC8904455 DOI: 10.1038/s41598-022-07027-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the leading cause of cancer death among women. Triple-negative breast cancer (TNBC) has a poor prognosis and frequently relapses early compared with other subtypes. The Cold Atmospheric Plasma (CAP) is a promising therapy for prognostically poor breast cancer such as TNBC. The Canady Helios Cold Plasma (CHCP) induces cell death in the TNBC cell line without thermal damage, however, the mechanism of cell death by CAP treatment is ambiguous and the mechanism of resistance to cell death in some subset of cells has not been addressed. We investigate the expression profile of 48 apoptotic and 35 oxidative gene markers after CHCP treatment in six different types of breast cancer cell lines including luminal A (ER+ PR+/-HER2-), luminal B (ER+PR+/-HER2+), (ER-PR-HER2+), basal-like: ER-PR-HER2- cells were tested with CHCP at different power settings and at 4 different incubation time. The expression levels of the gene markers were determined at 4 different intervals after the treatment. The protein expression of BCL2A1 was only induced after CHCP treatment in TNBC cell lines (p < 0.01), whereas the HER2-positive and ER, PR positive cell lines showed little or no expression of BCL2A1. The BCL2A1 and TNF-alpha expression levels showed a significant correlation within TNBC cell lines (p < 0.01). Silencing BCL2A1 mRNA by siRNA increased the potency of the CHCP treatment. A Combination of CHCP and CPI203, a BET bromodomain inhibitor, and a BCL2A1 antagonist increased the CHCP-induced cell death (p < 0.05). Our results revealed that BCL2A1 is a key gene for resistance during CHCP induced cell death. This resistance in TNBCs could be reversed with a combination of siRNA or BCL2A1 antagonist-CHCP therapy.
Collapse
Affiliation(s)
- Saravana R K Murthy
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | - Xiaoqian Cheng
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | | | - Lawan Ly
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | - Olivia Jones
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | | | | | - Jerome Canady
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA.
- The George Washington University, Washington, DC, USA.
- Holy Cross Hospital, Department of Surgery, Silver Spring, MD, USA.
| |
Collapse
|
6
|
Chen L, Liu Z, Li X. Recent Advances in Dual BRD4-Kinase Inhibitors Base on Polypharmacology. ChemMedChem 2022; 17:e202100731. [PMID: 35146935 DOI: 10.1002/cmdc.202100731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Epigenetic reader BRD4 is involved in chromatin remodeling and transcriptional regulation, making it a promising therapeutic target. However, during the past decades, the results of many BRD4 inhibitors that have entered clinical trials were, in the main, unsatisfactory, due to some therapeutic limitations such as off-target effects and drug resistance. Combining a BRD4 inhibitor with another drug was expected to be an ideal option to overcome these "bottlenecks" and achieve improved therapeutic outcomes. However, combination therapy might trigger toxicity caused by drug-drug interaction, complex pharmacokinetic and additive effects. Recently, the application of dual-target drugs targeting BRD4 and other kinases has emerged to be an attractive approach to remedy defects of a single BRD4 inhibitor. Herein, this review focuses on recent advances in the discovery of dual BRD4-kinase inhibitors, with emphasis on their co-crystal structures and structure-activity relationships (SARs), as well as perspective prospects in the field.
Collapse
Affiliation(s)
- Li Chen
- Shandong University Cheeloo College of Medicine, Medicinal chemistry, West Wenhua Road 44, 250012, Jinnan, CHINA
| | - Zhaopeng Liu
- Institute of Medicinal Chemistry, Department of Organic Chemistry, School of Pharmaceutical Sciences, Shandong Un, No.44 WhenHua XiLu, 250012, Jinan, CHINA
| | - Xun Li
- Shandong First Medical University, Institute of Materia Medica, CHINA
| |
Collapse
|
7
|
Cai M, Dong J, Li H, Qin JJ. Recent Developments in Targeting Bromodomain and Extra Terminal Domain Proteins for Cancer Therapeutics. Curr Med Chem 2022; 29:4391-4409. [PMID: 35152859 DOI: 10.2174/0929867329666220211091806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Bromodomain and extra-terminal domain (BET) proteins are a well-studied family of proteins associated with a variety of diseases including malignancy and chronic inflammation. Currently, numerous pan BET inhibitors have exhibited potent efficacy in several in vivo preclinical models and entered clinical trials, but have largely stalled due to their adverse events. Therefore, the development of new selective inhibitors and PROTACs (Proteolysis Targeting Chimeras) targeting BET is urgently needed. In the present review, we summarize the BET protein structure, the recent development of BET inhibitors, focusing mainly on BRD4-selective inhibitors and PROTAC degraders.
Collapse
Affiliation(s)
- Maohua Cai
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Haobin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| |
Collapse
|
8
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Hultmark S, Baudet A, Schmiderer L, Prabhala P, Palma-Tortosa S, Sandén C, Fioretos T, Sasidharan R, Larsson C, Lehmann S, Juliusson G, Ek F, Magnusson M. Combinatorial molecule screening identified a novel diterpene and the BET inhibitor CPI-203 as differentiation inducers of primary acute myeloid leukemia cells. Haematologica 2021; 106:2566-2577. [PMID: 32855276 PMCID: PMC8485661 DOI: 10.3324/haematol.2020.249177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Combination treatment has proven effective for patients with acute promyelocytic leukemia, exemplifying the importance of therapy targeting multiple components of oncogenic regulation for a successful outcome. However, recent studies have shown that the mutational complexity of acute myeloid leukemia (AML) precludes the translation of molecular targeting into clinical success. Here, as a complement to genetic profiling, we used unbiased, combinatorial in vitro drug screening to identify pathways that drive AML and to develop personalized combinatorial treatments. First, we screened 513 natural compounds on primary AML cells and identified a novel diterpene (H4) that preferentially induced differentiation of FLT3 wild-type AML, while FLT3-ITD/mutations conferred resistance. The samples responding to H4, displayed increased expression of myeloid markers, a clear decrease in the nuclear-cytoplasmic ratio and the potential of re-activation of the monocytic transcriptional program reducing leukemia propagation in vivo. By combinatorial screening using H4 and molecules with defined targets, we demonstrated that H4 induces differentiation by the activation of the protein kinase C (PKC) signaling pathway, and in line with this, activates PKC phosphorylation and translocation of PKC to the cell membrane. Furthermore, the combinatorial screening identified a bromo- and extra-terminal domain (BET) inhibitor that could further improve H4-dependent leukemic differentiation in FLT3 wild-type monocytic AML. These findings illustrate the value of an unbiased, multiplex screening platform for developing combinatorial therapeutic approaches for AML.
Collapse
Affiliation(s)
- Simon Hultmark
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Aurélie Baudet
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Ludwig Schmiderer
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Pavan Prabhala
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Carl Sandén
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Christer Larsson
- Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Sören Lehmann
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gunnar Juliusson
- Department of Hematology, Skane University Hospital, Lund, Sweden
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Lund University, Lund, Sweden
| | - Mattias Magnusson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| |
Collapse
|
10
|
Zhang S, Chen Y, Tian C, He Y, Tian Z, Wan Y, Liu T. Dual-target Inhibitors Based on BRD4: Novel Therapeutic Approaches for Cancer. Curr Med Chem 2021; 28:1775-1795. [PMID: 32520674 DOI: 10.2174/0929867327666200610174453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, cancer continues being a dramatically increasing and serious threat to public health. Although many anti-tumor agents have been developed in recent years, the survival rate of patients is not satisfactory. The poor prognosis of cancer patients is closely related to the occurrence of drug resistance. Therefore, it is urgent to develop new strategies for cancer treatment. Multi-target therapies aim to have additive or synergistic effects and reduce the potential for the development of resistance by integrating different pharmacophores into a single drug molecule. Given the fact that majority of diseases are multifactorial in nature, multi-target therapies are being exploited with increasing intensity, which has brought improved outcomes in disease models and obtained several compounds that have entered clinical trials. Thus, it is potential to utilize this strategy for the treatment of BRD4 related cancers. This review focuses on the recent research advances of dual-target inhibitors based on BRD4 in the aspect of anti-tumor. METHODS We have searched the recent literatures about BRD4 inhibitors from the online resources and databases, such as pubmed, elsevier and google scholar. RESULTS In the recent years, many efforts have been taken to develop dual-target inhibitors based on BRD4 as anti-cancer agents, such as HDAC/BRD4 dual inhibitors, PLK1/BRD4 dual inhibitors and PI3K/BRD4 dual inhibitors and so on. Most compounds display good anti-tumor activities. CONCLUSION Developing new anti-cancer agents with new scaffolds and high efficiency is a big challenge for researchers. Dual-target inhibitors based on BRD4 are a class of important bioactive compounds. Making structural modifications on the active dual-target inhibitors according to the corresponding structure-activity relationships is of benefit to obtain more potent anti-cancer leads or clinical drugs. This review will be useful for further development of new dual-target inhibitors based on BRD4 as anti-cancer agents.
