1
|
Wang R, Li X, Gan Y, Liao J, Han S, Li W, Deng G. Dioscin inhibits non-small cell lung cancer cells and activates apoptosis by downregulation of Survivin. J Cancer 2024; 15:1366-1377. [PMID: 38356707 PMCID: PMC10861826 DOI: 10.7150/jca.89831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Human malignancies exhibit elevated levels of survivin, and have been linked to poor prognosis. Targeting survivin expression is a promising therapeutic strategy against cancer cells. Natural compounds have become a hot topic in research due to their non-toxic, non-invasive, and efficient treatment of multiple diseases. In this current investigation, it was discovered that Dioscin, as a natural compound, exerted profound antitumor activity against NSCLC cell lines, inhibiting NSCLC cell viability and promoting apoptosis. Further mechanistic studies showed that Dioscin promoted ubiquitination-mediated survivin degradation via strengthening the interaction between survivin and the E3 ubiquitin ligase Fbxl7. Furthermore, Dioscin exhibited a strong tumor suppressive effect in xenograft tumor models, and Dioscin treatment led to a notable decrease in tumor volume and weight. Based on our findings, Dioscin is expected to be a potential antitumor agent for non-small cell lung cancer treatment.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha 410013, Hunan, China
| |
Collapse
|
2
|
Ludwig ML, Michmerhuizen NL, Wang J, Birkeland AC, Majchrowski BK, Nimmagadda S, Zhai J, Bhangale A, Kulkarni A, Jiang H, Swiecicki PL, Brenner JC. Multi-kinase compensation rescues EGFR knockout in a cell line model of head and neck squamous cell carcinoma. Arch Oral Biol 2023; 156:105822. [PMID: 37844343 PMCID: PMC11209876 DOI: 10.1016/j.archoralbio.2023.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival rates. While the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab is approved for treatment, responses are limited and the molecular mechanisms driving resistance remain incompletely understood. METHODS To better understand how cells survive without EGFR activity, we developed an EGFR knockout derivative of the UM-SCC-92 cell line using CRISPR/Cas9 technology. We then characterized changes to the transcriptome with RNAseq and changes in response to kinase inhibitors with resazurin cell viability assays. Finally, we tested if inhibitors with activity in the EGFR knockout model also had synergistic activity in combination with EGFR inhibitors in either wild type UM-SCC-92 cells or a known Cetuximab-resistant model. RESULTS Functional and molecular analysis showed that knockout cells had decreased cell proliferation, upregulation of FGFR1 expression, and an enhanced mesenchymal phenotype. In fact, expression of common EMT genes including VIM, SNAIL1, ZEB1 and TWIST1 were all upregulated in the EGFR knockout. Surprisingly, EGFR knockout cells were resistant to FGFR inhibitor monotherapies, but sensitive to combinations of FGFR and either XIAP or IGF-1R inhibitors. Accordingly, both wild type UM-SCC-92 and Cetuximab-resistant UM-SCC-104 cells with were sensitive to combined inhibition of EGFR, FGFR and either XIAP or IGF-1R. CONCLUSIONS These data offer insights into EGFR inhibitor resistance and show that resistance to EGFR knockout likely occurs through a complex network of kinases. Future studies of cetuximab-resistant HNSCC tumors are warranted to determine if this EMT phenotype and/or multi-kinase resistance is observed in patients.
