1
|
Pi J, Wang Y, Zhao Y, Yang J. FBXL18 promotes endometrial carcinoma progression via destabilizing DUSP16 and thus activating JNK signaling pathway. Cancer Cell Int 2025; 25:180. [PMID: 40382593 PMCID: PMC12085810 DOI: 10.1186/s12935-025-03808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
OBJECTIVE The therapeutic options for patients with advanced endometrial carcinoma (EC) were still limited and the prognosis remained unfavorable. F-box and leucine-rich repeat protein 18 (FBXL18), belonging to the F-box protein family, was frequently altered in human cancer, while its functional role and underlying mechanisms in EC were largely unexplored. METHODS The expression of FBXL18 in EC tissues and cells were explored using data mining strategies and further experiments. Multiple in vitro assays, including CCK-8, colony formation, wound healing, and Transwell invasion assays, were performed to assess the function of FBXL18 on cell proliferation, migration, and invasion. Bioinformatic analyses, western blot, qRT-PCR, Co-immunoprecipitation and ubiquitination assays were employed to identify the downstream pathway and direct substrate of FBXL18. RESULTS FBXL18 was highly expressed in EC tissues and cell lines, and EC patients with high FBXL18 expression had poor clinical outcome. Loss- and gain-of-function assays showed that silencing FBXL18 suppressed EC cell proliferation, migration, and invasion, while overexpressing FBXL18 caused the opposite effects. Mechanistically, FBXL18 could physically interacted with DUSP16, a dual specificity phosphatase, leading to its ubiquitination and degradation, and thus activating JNK signaling pathway. Upregulation of DUSP16 in EC cells alleviated FBXL18 overexpression-induced activation of JNK signaling pathway, and reversed FBXL18 overexpression-mediated enhanced cell capacities of proliferation, migration, and invasion. CONCLUSION In summary, our study had showcased the elevated expression, prognostic prediction performance, and the malignant tumor-promoting role of FBXL18 in EC. The novel mechanisms underlying this phenotype are that FBXL18 promotes the ubiquitination and degradation of DUSP16, and thus activates JNK/c-JUN signaling to facilitate EC progression.
Collapse
Affiliation(s)
- Jie Pi
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yong Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuzi Zhao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Kang Y, Ge N, Yuan X, Zhan B, Zhang H. FBXL18 increases cell proliferation and reduces cell radiosensitivity in esophageal squamous cell carcinoma. Strahlenther Onkol 2025:10.1007/s00066-025-02373-4. [PMID: 39971770 DOI: 10.1007/s00066-025-02373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors worldwide. In this study, we aimed to investigate the pathophysiological mechanism through which F‑box and leucine-rich repeat protein 18 (FBXL18) promotes the progression of ESCC. METHODS ESCC cell lines KYSE150 and TE‑1 were infected with PLVX-FBXL18 or shFBXL18-derived lentivirus to overexpress or knock down FBXL18. A Cell-Counting Kit 8 and colony-forming assay were used to assess cell viability and proliferation. Cells were irradiated with varying doses of X‑ray (IR) to determine whether FBXL18 influenced the radiosensitivity of ESCC cells. KYSE450 cells, stably transduced with shNC or shFBXL18-derived lentivirus, were injected into nude mice to assess whether FBXL18 affected ESCC tumor growth. KYSE150 and TE-1 cells overexpressing FBXL18 were lysed for Western blot analysis to evaluate protein expression. RESULTS FBXL18 overexpression enhanced cell viability and colony formation, and proliferation of ESCC cells. In contrast, FBXL18 knockdown inhibited tumor growth in vivo. Additionally, FBXL18 overexpression reduced the radiosensitivity of ESCC cells. Mechanistically, FBXL18 was found to exert its effects by suppressing the expression of FBXL7 in ESCC cells. CONCLUSION FBXL18 promotes cell proliferation and diminishes radiosensitivity in ESCC cells. Most likely, it exerts its pro-tumorigenic effects by downregulating FBXL7.
Collapse
Affiliation(s)
- Yahui Kang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, 230031, Hefei, Anhui, China
| | - Ning Ge
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, 230031, Hefei, Anhui, China
| | - Xiaolong Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, 230031, Hefei, Anhui, China
| | - Bihong Zhan
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, 230031, Hefei, Anhui, China
| | - Hongbo Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China.