Collapse
Affiliation(s)
- Sitao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Yanzhao Chen
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Yujing He
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| |
Collapse
|
11
|
Brandi ML, Agarwal SK, Perrier ND, Lines KE, Valk GD, Thakker RV. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr Rev 2021; 42:133-170. [PMID: 33249439 PMCID: PMC7958143 DOI: 10.1210/endrev/bnaa031] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), a rare tumor syndrome that is inherited in an autosomal dominant pattern, is continuing to raise great interest for endocrinology, gastroenterology, surgery, radiology, genetics, and molecular biology specialists. There have been 2 major clinical practice guidance papers published in the past 2 decades, with the most recent published 8 years ago. Since then, several new insights on the basic biology and clinical features of MEN1 have appeared in the literature, and those data are discussed in this review. The genetic and molecular interactions of the MEN1-encoded protein menin with transcription factors and chromatin-modifying proteins in cell signaling pathways mediated by transforming growth factor β/bone morphogenetic protein, a few nuclear receptors, Wnt/β-catenin, and Hedgehog, and preclinical studies in mouse models have facilitated the understanding of the pathogenesis of MEN1-associated tumors and potential pharmacological interventions. The advancements in genetic diagnosis have offered a chance to recognize MEN1-related conditions in germline MEN1 mutation-negative patients. There is rapidly accumulating knowledge about clinical presentation in children, adolescents, and pregnancy that is translatable into the management of these very fragile patients. The discoveries about the genetic and molecular signatures of sporadic neuroendocrine tumors support the development of clinical trials with novel targeted therapies, along with advancements in diagnostic tools and surgical approaches. Finally, quality of life studies in patients affected by MEN1 and related conditions represent an effort necessary to develop a pharmacoeconomic interpretation of the problem. Because advances are being made both broadly and in focused areas, this timely review presents and discusses those studies collectively.
Collapse
Affiliation(s)
| | | | - Nancy D Perrier
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gerlof D Valk
- University Medical Center Utrecht, CX Utrecht, the Netherlands
| | | |
Collapse
|
12
|
The therapeutic effect of the BRD4-degrading PROTAC A1874 in human colon cancer cells. Cell Death Dis 2020; 11:805. [PMID: 32978368 PMCID: PMC7519683 DOI: 10.1038/s41419-020-03015-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
A1874 is a novel BRD4-degrading proteolysis targeting chimera (PROTAC). In primary colon cancer cells and established HCT116 cells, A1874 potently inhibited cell viability, proliferation, cell cycle progression, as well as cell migration and invasion. The BRD4-degrading PROTAC was able to induce caspase and apoptosis activation in colon cancer cells. Furthermore, A1874-induced degradation of BRD4 protein and downregulated BRD-dependent genes (c-Myc, Bcl-2, and cyclin D1) in colon cancer cells. Significantly, A1874-induced anti-colon cancer cell activity was more potent than the known BRD4 inhibitors (JQ1, CPI203, and I-BET151). In BRD4-knockout colon cancer cells A1874 remained cytotoxic, indicating the existence of BRD4-independent mechanisms. In addition to BRD4 degradation, A1874 cytotoxicity in colon cancer cells was also associated with p53 protein stabilization and reactive oxygen species production. Importantly, the antioxidant N-acetyl-cysteine and the p53 inhibitor pifithrin-α attenuated A1874-induced cell death and apoptosis in colon cancer cells. In vivo, A1874 oral administration potently inhibited colon cancer xenograft growth in severe combined immuno-deficient mice. BRD4 degradation and p53 protein elevation, as well as apoptosis induction and oxidative stress were detected in A1874-treated colon cancer tissues. Together, A1874 inhibits colon cancer cell growth through both BRD4-dependent and -independent mechanisms.
Collapse
|
13
|
Mobasheri T, Rayzan E, Shabani M, Hosseini M, Mahmoodi Chalbatani G, Rezaei N. Neuroblastoma-targeted nanoparticles and novel nanotechnology-based treatment methods. J Cell Physiol 2020; 236:1751-1775. [PMID: 32735058 DOI: 10.1002/jcp.29979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is a complicated pediatric tumor, originating from the neural crest, which is the most prevalent in adrenal glands, but may rarely be seen in some other tissues as well. Studies are focused on developing new strategies through novel chemo- and immuno-therapeutic drug targets. Different types of oncogenes such as MYCN, tumor suppressor genes such as p53, and some structural genes such as vascular endothelial growth factor are considered as targets for neuroblastoma therapy. The individual expression patterns in NB cells make them appropriate for this purpose. The combined effect of nano-drug delivery systems and specific drug targets will result in lower systemic side effects, prolonged therapeutic effects, and improvements in the pharmacokinetic properties of the drugs. Some of these novel drug delivery systems with a focus on liposomes as carriers are also discussed. In this review, genes and protein products that are beneficial as drug targets in the treatment of neuroblastoma have been discussed.
Collapse
Affiliation(s)
- Taranom Mobasheri
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Baltimore, Maryland
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
14
|
I-BET726 suppresses human skin squamous cell carcinoma cell growth in vitro and in vivo. Cell Death Dis 2020; 11:318. [PMID: 32371868 PMCID: PMC7200671 DOI: 10.1038/s41419-020-2515-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) is a potential therapeutic target of skin squamous cell carcinoma (SCC). I-BET726 is a novel BRD4 inhibitor. Its potential effect in skin SCC cells was tested in the present study. We show that I-BET726 potently inhibited survival, proliferation, cell cycle progression, and migration in established (A431/SCC-9/SCC-12/SCC-13 lines) and primary human skin SCC cells. I-BET726 induced significant apoptosis activation in skin SCC cells. It was more efficient in inhibiting skin SCC cells than known BRD4 inhibitors (JQ1, CPI203, and AZD5153). I-BET726 not only downregulated BRD4-regulated proteins (c-Myc, Bcl-2, and cyclin D1), but also inhibited sphingosine kinase 1 (SphK1) and Akt signalings in SCC cells. Restoring Akt activation, by a constitutively active S473D mutant Akt1 (“caAkt1”), partially inhibited I-BET726-induced cytotoxicity in A431 cells. In vivo, I-BET726 oral administration potently inhibited A431 xenograft growth in severe combined immunodeficient mice. Downregulation of BRD4-regulated proteins and inhibition of the SphK1-Akt signaling were detected in I-BET726-treated A431 xenograft tumor tissues. Together, I-BET726 inhibits skin SCC cell growth in vitro and in vivo.
Collapse
|
15
|
Role of BET Inhibitors in Triple Negative Breast Cancers. Cancers (Basel) 2020; 12:cancers12040784. [PMID: 32218352 PMCID: PMC7226117 DOI: 10.3390/cancers12040784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Bromodomain and extraterminal domain (BET) proteins have evolved as key multifunctional super-regulators that control gene expression. These proteins have been shown to upregulate transcriptional machinery leading to over expression of genes involved in cell proliferation and carcinogenesis. Based on favorable preclinical evidence of BET inhibitors in various cancer models; currently, 26 clinical trials are underway in various stages of study on various hematological and solid organ cancers. Unfortunately, preliminary evidence for these clinical studies does not support the application of BET inhibitors as monotherapy in cancer treatment. Furthermore, the combinatorial efficiency of BET inhibitors with other chemo-and immunotherapeutic agents remain elusive. In this review, we will provide a concise summary of the molecular basis and preliminary clinical outcomes of BET inhibitors in cancer therapy, with special focus on triple negative breast cancer.