Collapse
Affiliation(s)
- Megan L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Nicole L Michmerhuizen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jiayu Wang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Behirda K Majchrowski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sai Nimmagadda
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jingyi Zhai
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Apurva Bhangale
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Hui Jiang
- Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Paul L Swiecicki
- Department of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - J Chad Brenner
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
3
|
Zhou Z, Han S, Liao J, Wang R, Yu X, Li M. Isoliquiritigenin Inhibits Oral Squamous Cell Carcinoma and Overcomes Chemoresistance by Destruction of Survivin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2221-2241. [PMID: 37930332 DOI: 10.1142/s0192415x23500957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The oncoprotein survivin plays a pivotal role in controlling cell division and preventing apoptosis by inhibiting caspase activation. Its significant contribution to tumorigenesis and therapeutic resistance has been well established. Isoliquiritigenin (ISL), a natural compound, has been recognized for its powerful inhibitory effects against various tumors. However, whether ISL exerts regulatory effects on survivin and its underlying mechanism in oral squamous cell carcinoma (OSCC) remains unclear. Here, we found that ISL inhibited the viability and colony formation of OSCC, and promoted their apoptosis. The immunoblotting data showed that ISL treatment significantly decreased survivin expression. Mechanistically, ISL suppressed survivin phosphorylation on Thr34 by deregulating Akt-Wee1-CDK1 signaling, which facilitated survivin for ubiquitination degradation. ISL inhibited CAL27 tumor growth and decreased p-Akt and survivin expression in vivo. Meanwhile, survivin overexpression caused cisplatin resistance of OSCC cells. ISL alone or combined with cisplatin overcame chemoresistance in OSCC cells. Overall, our results revealed that ISL exerted potent inhibitory effects via inducing Akt-dependent survivin ubiquitination in OSCC cells.
Collapse
Affiliation(s)
- Zhongsu Zhou
- The Third Hospital of Changsha, Changsha, Hunan 410015, P. R. China
| | - Shuangze Han
- The Third Hospital of Changsha, Changsha, Hunan 410015, P. R. China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Jinzhuang Liao
- The Third Hospital of Changsha, Changsha, Hunan 410015, P. R. China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming Li
- Hunan University of Chinese Medicine, Affiliated Stomatological Hospital, Changsha, Hunan 410208, P. R. China
- Changsha Stomatological Hospital, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
4
|
Niu L, Li W, Chen X, Su X, Dong J, Liao Q, Zhou X, Shi S, Sun R. 1-Monopalmitin promotes lung cancer cells apoptosis through PI3K/Akt pathway in vitro. ENVIRONMENTAL TOXICOLOGY 2023; 38:2621-2631. [PMID: 37466199 DOI: 10.1002/tox.23897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide and non-small cell lung cancer (NSCLC) represents 85%. Mougeotia nummuloides and Spirulina major have been reported to possess anticancer properties. 1-Monopalmitin (1-Mono) is the principle active constituent in these natural plants. It is debating whether 1-Mono exerts antitumor effects. Therefore, we explored the role of 1-Mono in lung cancer in vitro. Results showed that 1-Mono significantly inhibited A549 and SPC-A1 cell proliferation, induced G2/M arrest and caspase-dependent apoptosis. Moreover, it suppressed the protein expression of inhibitors of apoptosis proteins (IAPs). It was further demonstrated that 1-Mono activated the PI3K/Akt pathway, suppression of PI3K/Akt activities with LY294002 and Wortmannin partially attenuated 1-Mono-mediated anticancer activities, indicating that 1-Mono-induced antitumor effects is dependent on PI3K/Akt pathway. 1-Mono induced cytoprotective autophagy since autophagy inhibitor Chloroquine dramatically enhanced 1-Mono-induced cytotoxicity. In summary, our results showed 1-Mono kills lung cancer through PI3K/Akt pathway, providing novel options for lung cancer administration.