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, 230031, Hefei, Anhui, China.
| |
Collapse
|
3
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Ramirez-Falcon M, Suarez-Pajes E, Flores C. Defining the Differential Corticosteroid Response Basis from Multiple Omics Approaches. Int J Mol Sci 2024; 25:13611. [PMID: 39769372 PMCID: PMC11679800 DOI: 10.3390/ijms252413611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Since their discovery, corticosteroids have been widely used in the treatment of several diseases, including asthma, acute lymphoblastic leukemia, chronic obstructive pulmonary disease, and many other conditions. However, it has been noted that some patients develop undesired side effects or even fail to respond to treatment. The reasons behind this have not yet been fully elucidated. This poses a significant challenge to effective treatment that needs to be addressed urgently. Recent genomic, transcriptomic, and other omics-based approximations have begun to shed light into the genetic factors influencing interindividual variability in corticosteroid efficacy and its side effects. Here, we comprehensively revise the recent literature on corticosteroid response in various critical and chronic diseases, with a focus on omics approaches, and highlight existing knowledge gaps where further investigation is urgently needed.
Collapse
Affiliation(s)
- Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Instituto de Investigación Sanitaria de Canarias, 38010 Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva Suarez-Pajes
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Instituto de Investigación Sanitaria de Canarias, 38010 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Instituto de Investigación Sanitaria de Canarias, 38010 Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Granadilla de Abona, 38600 Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
5
|
Redondo-Calvo F, Rabanal-Ruiz Y, Verdugo-Moreno G, Bejarano-Ramírez N, Bodoque-Villar R, Durán-Prado M, Illescas S, Chicano-Galvez E, Gómez-Romero FJ, Martinez-Alarcón J, Arias-Pardilla J, Lopez-Juarez P, Padin JF, Peinado JR, Serrano-Oviedo L. Longitudinal Assessment of Nasopharyngeal Biomarkers Post-COVID-19: Unveiling Persistent Markers and Severity Correlations. J Proteome Res 2024; 23:5064-5084. [PMID: 39392878 PMCID: PMC11536464 DOI: 10.1021/acs.jproteome.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
SARS-CoV-19 infection provokes a variety of symptoms; most patients present mild/moderate symptoms, whereas a small proportion of patients progress to severe illness with multiorgan failure accompanied by metabolic disturbances requiring ICU-level care. Given the importance of the disease, researchers focused on identifying severity-associated biomarkers in infected patients as well as markers associated with patients suffering long-COVID. However, little is known about the presence of biomarkers that remain a few years after SARS-CoV-2 infection once the patients fully recover of the symptoms. In this study, we evaluated the presence of persistent biomarkers in the nasopharyngeal tract two years after SARS-Cov-2 infection in fully asymptomatic patients, taking into account the severity of their infection (mild/moderate and severe infections). In addition to the direct identification of several components of the Coronavirus Infection Pathway in those individuals that suffered severe infections, we describe herein 371 proteins and their associated canonical pathways that define the different adverse effects of SARS-CoV-2 infections. The persistence of these biomarkers for up to two years after infection, along with their ability to distinguish the severity of the infection endured, highlights the surprising presence of persistent nasopharyngeal exudate changes in fully recovered patients.