Collapse
|
16
|
Lines KE, Filippakopoulos P, Stevenson M, Müller S, Lockstone HE, Wright B, Knapp S, Buck D, Bountra C, Thakker RV. Effects of epigenetic pathway inhibitors on corticotroph tumour AtT20 cells. Endocr Relat Cancer 2020; 27:163-174. [PMID: 31935194 PMCID: PMC7040567 DOI: 10.1530/erc-19-0448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Medical treatments for corticotrophinomas are limited, and we therefore investigated the effects of epigenetic modulators, a new class of anti-tumour drugs, on the murine adrenocorticotropic hormone (ACTH)-secreting corticotrophinoma cell line AtT20. We found that AtT20 cells express members of the bromo and extra-terminal (BET) protein family, which bind acetylated histones, and therefore, studied the anti-proliferative and pro-apoptotic effects of two BET inhibitors, referred to as (+)-JQ1 (JQ1) and PFI-1, using CellTiter Blue and Caspase Glo assays, respectively. JQ1 and PFI-1 significantly decreased proliferation by 95% (P < 0.0005) and 43% (P < 0.0005), respectively, but only JQ1 significantly increased apoptosis by >50-fold (P < 0.0005), when compared to untreated control cells. The anti-proliferative effects of JQ1 and PFI-1 remained for 96 h after removal of the respective compound. JQ1, but not PFI-1, affected the cell cycle, as assessed by propidium iodide staining and flow cytometry, and resulted in a higher number of AtT20 cells in the sub G1 phase. RNA-sequence analysis, which was confirmed by qRT-PCR and Western blot analyses, revealed that JQ1 treatment significantly altered expression of genes involved in apoptosis, such as NFκB, and the somatostatin receptor 2 (SSTR2) anti-proliferative signalling pathway, including SSTR2. JQ1 treatment also significantly reduced transcription and protein expression of the ACTH precursor pro-opiomelanocortin (POMC) and ACTH secretion by AtT20 cells. Thus, JQ1 treatment has anti-proliferative and pro-apoptotic effects on AtT20 cells and reduces ACTH secretion, thereby indicating that BET inhibition may provide a novel approach for treatment of corticotrophinomas.
Collapse
Affiliation(s)
- K E Lines
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - M Stevenson
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - S Müller
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - H E Lockstone
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - B Wright
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - S Knapp
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - D Buck
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - C Bountra
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - R V Thakker
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
17
|
Bechter O, Schöffski P. Make your best BET: The emerging role of BET inhibitor treatment in malignant tumors. Pharmacol Ther 2020; 208:107479. [PMID: 31931101 DOI: 10.1016/j.pharmthera.2020.107479] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Bromodomains are protein-protein interaction modules with a great diversity in terms of number of proteins and their function. The bromodomain and extraterminal protein (BET) represents a distinct subclass of bromodomain proteins mainly involved in transcriptional regulation via their interaction with acetylated chromatin. In cancer cells BET proteins are found to be altered in many ways such as overexpression, mutations and fusions of BET proteins or their interference with cancer relevant signaling pathways and transcriptional programs in order to sustain cancer growth and viability. Blocking BET protein function with small molecules is associated with therapeutic activity. Consequently, a variety of small molecules have been developed and a number of phase I clinical trials have explored their tolerability and efficacy in patients with solid tumors and hematological malignancies. We will review the rational for applying BET inhibitors in the clinic and we will discuss the toxicity profile as well as efficacy of this new class of protein inhibitors. We will also highlight the emerging problem of treatment resistance and the potential these drugs might have when combined with other anti-cancer therapies.
Collapse
Affiliation(s)
- Oliver Bechter
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| | - Patrick Schöffski
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| |
Collapse
|
18
|
Wong C, Tang LH, Davidson C, Vosburgh E, Chen W, Foran DJ, Notterman DA, Levine AJ, Xu EY. Two well-differentiated pancreatic neuroendocrine tumor mouse models. Cell Death Differ 2020; 27:269-283. [PMID: 31160716 PMCID: PMC7206057 DOI: 10.1038/s41418-019-0355-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 02/08/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a genetic syndrome in which patients develop neuroendocrine tumors (NETs), including pancreatic neuroendocrine tumors (PanNETs). The prolonged latency of tumor development in MEN1 patients suggests a likelihood that other mutations cooperate with Men1 to induce PanNETs. We propose that Pten loss combined with Men1 loss accelerates tumorigenesis. To test this, we developed two genetically engineered mouse models (GEMMs)-MPR (Men1flox/flox Ptenflox/flox RIP-Cre) and MPM (Men1flox/flox Ptenflox/flox MIP-Cre) using the Cre-LoxP system with insulin-specific biallelic inactivation of Men1 and Pten. Cre in the MPR mouse model was driven by the transgenic rat insulin 2 promoter while in the MPM mouse model was driven by the knock-in mouse insulin 1 promoter. Both mouse models developed well-differentiated (WD) G1/G2 PanNETs at a much shorter latency than Men1 or Pten single deletion alone and exhibited histopathology of human MEN1-like tumor. The MPR model, additionally, developed pituitary neuroendocrine tumors (PitNETs) in the same mouse at a much shorter latency than Men1 or Pten single deletion alone as well. Our data also demonstrate that Pten plays a role in NE tumorigenesis in pancreas and pituitary. Treatment with the mTOR inhibitor rapamycin delayed the growth of PanNETs in both MPR and MPM mice, as well as the growth of PitNETs, resulting in prolonged survival in MPR mice. Our MPR and MPM mouse models are the first to underscore the cooperative roles of Men1 and Pten in cancer, particularly neuroendocrine cancer. The early onset of WD PanNETs mimicking the human counterpart in MPR and MPM mice at 7 weeks provides an effective platform for evaluating therapeutic opportunities for NETs through targeting the MENIN-mediated and PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Chung Wong
- Raymond and Beverly Sackler Foundation Laboratory, New Brunswick, NJ, 08901, USA
- Regeneron Inc., Tarrytown, NY, 10591, USA
| | - Laura H Tang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Christian Davidson
- Department of Pathology, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Evan Vosburgh
- Raymond and Beverly Sackler Foundation Laboratory, New Brunswick, NJ, 08901, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08903, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Wenjin Chen
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08903, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - David J Foran
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08903, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Daniel A Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Arnold J Levine
- School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - Eugenia Y Xu
- Raymond and Beverly Sackler Foundation Laboratory, New Brunswick, NJ, 08901, USA.
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08903, USA.
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
19
|
Alonso VL, Tavernelli LE, Pezza A, Cribb P, Ritagliati C, Serra E. Aim for the Readers! Bromodomains As New Targets Against Chagas’ Disease. Curr Med Chem 2019; 26:6544-6563. [DOI: 10.2174/0929867325666181031132007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone
proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery
because the miss-regulation of human bromodomains was discovered to be involved in the development
of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains
continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain-
containing proteins in protozoa, offering a new opportunity for the development of antiparasitic
drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains
were classified in eight groups based on sequence similarity but parasitic bromodomains are very
divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors
can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains
in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize
the myriad of small-molecules under study to treat different pathologies and which of them have been
tested in trypanosomatids and other protozoa. All the information available led us to propose that
T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules
to inhibit them should be empowered.
Collapse
Affiliation(s)
- Victoria Lucia Alonso
- Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Alejandro Pezza
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Carla Ritagliati
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Esteban Serra
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| |
Collapse
|
20
|
Zaware N, Zhou MM. Bromodomain biology and drug discovery. Nat Struct Mol Biol 2019; 26:870-879. [PMID: 31582847 DOI: 10.1038/s41594-019-0309-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
The bromodomain (BrD) is a conserved structural module found in chromatin- and transcription-associated proteins that acts as the primary reader for acetylated lysine residues. This basic activity endows BrD proteins with versatile functions in the regulation of protein-protein interactions mediating chromatin-templated gene transcription, DNA recombination, replication and repair. Consequently, BrD proteins are involved in the pathogenesis of numerous human diseases. In this Review, we highlight our current understanding of BrD biology, and discuss the latest development of small-molecule inhibitors targeting BrDs as emerging epigenetic therapies for cancer and inflammatory disorders.
Collapse
Affiliation(s)
- Nilesh Zaware
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Wright TD, Raybuck C, Bhatt A, Monlish D, Chakrabarty S, Wendekier K, Gartland N, Gupta M, Burow ME, Flaherty PT, Cavanaugh JE. Pharmacological inhibition of the MEK5/ERK5 and PI3K/Akt signaling pathways synergistically reduces viability in triple-negative breast cancer. J Cell Biochem 2019; 121:1156-1168. [PMID: 31464004 DOI: 10.1002/jcb.29350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.