Collapse
Affiliation(s)
- Lulu Niu
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Wenwen Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xin Chen
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Xiaosan Su
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Jingjing Dong
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Quanyang Liao
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Xuhong Zhou
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Shaoqing Shi
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Ruifen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
5
|
Michmerhuizen NL, Ludwig ML, Birkeland AC, Nimmagadda S, Zhai J, Wang J, Jewell BM, Genouw D, Remer L, Kim D, Foltin SK, Bhangale A, Kulkarni A, Bradford CR, Swiecicki PL, Carey TE, Jiang H, Brenner JC. Small molecule profiling to define synergistic EGFR inhibitor combinations in head and neck squamous cell carcinoma. Head Neck 2022; 44:1192-1205. [PMID: 35224804 PMCID: PMC8986607 DOI: 10.1002/hed.27018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival. Although epidermal growth factor receptor (EGFR)-targeting antibody cetuximab improves survival in some settings, responses are limited suggesting that alternative approaches are needed. METHODS We performed a high throughput drug screen to identify EGFR inhibitor-based synergistic combinations of clinically advanced inhibitors in models resistant to EGFR inhibitor monotherapies, and then performed downstream validation experiments on prioritized synergistic combinations. RESULTS From our screen, we re-discovered known synergistic EGFR inhibitor combinations with FGFR or IGF-1R inhibitors that were broadly effective and also discovered novel synergistic combinations with XIAP inhibitor and DNMT inhibitors that were effective in only a subset of models. CONCLUSIONS Conceptually, our data identify novel synergistic combinations that warrant evaluation in future studies, and suggest that some combinations, although highly synergistic, will require parallel companion diagnostic development to be effectively advanced in patients.
Collapse
Affiliation(s)
- Nicole L. Michmerhuizen
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Megan L. Ludwig
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Andrew C. Birkeland
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Sai Nimmagadda
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Jingyi Zhai
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
| | - Jiayu Wang
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Brittany M. Jewell
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Dylan Genouw
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Lindsay Remer
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Daniel Kim
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Susan K. Foltin
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Apurva Bhangale
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Aditi Kulkarni
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Carol R. Bradford
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Paul L. Swiecicki
- Department of Hematology and OncologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Thomas E. Carey
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Hui Jiang
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - J. Chad Brenner
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Program in Cellular and Molecular BiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Rogel Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
6
|
Claudin1 decrease induced by 1,25-dihydroxy-vitamin D3 potentiates gefitinib resistance therapy through inhibiting AKT activation-mediated cancer stem-like properties in NSCLC cells. Cell Death Dis 2022; 8:122. [PMID: 35301287 PMCID: PMC8931006 DOI: 10.1038/s41420-022-00918-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022]
Abstract
Claudins, the integral tight junction proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their roles in regulating EGFR tyrosine kinase inhibitors (EGFR-TKIs) resistance in non-small cell lung cancer (NSCLC) are unknown. To this end, we performed GEO dataset analysis and identified that claudin1 was a critical regulator of EGFR-TKI resistance in NSCLC cells. We also found that claudin1, which was highly induced by continuous gefitinib treatment, was significantly upregulated in EGFR-TKI-resistant NSCLC cells. By knocking down claudin1 in cell lines and xenograft models, we established that gefitinib resistance was decreased. Moreover, claudin1 knockdown suppressed the expression levels of pluripotency markers (Oct4, Nanog, Sox2, CD133, and ALDH1A1). Claudin1 loss inhibited phosphorylated AKT (p-AKT) expression and reduced cancer cell stemness by suppressing AKT activation. Furthermore, SKL2001, a β-catenin agonist, upregulated the expression levels of claudin1, p-AKT, and pluripotency markers, and 1,25-dihydroxy-vitamin D3 (1,25(OH)2D3) reduced claudin1 expression, AKT activation, and cancer cell stemness by inhibiting β-catenin, and suppressed claudin1/AKT pathway mediated cancer stem-like properties and gefitinib resistance. Collectively, inhibition of claudin1-mediated cancer stem-like properties by 1,25(OH)2D3 may decrease gefitinib resistance through the AKT pathway, which may be a promising therapeutic strategy for inhibiting gefitinib resistance in EGFR-mutant lung adenocarcinoma.