Collapse
Affiliation(s)
- Thomas D Wright
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Christopher Raybuck
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Akshita Bhatt
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Darlene Monlish
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania.,Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Suravi Chakrabarty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katy Wendekier
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Nathan Gartland
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Mohit Gupta
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Patrick T Flaherty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Jane E Cavanaugh
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Damaneh MS, Hu JP, Huan XJ, Song SS, Tian CQ, Chen DQ, Meng T, Chen YL, Shen JK, Xiong B, Miao ZH, Wang YQ. A new BET inhibitor, 171, inhibits tumor growth through cell proliferation inhibition more than apoptosis induction. Invest New Drugs 2019; 38:700-713. [DOI: 10.1007/s10637-019-00818-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023]
|
23
|
Manzotti G, Ciarrocchi A, Sancisi V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030304. [PMID: 30841549 PMCID: PMC6468908 DOI: 10.3390/cancers11030304] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Histone DeACetylases (HDACs) are enzymes that remove acetyl groups from histones and other proteins, regulating the expression of target genes. Pharmacological inhibition of these enzymes re-shapes chromatin acetylation status, confusing boundaries between transcriptionally active and quiescent chromatin. This results in reinducing expression of silent genes while repressing highly transcribed genes. Bromodomain and Extraterminal domain (BET) proteins are readers of acetylated chromatin status and accumulate on transcriptionally active regulatory elements where they serve as scaffold for the building of transcription-promoting complexes. The expression of many well-known oncogenes relies on BET proteins function, indicating BET inhibition as a strategy to counteract their activity. BETi and HDACi share many common targets and affect similar cellular processes to the point that combined inhibition of both these classes of proteins is regarded as a strategy to improve the effectiveness of these drugs in cancer. In this work, we aim to discuss the molecular basis of the interplay between HDAC and BET proteins, pointing at chromatin acetylation as a crucial node of their functional interaction. We will also describe the state of the art of their dual inhibition in cancer therapy. Finally, starting from their mechanism of action we will provide a speculative perspective on how these drugs may be employed in combination with standard therapies to improve effectiveness and/or overcome resistance.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
24
|
Villar-Prados A, Wu SY, Court KA, Ma S, LaFargue C, Chowdhury MA, Engelhardt MI, Ivan C, Ram PT, Wang Y, Baggerly K, Rodriguez-Aguayo C, Lopez-Berestein G, Ming-Yang S, Maloney DJ, Yoshioka M, Strovel JW, Roszik J, Sood AK. Predicting Novel Therapies and Targets: Regulation of Notch3 by the Bromodomain Protein BRD4. Mol Cancer Ther 2019; 18:421-436. [PMID: 30420565 PMCID: PMC6363833 DOI: 10.1158/1535-7163.mct-18-0365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/24/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022]
Abstract
Systematic approaches for accurate repurposing of targeted therapies are needed. We developed and aimed to biologically validate our therapy predicting tool (TPT) for the repurposing of targeted therapies for specific tumor types by testing the role of Bromodomain and Extra-Terminal motif inhibitors (BETi) in inhibiting BRD4 function and downregulating Notch3 signaling in ovarian cancer.Utilizing established ovarian cancer preclinical models, we carried out in vitro and in vivo studies with clinically relevant BETis to determine their therapeutic effect and impact on Notch3 signaling.Treatment with BETis or siRNA-mediated BRD4 knockdown resulted in decreased cell viability, reduced cell proliferation, and increased cell apoptosis in vitro. In vivo studies with orthotopic mouse models demonstrated that treatment with BETi decreased tumor growth. In addition, knockdown of BRD4 with doxycycline-inducible shRNA increased survival up to 50% (P < 0.001). Treatment with either BETis or BRD4 siRNA decreased Notch3 expression both in vitro and in vivo BRD4 inhibition also decreased the expression of NOTCH3 targets, including HES1 Chromatin immunoprecipitation revealed that BRD4 was present at the NOTCH3 promoter.Our findings provide biological validation for the TPT by demonstrating that BETis can be an effective therapeutic agent for ovarian cancer by downregulating Notch3 expression.The TPT could rapidly identify candidate drugs for ovarian or other cancers along with novel companion biomarkers.
Collapse
Affiliation(s)
- Alejandro Villar-Prados
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Sherry Y Wu
- School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | - Karem A Court
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher LaFargue
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mamur A Chowdhury
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Margaret I Engelhardt
- John P. and Kathrine G. McGovern Medical School, The University of Texas, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prahlad T Ram
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shyh Ming-Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - David J Maloney
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | | | | | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
25
|
Hishiki K, Akiyama M, Kanegae Y, Ozaki K, Ohta M, Tsuchitani E, Kaito K, Yamada H. NF-κB signaling activation via increases in BRD2 and BRD4 confers resistance to the bromodomain inhibitor I-BET151 in U937 cells. Leuk Res 2018; 74:57-63. [DOI: 10.1016/j.leukres.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
|
26
|
Stevenson M, Lines KE, Thakker RV. Molecular Genetic Studies of Pancreatic Neuroendocrine Tumors: New Therapeutic Approaches. Endocrinol Metab Clin North Am 2018; 47:525-548. [PMID: 30098714 PMCID: PMC7614857 DOI: 10.1016/j.ecl.2018.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) arise sporadically or as part of familial syndromes. Genetic studies of hereditary syndromes and whole exome sequencing analysis of sporadic NETs have revealed the roles of some genes involved in PNET tumorigenesis. The multiple endocrine neoplasia type 1 (MEN1) gene is most commonly mutated. Its encoded protein, menin, has roles in transcriptional regulation, genome stability, DNA repair, protein degradation, cell motility and adhesion, microRNA biogenesis, cell division, cell cycle control, and epigenetic regulation. Therapies targeting epigenetic regulation and MEN1 gene replacement have been reported to be effective in preclinical models.
Collapse
Affiliation(s)
- Mark Stevenson
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Kate E Lines
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Rajesh V Thakker
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
27
|
Iyer S, Agarwal SK. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J Mol Endocrinol 2018; 61:R13-R24. [PMID: 29615472 PMCID: PMC5966343 DOI: 10.1530/jme-18-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation is emerging as a key feature in the molecular characteristics of various human diseases. Epigenetic aberrations can occur from mutations in genes associated with epigenetic regulation, improper deposition, removal or reading of histone modifications, DNA methylation/demethylation and impaired non-coding RNA interactions in chromatin. Menin, the protein product of the gene causative for the multiple endocrine neoplasia type 1 (MEN1) syndrome, interacts with chromatin-associated protein complexes and also regulates some non-coding RNAs, thus participating in epigenetic control mechanisms. Germline inactivating mutations in the MEN1 gene that encodes menin predispose patients to develop endocrine tumors of the parathyroids, anterior pituitary and the duodenopancreatic neuroendocrine tissues. Therefore, functional loss of menin in the various MEN1-associated endocrine cell types can result in epigenetic changes that promote tumorigenesis. Because epigenetic changes are reversible, they can be targeted to develop therapeutics for restoring the tumor epigenome to the normal state. Irrespective of whether epigenetic alterations are the cause or consequence of the tumorigenesis process, targeting the endocrine tumor-associated epigenome offers opportunities for exploring therapeutic options. This review presents epigenetic control mechanisms relevant to the interactions and targets of menin, and the contribution of epigenetics in the tumorigenesis of endocrine cell types from menin loss.
Collapse
Affiliation(s)
- Sucharitha Iyer
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Xu K, Chen D, Qian D, Zhang S, Zhang Y, Guo S, Ma Z, Wang S. AZD5153, a novel BRD4 inhibitor, suppresses human thyroid carcinoma cell growth in vitro and in vivo. Biochem Biophys Res Commun 2018; 499:531-537. [PMID: 29596834 DOI: 10.1016/j.bbrc.2018.03.184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/23/2023]
Abstract
The development of novel anti-papillary thyroid carcinoma agents is urgent. AZD5153 is a novel and specific Bromodomain-containing protein 4 (BRD4) inhibitor. Here, we show that AZD5153 dose-dependently inhibited survival, proliferation and cell cycle progression in TPC-1 cells and primary human thyroid carcinoma cells. Yet, it was non-cytotoxic to the primary thyroid epithelial cells. AZD5153 induced caspase-3/-9 and apoptosis activation in TPC-1 cells and primary cancer cells. Its cytotoxicity in TPC-1 cells was significantly attenuated with co-treatment of the caspase inhibitors. BRD4 expression was elevated in TPC-1 and primary human thyroid carcinoma cells, but was low in the thyroid epithelial cells. BRD4-regulated proteins, including c-Myc, Bcl-2 and cyclin D1, were significantly downregulated following AZD5153 treatment in TPC-1 and primary cancer cells. In vivo, oral administration of AZD5153 at well-tolerated doses significantly inhibited TPC-1 xenograft growth in severe combined immunodeficient (SCID) mice. BRD4-dependent proteins, Myc, Bcl-2 and cyclin D1, were also downregulated in AZD5153-treated tumor tissues. Collectively, the results suggest that targeting BRD4 by AZD5153 inhibits human thyroid carcinoma cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Kun Xu
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dexuan Chen
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong Qian
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shihu Zhang
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Song Guo
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Shui Wang
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol 2018; 28:1776-1787. [PMID: 28838216 DOI: 10.1093/annonc/mdx157] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetics has been defined as 'the structural adaptation of chromosomal regions so as to register, signal or perpetuate altered activity states.' Currently, several classes of anticancer drugs function at the epigenetic level, including inhibitors of DNA methyltransferase, histone deacetylase (HDAC), lysine-specific demethylase 1, zeste homolog 2, and bromodomain and extra-terminal motif (BET) proteins.BET proteins have multiple functions, including the initiation and elongation of transcription and cell cycle regulation. In recent years, inhibitors of BET proteins have been developed as anticancer agents. These inhibitors exhibit selectivity for tumor cells by preferentially binding to superenhancers, noncoding regions of DNA critical for the transcription of genes that determine a cell's identity. Preclinical research on BET inhibitors has identified them as a potential means of targeting MYC.Early clinical trials with BET inhibitors have had mixed results, with few responses in both hematologic and solid tumors that tend to be short-lived. Toxicities have included severe, thrombocytopenia, fatigue, nausea, vomiting, and diarrhea; GI side-effects, fatigue, and low-grade dysgeusia have limited compliance. However, preclinical data suggest that BET inhibitors may have a promising future in combination with other agents. They appear to be able to overcome resistance to targeted agents and have strong synergy with immune checkpoint inhibitors as well as with multiple epigenetic agents, particularly HDAC inhibitors. In many instances, BET and HDAC inhibitors were synergistic at reduced doses, suggesting a potential means of avoiding the overlapping toxicities of the two drug classes.BET inhibitors provide a novel approach to epigenetic anticancer therapy. However, to date they appear to have limited efficacy as single agents. A focus on BET inhibitors in combination with other drugs such as targeted and/or as other epigenetic agents is warranted, due to limited monotherapy activity, including pharmacodynamic correlatives differential activity amongst select drug combinations.
Collapse
Affiliation(s)
- D B Doroshow
- Section of Medical Oncology, Department of Medicine, Yale University and Yale Cancer Center, New Haven, USA
| | - J P Eder
- Section of Medical Oncology, Department of Medicine, Yale University and Yale Cancer Center, New Haven, USA
| | - P M LoRusso
- Section of Medical Oncology, Department of Medicine, Yale University and Yale Cancer Center, New Haven, USA
| |
Collapse
|
30
|
Abstract
Pancreatic neuroendocrine tumours (PNETs) might occur as a non-familial isolated endocrinopathy or as part of a complex hereditary syndrome, such as multiple endocrine neoplasia type 1 (MEN1). MEN1 is an autosomal dominant disorder characterized by the combined occurrence of PNETs with tumours of the parathyroids and anterior pituitary. Treatments for primary PNETs include surgery. Treatments for non-resectable PNETs and metastases include biotherapy (for example, somatostatin analogues, inhibitors of receptors and monoclonal antibodies), chemotherapy and radiological therapy. All these treatments are effective for PNETs in patients without MEN1; however, there is a scarcity of clinical trials reporting the efficacy of the same treatments of PNETs in patients with MEN1. Treatment of PNETs in patients with MEN1 is challenging owing to the concomitant development of other tumours, which might have metastasized. In recent years, preclinical studies have identified potential new therapeutic targets for treating MEN1-associated neuroendocrine tumours (including PNETs), and these include epigenetic modification, the β-catenin-wingless (WNT) pathway, Hedgehog signalling, somatostatin receptors and MEN1 gene replacement therapy. This Review discusses these advances.
Collapse
Affiliation(s)
- Morten Frost
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
- Endocrine Research Unit, University of Southern Denmark, Odense, 5000, Denmark
| | - Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| |
Collapse
|
31
|
Stratikopoulos EE, Parsons RE. Molecular Pathways: Targeting the PI3K Pathway in Cancer-BET Inhibitors to the Rescue. Clin Cancer Res 2018; 22:2605-10. [PMID: 27250929 DOI: 10.1158/1078-0432.ccr-15-2389] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Abstract
The PI3K signaling pathway is a complex and tightly regulated network that is critical for many physiologic processes, such as cell growth, proliferation, metabolism, and survival. Aberrant activation of this pathway can occur through mutation of almost any of its major nodes and has been implicated in a number of human diseases, including cancer. The high frequency of mutations in this pathway in multiple types of cancer has led to the development of small-molecule inhibitors of PI3K, several of which are currently in clinical trials. However, several feedback mechanisms either within the PI3K pathway or in compensatory pathways can render tumor cells resistant to therapy. Recently, targeting proteins of the bromodomain and extraterminal (BET) family of epigenetic readers of histone acetylation has been shown to effectively block adaptive signaling response of cancer cells to inhibitors of the PI3K pathway, which at least in some cases can restore sensitivity. BET inhibitors also enforce blockade of the MAPK, JAK/STAT, and ER pathways, suggesting they may be a rational combinatorial partner for divergent oncogenic signals that are subject to homeostatic regulation. Here, we review the PI3K pathway as a target for cancer therapy and discuss the potential use of BET inhibition to enhance the clinical efficacy of PI3K inhibitors. Clin Cancer Res; 22(11); 2605-10. ©2016 AACR.
Collapse
Affiliation(s)
- Elias E Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
32
|
Xiang T, Bai JY, She C, Yu DJ, Zhou XZ, Zhao TL. Bromodomain protein BRD4 promotes cell proliferation in skin squamous cell carcinoma. Cell Signal 2018; 42:106-113. [DOI: 10.1016/j.cellsig.2017.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
|
33
|
Shen G, Jiang M, Pu J. Dual inhibition of BRD4 and PI3K by SF2523 suppresses human prostate cancer cell growth in vitro and in vivo. Biochem Biophys Res Commun 2017; 495:567-573. [PMID: 29133261 DOI: 10.1016/j.bbrc.2017.11.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/24/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) and phosphatidylinositol 3-kinase (PI3K) are both key oncogenic proteins in human prostate cancer. In the current study, we examined the anti-prostate cancer cell activity by SF2523, a BRD4 and PI3K dual inhibitor. We showed that SF2523 potently inhibited survival and proliferation of the primary human prostate cancer cells. SF2523 induced profound apoptosis activation in prostate cancer cells. The dual inhibitor was yet non-cytotoxic to the prostate epithelial cells. At the molecular level, SF2523 downregulated BRD4-regulated genes (cyclin D1, c-Myc and androgen receptor) and almost blocked AKT-S6K1 activation in prostate cancer cells. In vivo, SF2523 intraperitoneal administration at the well-tolerated dose inhibited human prostate cancer xenograft growth in severe combined immunodeficient (SCID) mice. BRD4-regulated genes (cyclin D1, c-Myc and androgen receptor) and AKT-S6K1 activation were inhibited in SF2523-treated tumors. Together, dual inhibition of BRD4 and PI3K by SF2523 suppresses human prostate cancer cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Gang Shen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minjun Jiang
- Department of Urology, Wujiang Hospital Affiliated to Nantong University, Suzhou, China
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
34
|
Chang TM, Shan YS, Chu PY, Jiang SS, Hung WC, Chen YL, Tu HC, Lin HY, Tsai HJ, Chen LT. The regulatory role of aberrant Phosphatase and Tensin Homologue and Liver Kinase B1 on AKT/mTOR/c-Myc axis in pancreatic neuroendocrine tumors. Oncotarget 2017; 8:98068-98083. [PMID: 29228674 PMCID: PMC5716714 DOI: 10.18632/oncotarget.20956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/03/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic neuroendocrine tumor (pNET) is an uncommon type of pancreatic neoplasm. Low Phosphatase and Tensin Homologue (PTEN) expression and activation of the mechanistic target of rapamycin (mTOR) pathway have been noted in pNETs, and the former is associated with poor survival in pNET patients. Based on the results of the RADIANT-3 study, everolimus, an oral mTOR inhibitor, has been approved to treat advanced pNETs. However, the exact regulatory mechanism for the mTOR pathway in pNETs remains largely unknown. PTEN and liver kinase B1 (LKB1) are well-known for their regulatory role in the mTOR pathway. We evaluated the expression of PTEN and LKB1 in 21 pNET patients, and low PTEN and LKB1 expression levels were noted in 48% and 24% of the patients, respectively. Loss of PTEN and LKB1 synergistically promoted cell proliferation of pNET, attenuated the sensitivity of cells to mTOR inhibitors and enhanced c-Myc expression, which back-regulated PTEN, AKT, mTOR and its downstream effectors. For pNET cells with low expression levels of PTEN and LKB1, silencing the expression of c-Myc by shRNA reduced their proliferative rate, while adding either c-Myc inhibitor or AMP-activated protein kinase activator reversed their resistance to mTOR inhibitors in vitro and in vivo. Furthermore, high c-Myc expression was subsequently identified in 81% of pNETs, suggesting that up-regulation of c-Myc expression in pNETs may occur through PTEN/LKB1-dependent and PTEN/LKB1-independent regulation. The results delineated the regulation of PTEN and LKB1 on the AKT/mTOR/c-Myc axis and suggested that both c-Myc and mTOR are potential therapeutic targets for pNET.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan.,Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yu-Lin Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hsiu-Chi Tu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hui-You Lin
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
35
|