Collapse
|
7
|
Liu B, Guo S, Li GH, Liu Y, Liu XZ, Yue JB, Guo HY. CHMP4C regulates lung squamous carcinogenesis and progression through cell cycle pathway. J Thorac Dis 2021; 13:4762-4774. [PMID: 34527317 PMCID: PMC8411186 DOI: 10.21037/jtd-21-583] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023]
Abstract
Background Lung cancer is a common kind of human malignancies. Lung squamous cell carcinoma (LUSC) is a key subtype of lung cancer. Cell cycle plays an important role in the development and occurrence of LUSC, however, there is still a lack of cell cycle-related genes in LUSC diagnosis and prediction of prognosis. Methods We identified differentially expressed genes (DEGs) with "limma" package in R software, and determined the biomarkers of LUSC in diagnosing by performing receiver operating characteristic (ROC) curve analysis, the biomarker effectiveness in diagnosing LUSC was assessed by performing five-fold cross-validation with logistic regression. Kaplan-Meier plot and the nomogram assessed the relationship between the biomarker and patient survival, and WB and qRT-PCR detected the biomarker expression in cells and tissues. Flow cytometry detects the role of the biomarker in the cell cycle. Results Integration analysis with The Cancer Genome Atlas (TCGA) database obtained a unique gene related to cell cycle in LUSC (Charged multivesicular body protein 4C, CHMP4C), and the protein of CHMP4C was highly expressed in LUSC tissues. ROC analysis indicated that CHMP4C was a biomarker for the diagnosis of LUSC. Bioinformatic analysis indicated that CHMP4C might be associated with cell cycle in LUSC. CHMP4C knockdown resulted in S-phase arrest of cells with LUSC. According to the survival rate analysis, CHMP4C overexpression indicated poor prognosis in patients with LUSC. Conclusions CHMP4C regulates the proliferation process of tumor cells through the cell cycle. It can be used as a potential diagnostic and prognostic biomarker for LUSC.
Collapse
Affiliation(s)
- Bo Liu
- The Third Affiliated Hospital of Qiqihar Medical College Department of Respiratory and Critical Care Medicine, Qiqihar, China
| | - Sixuan Guo
- The Second Clinical College, Medical College of Nanchang University, Nanchang, China
| | - Geng-Hui Li
- Geriatric Department of The First Hospital of Qiqihar, Qiqihar, China
| | - Yue Liu
- The Third Affiliated Hospital of Qiqihar Medical College Department of Pharmacy, Qiqihar, China
| | - Xu-Zhi Liu
- The Third Affiliated Hospital of Qiqihar Medical College Department of Respiratory and Critical Care Medicine, Qiqihar, China
| | - Jian-Bo Yue
- The Third Affiliated Hospital of Qiqihar Medical College Department of Respiratory and Critical Care Medicine, Qiqihar, China
| | - Hong-Yan Guo
- The Qiqihar Medical College Department of Biochemistry, Qiqihar, China
| |
Collapse
|
8
|
Zangoue M, Zangouei AS, Mojarrad M, Moghbeli M. MicroRNAs as the critical regulators of protein kinases in prostate and bladder cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00190-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Bladder cancer (BCa) and prostate cancer (PCa) are frequent urothelial and genital malignancies with a high ratio of morbidity and mortality which are more common among males. Since BCa and PCa cases are mainly diagnosed in advanced stages with clinical complications, it is required to introduce the efficient early detection markers. Protein kinases are critical factors involved in various cellular processes such as cell growth, motility, differentiation, and metabolism. Deregulation of protein kinases can be frequently observed through the neoplastic transformation and tumor progression. Therefore, kinases are required to be regulated via different genetic and epigenetic processes. MicroRNAs (miRNAs) are among the critical factors involved in epigenetic regulation of protein kinases. Since miRNAs are noninvasive and more stable factors in serum and tissues compared with mRNAs, they can be used as efficient diagnostic markers for the early detection of PCa and BCa.
Main body
In present review, we have summarized all of the reported miRNAs that have been associated with regulation of protein kinases in bladder and prostate cancers.
Conclusions
For the first time, this review highlights the miRNAs as critical factors in regulation of protein kinases during prostate and bladder cancers which paves the way of introducing a noninvasive kinase-specific panel of miRNAs for the early detection of these malignancies. It was observed that the class VIII receptors of tyrosine kinases and non-receptor tyrosine kinases were the most frequent targets for the miRNAs in bladder and prostate cancers, respectively.