Lines KE, Stevenson M, Filippakopoulos P, Müller S, Lockstone HE, Wright B, Grozinsky-Glasberg S, Grossman AB, Knapp S, Buck D, Bountra C, Thakker RV. Epigenetic pathway inhibitors represent potential drugs for treating pancreatic and bronchial neuroendocrine tumors. Oncogenesis 2017; 6:e332. [PMID: 28504695 PMCID: PMC5523063 DOI: 10.1038/oncsis.2017.30] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer is associated with alterations in epigenetic mechanisms such as histone modifications and methylation of DNA, and inhibitors targeting epigenetic mechanisms represent a novel class of anti-cancer drugs. Neuroendocrine tumors (NETs) of the pancreas (PNETs) and bronchus (BNETs), which may have 5-year survivals of <50% and as low as 5%, respectively, represent targets for such drugs, as >40% of PNETs and ~35% of BNETs have mutations of the multiple endocrine neoplasia type 1 (MEN1) gene, which encodes menin that modifies histones by interacting with histone methyltransferases. We assessed 9 inhibitors of epigenetic pathways, for their effects on proliferation, by CellTiter Blue assay, and apoptosis, by CaspaseGlo assay, using 1 PNET and 2 BNET cell lines. Two inhibitors, referred to as (+)-JQ1 (JQ1) and PFI-1, targeting the bromo and extra terminal (BET) protein family which bind acetylated histone residues, were most effective in decreasing proliferation (by 40-85%, P<0.001) and increasing apoptosis (by 2-3.6 fold, P<0.001) in all 3 NET cell lines. The anti-proliferative effects of JQ1 and PFI-1 remained present for at least 48 hours after removal of the compound. JQ1, but not PFI-1, had cell cycle effects, assessed by propidium iodide staining and flow cytometry, resulting in increased and decreased proportions of NET cells in G1, and S and G2 phases, respectively. RNA Sequencing analysis revealed that these JQ1 effects were associated with increased histone 2B expression, and likely mediated through altered activity of bromodomain-containing (Brd) proteins. Assessment of JQ1 in vivo, using a pancreatic beta cell-specific conditional Men1 knockout mouse model that develops PNETs, revealed that JQ1 significantly reduced proliferation (by ~50%, P<0.0005), assessed by bromodeoxyuridine incorporation, and increased apoptosis (by ~3 fold, P<0.0005), assessed by terminal deoxynucleotidyl transferase dUTP nick end labelling, of PNETs. Thus, our studies demonstrate that BET protein inhibitors may provide new treatments for NETs.
Collapse
Affiliation(s)
- K E Lines
- Academic Endocrine Unit, OCDEM, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| | - M Stevenson
- Academic Endocrine Unit, OCDEM, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| | - P Filippakopoulos
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington, Oxford, UK
| | - S Müller
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington, Oxford, UK
| | - H E Lockstone
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - B Wright
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - S Grozinsky-Glasberg
- Neuroendocrine Tumor Unit, Endocrinology & Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A B Grossman
- Academic Endocrine Unit, OCDEM, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| | - S Knapp
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington, Oxford, UK
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University and Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, Frankfurt am Main, Jerusalem, Germany
| | - D Buck
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - C Bountra
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Headington, Oxford, UK
| | - R V Thakker
- Academic Endocrine Unit, OCDEM, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| |
Collapse
|
36
|
Zhao Y, Bai L, Liu L, McEachern D, Stuckey JA, Meagher JL, Yang CY, Ran X, Zhou B, Hu Y, Li X, Wen B, Zhao T, Li S, Sun D, Wang S. Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethylisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor. J Med Chem 2017; 60:3887-3901. [PMID: 28463487 DOI: 10.1021/acs.jmedchem.7b00193] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have designed and synthesized 9H-pyrimido[4,5-b]indole-containing compounds to obtain potent and orally bioavailable BET inhibitors. By incorporation of an indole or a quinoline moiety to the 9H-pyrimido[4,5-b]indole core, we identified a series of small molecules showing high binding affinities to BET proteins and low nanomolar potencies in inhibition of cell growth in acute leukemia cell lines. One such compound, 4-(6-methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethylisoxazole (31) has excellent microsomal stability and good oral pharmacokinetics in rats and mice. Orally administered, 31 achieves significant antitumor activity in the MV4;11 leukemia and MDA-MB-231 triple-negative breast cancer xenograft models in mice. Determination of the cocrystal structure of 31 with BRD4 BD2 provides a structural basis for its high binding affinity to BET proteins. Testing its binding affinities against other bromodomain-containing proteins shows that 31 is a highly selective inhibitor of BET proteins. Our data show that 31 is a potent, selective, and orally active BET inhibitor.
Collapse
Affiliation(s)
- Yujun Zhao
- Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Liu Liu
- Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jeanne A Stuckey
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jennifer L Meagher
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Xu Ran
- Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Bing Zhou
- Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Yang Hu
- Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Xiaoqin Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Ting Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Siwei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Wang L, Matkar S, Xie G, An C, He X, Kong X, Liu X, Hua X. BRD4 inhibitor IBET upregulates p27kip/cip protein stability in neuroendocrine tumor cells. Cancer Biol Ther 2017; 18:229-236. [PMID: 28281917 DOI: 10.1080/15384047.2017.1294291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The prevalence of neuroendocrine tumors (NETs) has recently been increasing. Although various drugs such as Octreotide and its analogs show certain efficacy, NETs in many patients progress and metastasize. It is desirable to develop new interventions to improve the therapy. Here we show that human neuroendocrine tumor BON cells are resistant to several drugs commonly used for NET therapy, including Octreotide that activates somatostatin receptor-induced anti-proliferation, and Capecitabine and Temozolimide that damage DNA. In contrast, an inhibitor (IBET) to an epigenetic regulator, Brd4 that binds acetylated histones and upregulates transcription of multiple genes including protooncogene c-Myc, potently inhibited the NET cells. We found that IBET increased the protein levels of cyclin-dependent kinase (CDK) inhibitor p27kip/cip (or p27), but not its mRNA levels. Moreover, the p27 induction at protein level by IBET was at least partly through increasing the protein stability of p27. The increased protein stability of p27 likely resulted from IBET-mediated suppression of Skp2, an E3 ligase that can mediate p27 degradation by increasing its ubiquitinylation. These findings unravel a new mechanism whereby the IBET-induced repression of proliferation of neuroendocrine cells.
Collapse
Affiliation(s)
- Lei Wang
- a Department of Urology , Renmin Hospital of Wuhan University , Wuhan , P.R. China.,b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| | - Smita Matkar
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| | - Gengchen Xie
- c Department of Gastrointestinal Surgery , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , P.R. China
| | - Chiying An
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA.,d Department of Endocrinology and Metabolism , The First Affiliated Hospital of Harbin Medical University , Harbin , P.R. China
| | - Xin He
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| | - Xiangchen Kong
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| | - Xiuheng Liu
- a Department of Urology , Renmin Hospital of Wuhan University , Wuhan , P.R. China
| | - Xianxin Hua
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
38
|
Bromodomain and Extra-Terminal Protein Inhibition Attenuates Neutrophil-dominant Allergic Airway Disease. Sci Rep 2017; 7:43139. [PMID: 28233801 PMCID: PMC5324049 DOI: 10.1038/srep43139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/19/2017] [Indexed: 01/12/2023] Open
Abstract
Atopic asthma is a prevalent respiratory disease that is characterized by inflammation, mucus hypersecretion, and airway hyperresponsiveness. The complexity of this heterogeneous disorder has commanded the need to better define asthma phenotypes based on underlying molecular mechanisms of disease. Although classically viewed as a type 2-regulated disease, type 17 helper T (Th17) cells are known to be influential in asthma pathogenesis, predominantly in asthmatics with neutrophilia and severe refractory disease. Bromodomain and extra-terminal domain (BET) chromatin adaptors serve as immunomodulators by directly regulating Th17 responses and Th17-mediated pathology in murine models of autoimmunity and infection. Based on this, we hypothesized that BET proteins may also play an essential role in neutrophil-dominant allergic airway disease. Using a murine model of neutrophil-dominant allergic airway disease, we demonstrate that BET inhibition limits pulmonary inflammation and alters the Th17-related inflammatory milieu in the lungs. In addition, inhibition of BET proteins improved lung function (specifically quasi-static lung compliance and tissue elastance) and reduced mucus production in airways. Overall, these studies show that BET proteins may have a critical role in asthma pathogenesis by altering type 17 inflammation, and thus interfering with BET-dependent chromatin signaling may provide clinical benefits to patients suffering from asthma.
Collapse
|
39
|
Bromodomains in Protozoan Parasites: Evolution, Function, and Opportunities for Drug Development. Microbiol Mol Biol Rev 2017; 81:81/1/e00047-16. [PMID: 28077462 DOI: 10.1128/mmbr.00047-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Parasitic infections remain one of the most pressing global health concerns of our day, affecting billions of people and producing unsustainable economic burdens. The rise of drug-resistant parasites has created an urgent need to study their biology in hopes of uncovering new potential drug targets. It has been established that disrupting gene expression by interfering with lysine acetylation is detrimental to survival of apicomplexan (Toxoplasma gondii and Plasmodium spp.) and kinetoplastid (Leishmania spp. and Trypanosoma spp.) parasites. As "readers" of lysine acetylation, bromodomain proteins have emerged as key gene expression regulators and a promising new class of drug target. Here we review recent studies that demonstrate the essential roles played by bromodomain-containing proteins in parasite viability, invasion, and stage switching and present work showing the efficacy of bromodomain inhibitors as novel antiparasitic agents. In addition, we performed a phylogenetic analysis of bromodomain proteins in representative pathogens, some of which possess unique features that may be specific to parasite processes and useful in future drug development.
Collapse
|
40
|
Abstract
Aberrations in the epigenetic landscape are a hallmark of cancer. Alterations in enzymes that are “writers,” “erasers,” or “readers” of histone modification marks are common. Bromodomains are “readers” that bind acetylated lysines in histone tails. Their most important function is the regulation of gene transcription by the recruitment of different molecular partners. Moreover, proteins containing bromodomains are also epigenetic regulators, although little is known about the specific function of these domains. In recent years, there has been increasing interest in developing small molecules that can target specific bromodomains. First, this has helped clarify biological functions of bromodomain-containing proteins. Secondly, it opens a new front for combatting cancer. In this review we will describe the structures and mechanisms associated with Bromodomain and Extra-Terminal motif (BET) inhibitors and non-BET inhibitors, their current status of development, and their promising role as anti-cancer agents.
Collapse
Affiliation(s)
- Montserrat Pérez-Salvia
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain
| | - Manel Esteller
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain.,b Department of Physiological Sciences II, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain.,c Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Catalonia , Spain
| |
Collapse
|
41
|
Berenguer-Daizé C, Astorgues-Xerri L, Odore E, Cayol M, Cvitkovic E, Noel K, Bekradda M, MacKenzie S, Rezai K, Lokiec F, Riveiro ME, Ouafik L. OTX015 (MK-8628), a novel BET inhibitor, displays in vitro and in vivo antitumor effects alone and in combination with conventional therapies in glioblastoma models. Int J Cancer 2016; 139:2047-55. [PMID: 27388964 DOI: 10.1002/ijc.30256] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/12/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022]
Abstract
Bromodomain and extraterminal (BET) bromodomain (BRD) proteins are epigenetic readers that bind to acetylated lysine residues on chromatin, acting as co-activators or co-repressors of gene expression. BRD2 and BRD4, members of the BET family, are significantly increased in glioblastoma multiforme (GBM), the most common primary adult brain cancer. OTX015 (MK-8628), a novel BRD2/3/4 inhibitor, is under evaluation in dose-finding studies in solid tumors, including GBM. We investigated the pharmacologic characteristics of OTX015 as a single agent and combined with targeted therapy or conventional chemotherapies in glioblastoma cell lines. OTX015 displayed higher antiproliferative effects compared to its analog JQ1, with GI50 values of approximately 0.2 µM. In addition, C-MYC and CDKN1A mRNA levels increased transiently after 4 h-exposure to OTX015, while BRD2, SESN3, HEXIM-1, HIST2H2BE, and HIST1H2BK were rapidly upregulated and sustained after 24 h. Studies in three additional GBM cell lines supported the antiproliferative effects of OTX015. In U87MG cells, OTX015 showed synergistic to additive activity when administered concomitant to or before SN38, temozolomide or everolimus. Single agent oral OTX015 significantly increased survival in mice bearing orthotopic or heterotopic U87MG xenografts. OTX015 combined simultaneously with temozolomide improved mice survival over either single agent. The passage of OTX015 across the blood-brain barrier was demonstrated with OTX015 tumor levels 7 to 15-fold higher than in normal tissues, along with preferential binding of OTX015 to tumor tissue. The significant antitumor effects seen with OTX015 in GBM xenograft models highlight its therapeutic potential in GBM patients, alone or combined with conventional chemotherapies.
Collapse
Affiliation(s)
| | | | - Elodie Odore
- Oncology Therapeutic Development, 100 Rue Martre, Clichy, 92110, France.,Department of Radio-Pharmacology, Institut Curie, René Huguenin Hospital, 35 Rue Daily, Saint-Cloud, 92210, France
| | - Mylène Cayol
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, 13385, France
| | - Esteban Cvitkovic
- Oncology Therapeutic Development, 100 Rue Martre, Clichy, 92110, France.,Oncoethix SA (Now Oncoethix GmbH, a Wholly Owned Subsidiary of Merck Sharp and Dohme Corp.), Weystrasse 20, Lucerne, 6000, Switzerland
| | - Kay Noel
- Oncoethix SA (Now Oncoethix GmbH, a Wholly Owned Subsidiary of Merck Sharp and Dohme Corp.), Weystrasse 20, Lucerne, 6000, Switzerland
| | - Mohamed Bekradda
- Oncology Therapeutic Development, 100 Rue Martre, Clichy, 92110, France
| | - Sarah MacKenzie
- Oncology Therapeutic Development, 100 Rue Martre, Clichy, 92110, France
| | - Keyvan Rezai
- Department of Radio-Pharmacology, Institut Curie, René Huguenin Hospital, 35 Rue Daily, Saint-Cloud, 92210, France
| | - François Lokiec
- Department of Radio-Pharmacology, Institut Curie, René Huguenin Hospital, 35 Rue Daily, Saint-Cloud, 92210, France
| | - Maria E Riveiro
- Oncology Therapeutic Development, 100 Rue Martre, Clichy, 92110, France
| | - L'Houcine Ouafik
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, 13385, France
| |
Collapse
|
42
|
Chen K, Campfield BT, Wenzel SE, McAleer JP, Kreindler JL, Kurland G, Gopal R, Wang T, Chen W, Eddens T, Quinn KM, Myerburg MM, Horne WT, Lora JM, Albrecht BK, Pilewski JM, Kolls JK. Antiinflammatory effects of bromodomain and extraterminal domain inhibition in cystic fibrosis lung inflammation. JCI Insight 2016; 1. [PMID: 27517095 DOI: 10.1172/jci.insight.87168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Significant morbidity in cystic fibrosis (CF) results from chronic lung inflammation, most commonly due to Pseudomonas aeruginosa infection. Recent data suggest that IL-17 contributes to pathological inflammation in the setting of abnormal mucosal immunity, and type 17 immunity-driven inflammatory responses may represent a target to block aberrant inflammation in CF. Indeed, transcriptomic analysis of the airway epithelium from CF patients undergoing clinical bronchoscopy revealed upregulation of IL-17 downstream signature genes, implicating a substantial contribution of IL-17-mediated immunity in CF lungs. Bromodomain and extraterminal domain (BET) chromatin modulators can regulate T cell responses, specifically Th17-mediated inflammation, by mechanisms that include bromodomain-dependent inhibition of acetylated histones at the IL17 locus. Here, we show that, in vitro, BET inhibition potently suppressed Th17 cell responses in explanted CF tissue and inhibited IL-17-driven chemokine production in human bronchial epithelial cells. In an acute P. aeruginosa lung infection murine model, BET inhibition decreased inflammation, without exacerbating infection, suggesting that BET inhibition may be a potential therapeutic target in patients with CF.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Brian T Campfield
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; University of Pittsburgh, Division of Pediatric Infectious Diseases, Department of Pediatrics, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeremy P McAleer
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - James L Kreindler
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Geoffrey Kurland
- Division of Pediatric Pulmonology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Radha Gopal
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Ting Wang
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Taylor Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Kathleen M Quinn
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Mike M Myerburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - William T Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Jose M Lora
- Constellation Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Brian K Albrecht
- Constellation Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature 2016; 534:341-6. [PMID: 27281222 PMCID: PMC4913876 DOI: 10.1038/nature18288] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR-ABL. Direct inhibition of BCR-ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR-ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show--using proteomics, transcriptomics and network analyses--that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR-ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.