Collapse
|
9
|
Jin JO, Puranik N, Bui QT, Yadav D, Lee PCW. The Ubiquitin System: An Emerging Therapeutic Target for Lung Cancer. Int J Mol Sci 2021; 22:9629. [PMID: 34502538 PMCID: PMC8431782 DOI: 10.3390/ijms22179629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
The ubiquitin system, present in all eukaryotes, contributes to regulating multiple types of cellular protein processes such as cell signaling, cell cycle, and receptor trafficking, and it affects the immune response. In most types of cancer, unusual events in ubiquitin-mediated signaling pathway modulation can lead to a variety of clinical outcomes, including tumor formation and metastasis. Similarly, ubiquitination acts as a core component, which contributes to the alteration of cell signaling activity, dictating biosignal turnover and protein fates. As lung cancer acquires the most commonly mutated proteins, changes in the ubiquitination of the proteins contribute to the development of lung cancer. Various inhibitors targeting the ubiquitin system have been developed for clinical applications in lung cancer treatment. In this review, we summarize the current research advances in therapeutics for lung cancer by targeting the ubiquitin system.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore 641046, Tamil Nadu, India;
| | - Quyen Thu Bui
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| |
Collapse
|
10
|
Bae I, Kim D, Choi J, Kim J, Kim M, Park B, Kim YH, Ahn YG, Hyung Kim H, Kim DK. Design, synthesis and biological evaluation of new bivalent quinazoline analogues as IAP antagonists. Bioorg Med Chem Lett 2020; 34:127676. [PMID: 33166687 DOI: 10.1016/j.bmcl.2020.127676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/17/2022]
Abstract
We recently reported the biological evaluations of monovalent IAP antagonist 7 with good potency (MDA-MB-231, IC50 = 19 nM). In an effort to increase cellular activity and improve favorable drug-like properties, we newly designed and synthesized bivalent analogues based on quinazoline structure of 7. Optimization of cellular potency and CYP inhibition led to the identification of 27, which showed dramatic increase of over 100-fold (IC50 = 0.14 nM) and caused substantial tumor regressions in MDA-MB-231 xenograft model. These results strongly support 27 as a promising bivalent antagonist for the development of an effective anti-tumor approaches.
Collapse
Affiliation(s)
- Inhwan Bae
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Daejin Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Jaeyul Choi
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Jisook Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Minjeong Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Bokyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea
| | - Young Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Young Gil Ahn
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea.
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
11
|
Jia Z, Zhang Y, Yan A, Wang M, Han Q, Wang K, Wang J, Qiao C, Pan Z, Chen C, Hu D, Ding X. 1,25-dihydroxyvitamin D3 signaling-induced decreases in IRX4 inhibits NANOG-mediated cancer stem-like properties and gefitinib resistance in NSCLC cells. Cell Death Dis 2020; 11:670. [PMID: 32820157 PMCID: PMC7441324 DOI: 10.1038/s41419-020-02908-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated that acquisition of cancer stem-like properties plays an essential role in promoting epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) resistance in non-small cell lung cancer (NSCLC); however, how to regulate cancer stem-like properties and EGFR-TKI resistance is largely unclear. In this study, we discovered that increased iroquois-class homeodomain protein 4 (IRX4) was related to gefitinib resistance in NSCLC cells. Knockdown of IRX4 inhibited cell proliferation, sphere formation, and the expression of CD133, ALDH1A1, NANOG, Sox2 and Notch1, and the transcriptional activity of NANOG promoter. IRX4 overexpression increased the protein level of NANOG and CD133 in PC-9 cells. Combination of knocking-down IRX4 with gefitinib increased cell apoptosis and decreased cell viability and the expression of p-EGFR and NANOG in PC-9/GR cells. IRX4 knockdown in a PC-9/GR xenograft tumor model inhibited tumor progression and the expression of NANOG and CD133 more effectively than single treatment alone. Knockdown of NANOG inhibited the expression of CD133 and restored gefitinib cytotoxicity, and NANOG overexpression-induced cancer stem-like properties and gefitinib resistance could be obviously reversed by knocking-down IRX4. Further, we found that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) reduced obviously the expression of IRX4 and NANOG by inhibiting the activation of TGF-β1/Smad3 signaling pathway; moreover, combination of 1,25(OH)2D3 and gefitinib decreased cell viability and proliferation or tumor progression and the expression of IRX4 and NANOG compared with single treatment alone both in PC-9/GR cells and in a PC-9/GR xenograft tumor model. These results reveal that inhibition of IRX4-mediated cancer stem-like properties by regulating 1,25(OH)2D3 signaling may increase gefitinib cytotoxicity. Combination therapy of gefitinib and 1,25(OH)2D3 by targeting IRX4 and NANOG, could provide a promising strategy to improve gefitinib cytotoxicity.