Collapse
|
44
|
Abstract
The bromodomain (BrD) is a conserved protein modular domain found in many chromatin- and transcription-associated proteins that has the ability to recognize acetylated lysine residues. This activity allows bromodomains to play a vital role in many acetylation-mediated protein-protein interactions in the cell, ranging from substrate recruitment for histone acetyltransferases (HATs) to aiding in multiple-protein complex assembly for gene transcriptional activation or suppression in chromatin. In recent years, considerable efforts have been made to develop chemical inhibitors of these bromodomains in an effort to probe their cellular functions. Potent and selective inhibitors have been extensively developed for one group of the bromodomain family termed BET proteins that consist of tandem bromodomains followed by an extra terminal domain. Drug developers are actively designing inhibitors of other bromodomains and working to move the most successful inhibitors into the clinic.
Collapse
Affiliation(s)
- Steven G. Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
45
|
Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and pharmacology of inhibition. Biochem Pharmacol 2015; 106:1-18. [PMID: 26707800 DOI: 10.1016/j.bcp.2015.12.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Bromodomains are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation. The human proteome comprises 46 bromodomain-containing proteins with a total of 61 bromodomains, which, despite highly conserved structural features, recognize a wide array of natural peptide ligands. Over the past five years, bromodomains have attracted great interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, and cardiovascular disease. The demonstration in 2010 that two small molecule compounds, JQ1 and I-BET762, potently inhibit proteins of the bromodomain and extra-terminal (BET) family with translational potential for cancer and inflammatory disease sparked intense efforts in academia and pharmaceutical industry to develop novel bromodomain antagonists for therapeutic applications. Several BET inhibitors are already in clinical trials for hematological malignancies, solid tumors and cardiovascular disease. Currently, the field faces the challenge of single-target selectivity, especially within the BET family, and of overcoming problems related to the development of drug resistance. At the same time, new trends in bromodomain inhibitor research are emerging, including an increased interest in non-BET bromodomains and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of bromodomains, traces the development of bromodomain inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this vibrant new field in drug discovery.
Collapse
Affiliation(s)
- Elena Ferri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044 Grenoble, France; Centre National de la Recherche Scientifique, IBS, 38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, IBS, 38044 Grenoble, France
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States.
| |
Collapse
|
46
|
Yao W, Yue P, Khuri FR, Sun SY. The BET bromodomain inhibitor, JQ1, facilitates c-FLIP degradation and enhances TRAIL-induced apoptosis independent of BRD4 and c-Myc inhibition. Oncotarget 2015; 6:34669-79. [PMID: 26415225 PMCID: PMC4741481 DOI: 10.18632/oncotarget.5785] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022] Open
Abstract
Inhibition of BET bromodomains (BRDs) has emerged as a promising cancer therapeutic strategy. Accordingly, inhibitors of BRDs such as JQ1 have been actively developed and some have reached clinical testing. However, the mechanisms by which this group of inhibitors exerts their anticancer activity, including induction of apoptosis, have not been fully elucidated. This report reveals a previously uncovered activity of JQ1 in inducing c-FLIP degradation and enhancing TRAIL-induced apoptosis. JQ1 potently decreased c-FLIP (both long and short forms) levels in multiple cancer cell lines without apparently increasing the expression of DR5 and DR4. Consequently, JQ1, when combined with TRAIL, synergistically induced apoptosis; this enhanced apoptosis-inducing activity could be abolished by enforced expression of ectopic FLIPL or FLIPS. Hence it appears that JQ1 decreases c-FLIP levels, resulting in enhancement of TRAIL-induced apoptosis. Inhibition of proteasome with MG132 prevented JQ1-induced c-FLIP reduction. Moreover, JQ1 decreased c-FLIP stability. Therefore, JQ1 apparently decreases c-FLIP levels through facilitating its proteasomal degradation. Genetic inhibition of either BRD4 or c-Myc by knocking down their expression failed to mimic JQ1 in decreasing c-FLIP and enhancing TRAIL-induced apoptosis, suggesting that JQ1 induces c-FLIP degradation and enhances TRAIL-induced apoptosis independent of BRD4 or c-Myc inhibition. In summary, our findings in this study highlights a novel biological function of JQ1 in modulating apoptosis and warrant further study of the potential treatment of cancer with the JQ1 and TRAIL combination.
Collapse
Affiliation(s)
- Weilong Yao
- Department of Respiration, Xiangya Hospital and Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fadlo R. Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Affiliation(s)
- Guangtao Zhang
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Steven G Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
48
|
Wang CY, Filippakopoulos P. Beating the odds: BETs in disease. Trends Biochem Sci 2015; 40:468-79. [PMID: 26145250 DOI: 10.1016/j.tibs.2015.06.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/16/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein interaction modules that specifically recognise acetyl-lysine on histones and other proteins, facilitating roles in regulating gene transcription. BRD-containing proteins bound to chromatin loci such as enhancers are often deregulated in disease leading to aberrant expression of proinflammatory cytokines and growth-promoting genes. Recent developments targeting the bromo and extraterminal (BET) subset of BRD proteins demonstrated remarkable efficacy in murine models providing a compelling rationale for drug development and translation to the clinic. Here we summarise recent advances in our understanding of the roles of BETs in regulating gene transcription in normal and diseased tissue as well as the current status of their clinical translation.
Collapse
Affiliation(s)
- Chen-Yi Wang
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK; Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
49
|
Ran X, Zhao Y, Liu L, Bai L, Yang CY, Zhou B, Meagher JL, Chinnaswamy K, Stuckey JA, Wang S. Structure-Based Design of γ-Carboline Analogues as Potent and Specific BET Bromodomain Inhibitors. J Med Chem 2015; 58:4927-39. [PMID: 26080064 DOI: 10.1021/acs.jmedchem.5b00613] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Small-molecule inhibitors of bromodomain and extra terminal proteins (BET), including BRD2, BRD3, and BRD4 proteins have therapeutic potential for the treatment of human cancers and other diseases and conditions. In this paper, we report the design, synthesis, and evaluation of γ-carboline-containing compounds as a new class of small-molecule BET inhibitors. The most potent inhibitor (compound 18, RX-37) obtained from this study binds to BET bromodomain proteins (BRD2, BRD3, and BRD4) with Ki values of 3.2-24.7 nM and demonstrates high selectivity over other non-BET bromodomain-containing proteins. Compound 18 potently and selectively inhibits cell growth in human acute leukemia cell lines harboring the rearranged mixed lineage leukemia 1 gene. We have determined a cocrystal structure of 18 in complex with BRD4 BD2 at 1.4 Å resolution, which provides a solid structural basis for the compound's high binding affinity and for its further structure-based optimization. Compound 18 represents a promising lead compound for the development of a new class of therapeutics for the treatment of human cancer and other conditions.
Collapse
Affiliation(s)
- Xu Ran
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yujun Zhao
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liu Liu
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bing Zhou
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer L Meagher
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Krishnapriya Chinnaswamy
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne A Stuckey
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- †Departments of Medicinal Chemistry, ‡Internal Medicine, §Pharmacology, and ∥Biological Chemistry, ⊥Life Sciences Institute, and #Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
50
|
Hewitt MC, Leblanc Y, Gehling VS, Vaswani RG, Côté A, Nasveschuk CG, Taylor AM, Harmange JC, Audia JE, Pardo E, Cummings R, Joshi S, Sandy P, Mertz JA, Sims RJ, Bergeron L, Bryant BM, Bellon S, Poy F, Jayaram H, Tang Y, Albrecht BK. Development of methyl isoxazoleazepines as inhibitors of BET. Bioorg Med Chem Lett 2015; 25:1842-8. [PMID: 25851940 DOI: 10.1016/j.bmcl.2015.03.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/26/2022]
Abstract
In this report we detail the evolution of our previously reported thiophene isoxazole BET inhibitor chemotype exemplified by CPI-3 to a novel bromodomain selective chemotype (the methyl isoxazoleazepine chemotype) exemplified by carboxamide 23. The methyl isoxazoleazepine chemotype provides potent inhibition of the bromodomains of the BET family, excellent in vivo PK across species, low unbound clearance, and target engagement in a MYC PK-PD model.
Collapse
Affiliation(s)
- Michael C Hewitt
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA.
| | - Yves Leblanc
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Victor S Gehling
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Rishi G Vaswani
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Alexandre Côté
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | | | - Alexander M Taylor
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | | | - James E Audia
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Eneida Pardo
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Rich Cummings
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Shivangi Joshi
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Peter Sandy
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Jennifer A Mertz
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Robert J Sims
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Louise Bergeron
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Barbara M Bryant
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Steve Bellon
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Florence Poy
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | | | - Yong Tang
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| | - Brian K Albrecht
- Constellation Pharmaceuticals, 215 First St., Suite 200, Cambridge, MA 02142, USA
| |
Collapse
|