Collapse
Affiliation(s)
- Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Yameng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Aiwen Yan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Meisa Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Qiushuang Han
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Kaiwei Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Jie Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.,Department of Pharmacy, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.,Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Zhenzhen Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Chuansheng Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Dong Hu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Medical School, Anhui University of Science and Technology, 232001, Huainan, China.
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China. .,Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| |
Collapse
|
12
|
Li Y, Gao W, Ma Y, Zhu G, Chen F, Qu H. Dual targeting of survivin and X-linked inhibitor of apoptosis protein suppresses the growth and promotes the apoptosis of gastric cancer HGC-27 cells. Oncol Lett 2018; 16:3489-3498. [PMID: 30127953 PMCID: PMC6096218 DOI: 10.3892/ol.2018.9081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer can be a fatal tumor and therefore represents one of the primary challenges in modern oncology. Survivin and X-linked inhibitor of apoptosis protein (XIAP) are members of the IAP family, which exerts a strong inhibitory effect on cellular apoptosis. In previous studies, the expression levels of survivin and XIAP have been demonstrated to influence the prognosis of patients with gastric cancer; therefore, the present study investigated the effect of silencing survivin and XIAP on the biological activity of the gastric cancer HGC-27 cell line. It was demonstrated that the expression levels of survivin and XIAP were significantly increased in gastric cancer tissues, compared with the adjacent non-tumor tissues. Furthermore, it was observed that the expression levels of survivin and XIAP were similarly elevated in gastric cancer HGC-27 cells, compared with normal gastric epithelial GES-1cells. Furthermore, small interfering RNA-mediated surviving- or XIAP-knockdown, in addition to the dual knockdown of survivin and XIAP, inhibited the proliferation and promoted the apoptosis of HGC-27 cells. Simultaneous inhibition of XIAP and survivin expression was more effective, compared with inhibition of XIAP or survivin alone. These results indicated that the dual knockdown of survivin and XIAP may be an effective strategy for treating gastric cancer in the future.
Collapse
Affiliation(s)
- Yanfeng Li
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Wenbo Gao
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Yan Ma
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Guanyu Zhu
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Fuhui Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongyan Qu
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
13
|
Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo. Oncotarget 2018; 7:77664-77682. [PMID: 27765910 PMCID: PMC5363612 DOI: 10.18632/oncotarget.12758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting "oncogene addiction" could be a promising strategy for combatting p53 mutant tumors.
Collapse
|
14
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
15
|
Huang C, Zeng X, Jiang G, Liao X, Liu C, Li J, Jin H, Zhu J, Sun H, Wu XR, Huang C. XIAP BIR domain suppresses miR-200a expression and subsequently promotes EGFR protein translation and anchorage-independent growth of bladder cancer cell. J Hematol Oncol 2017; 10:6. [PMID: 28057023 PMCID: PMC5217641 DOI: 10.1186/s13045-016-0376-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The X-linked inhibitor of apoptosis protein (XIAP) is a well-known potent apoptosis suppressor and also participates in cancer cell biological behaviors, therefore attracting great attentions as a potential antineoplastic therapeutic target for past years. Anti-IAP therapy is reported to be closely related to epidermal growth factor receptor (EGFR) expression level. However, whether and how XIAP modulates EGFR expression remains largely unknown. METHODS Human XIAP was knockdown with short-hairpin RNA in two different bladder cancer cell lines, T24T and UMUC3. Two XIAP mutants, XIAP ∆BIR (deletion of N-terminal three BIR domains) and XIAP ∆RING (deletion of C-terminal RING domain and keeping the function of BIR domains), were generated to determine which domain is involved in regulating EGFR. RESULTS We found here that lacking of XIAP expression resulted in a remarkable suppression of EGFR expression, consequently leading to the deficiency of anchorage-independent cell growth. Further study demonstrated that BIR domain of XIAP was crucial for regulating the EGFR translation by suppressing the transcription and expression of miR-200a. Mechanistic studies indicated that BIR domain activated the protein phosphatase 2 (PP2A) activity by decreasing the phosphorylation of PP2A at Tyr307 in its catalytic subunit, PP2A-C. Such activated PP2A prevented the deviant phosphorylation and activation of MAPK kinases/MAPKs, their downstream effector c-Jun, and in turn inhibiting transcription of c-Jun-regulated the miR-200a. CONCLUSIONS Our study uncovered a novel function of BIR domain of XIAP in regulating the EGFR translation, providing significant insight into the understanding of the XIAP overexpression in the cancer development and progression, further offering a new theoretical support for using XIAP BIR domain and EGFR as targets for cancer therapy.
Collapse
Affiliation(s)
- Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Xin Liao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Claire Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China, 325035
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China, 325035
| | - Hong Sun
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016, USA
- VA Medical Center in Manhattan, New York, NY, 10010, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA.
| |
Collapse
|
16
|
Lin JC, Tsao MF, Lin YJ. Differential Impacts of Alternative Splicing Networks on Apoptosis. Int J Mol Sci 2016; 17:ijms17122097. [PMID: 27983653 PMCID: PMC5187897 DOI: 10.3390/ijms17122097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
17
|
Brands RC, Herbst F, Hartmann S, Seher A, Linz C, Kübler AC, Müller-Richter UDA. Cytotoxic effects of SMAC-mimetic compound LCL161 in head and neck cancer cell lines. Clin Oral Investig 2016; 20:2325-2332. [PMID: 26846923 DOI: 10.1007/s00784-016-1741-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/26/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumor entities worldwide. Unfortunately, recent drug developments in other fields of oncology have yielded no efficacy in the treatment of oral squamous cell carcinoma. As a new starting point, we investigated the impact of Fas ligand (FasL) and the SMAC-mimetic compound LCL161 in mono- and combination treatment in HNSCC cell lines. METHODS Five different cell lines of HNSCC were treated with FasL and LCL161 in mono- and combination treatment. Cytotoxicity was measured via a crystal violet assay. The cell lines were characterized for CD95 (FasL receptor) expression via flow cytometry. The degradation of cellular inhibitor of apoptosis protein 1 (cIAP1) was detected via Western blot. RESULTS Incubation with FasL led to a significant decrease in three out of five cell lines. Combination treatment with LCL161 enhanced cytotoxicity significantly. Two cell lines were FasL resistant, but one of them could be resensitized with LCL161. In all cell lines, Western blot analysis showed degradation of cIAP1 after LCL161 application. However, one cell line showed only minor vulnerability to the FasL and LCL161 combination. CONCLUSION This is the first study investigating combination treatment of FasL and LCL161 in head and neck cancer cell lines. Pro-apoptotic effects of the combination were detected in the majority of the cell lines. Interestingly, one of two FasL-resistant cell lines was sensitive to the combination therapy with FasL and LCL161. CLINICAL RELEVANCE SMAC-mimetic compounds show promising results in the treatment of other tumor entities in vitro and might be useful drugs to improve HNSCC therapy.
Collapse
Affiliation(s)
- Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Josef-Schneider-Str. 6, 97070, Würzburg, Germany.
| | - Franziska Herbst
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Josef-Schneider-Str. 2, 97070, Würzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Christian Linz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| |
Collapse
|