Collapse
Affiliation(s)
- Francisco
Javier Redondo-Calvo
- Department
of Anesthesiology and Critical Care Medicine, University General Hospital, SESCAM, Ciudad Real 13004, Spain
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
- Faculty
of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real 13071, Spain
| | - Yoana Rabanal-Ruiz
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Gema Verdugo-Moreno
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Natalia Bejarano-Ramírez
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
- Faculty
of Medicine, University of Castilla-La Mancha, Castilla La Mancha, Ciudad Real 13071, Spain
- Department
of Pediatrics, University General Hospital, Ciudad Real 13004, Spain
| | - Raquel Bodoque-Villar
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Mario Durán-Prado
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Soledad Illescas
- Department
of Microbiology, University General Hospital, Ciudad Real 13004, Spain
| | - Eduardo Chicano-Galvez
- IMIBIC
Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical
Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba 14004, Spain
| | - Francisco Javier Gómez-Romero
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | | | - Javier Arias-Pardilla
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Pilar Lopez-Juarez
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| | - Juan Fernando Padin
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Juan Ramón Peinado
- Oxidative
Stress and Neurodegeneration Group, Medical Sciences Department, Medical
School, UCLM, Regional Centre for Biomedical
Research, Research Institute of Castilla-La
Mancha (IDISCAM), University of Castilla-La
Mancha, Ciudad Real 13071, Spain
- Department
of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Leticia Serrano-Oviedo
- Traslational
Investigation Unit, University General Hospital, SESCAM. Research Institute of Castilla-La Mancha (IDISCAM), Ciudad Real 13004, Spain
| |
Collapse
|
6
|
Zhuang Y, Xue J, Qiu X, Zhu Y, Lv J, Xia F. FBXL18 is required for ovarian cancer cell proliferation and migration through activating AKT signaling. Am J Transl Res 2024; 16:1977-1990. [PMID: 38883375 PMCID: PMC11170572 DOI: 10.62347/hhxx8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND F-box and leucine-rich repeat protein 18 (FBXL18) is an F-box protein that functions as an E3-ubiquitin ligase, and it plays pivotal roles in multiple disease processes. However, its role and underlying mechanism in ovarian cancer (OC) are still unknown. We investigated the impact and mechanism of FBXL18 in OC cell growth and tumorigenesis. METHODS Silent interfering RNAs and overexpression plasmids were employed to knock down and overexpress FBXL18 in OC cells (A2780 and OVCAR3). CCK-8, colony formation, cell migration, and nude mouse xenograft assays were used to assess the effect of FBXL18 on OC cell proliferation and migration. Western blotting and co-immunoprecipitation followed by ubiquitination assays were performed to detect the mechanism of the FBXL18/AKT axis in OC. RESULTS FBXL18 knockdown inhibited OC cell proliferation and migration, whereas FBXL18 overexpression showed the opposite results. Phosphorylated-AKT (S473) protein expression was increased by FBXL18 overexpression and markedly decreased after phosphorylated-AKT inhibitor (MK-2206) treatment. Co-immunoprecipitation assays demonstrated that FBXL18 strongly interacted with AKT in OC cells. Ubiquitination assays revealed that FBXL18 promoted K63-linked AKT ubiquitination to activate AKT. MK-2206 treatment reversed the increase in proliferation and migration of OC cells induced by FBXL18 overexpression. CONCLUSIONS FBXL18 promoted OC cell proliferation and migration and facilitated OC tumorigenesis. Mechanically, FBXL18 interacted with AKT and promoted K63-linked ubiquitination of AKT to activate AKT in OC cells. Our study revealed that the FBXL18/AKT axis plays a crucial role in the OC process, indicating that FBXL18 may be a valuable target for OC diagnosis and treatment.
Collapse
Affiliation(s)
- Yanyan Zhuang
- Center for Reproductive Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital/Medical Center of Soochow University) Suzhou 215123, Jiangsu, China
- Center for Reproductive Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China
| | - Jiajia Xue
- Center for Reproductive Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital/Medical Center of Soochow University) Suzhou 215123, Jiangsu, China
| | - Xiya Qiu
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University Suzhou 215002, Jiangsu, China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University Suzhou 215002, Jiangsu, China
| | - Jinxing Lv
- Center for Reproductive Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital/Medical Center of Soochow University) Suzhou 215123, Jiangsu, China
| | - Fei Xia
- Center for Reproductive Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu, China
| |
Collapse
|
7
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. The Toxoplasma gondii F-Box Protein L2 Functions as a Repressor of Stage Specific Gene Expression. PLoS Pathog 2024; 20:e1012269. [PMID: 38814984 PMCID: PMC11166348 DOI: 10.1371/journal.ppat.1012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
8
|
Lian X, Zhang X, Chen W, Xue F, Wang G. Dexmedetomidine mitigates neuroinflammation in an Alzheimer's disease mouse model via the miR-204-3p/FBXL7 signaling axis. Brain Res 2024; 1822:148612. [PMID: 37778649 DOI: 10.1016/j.brainres.2023.148612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by neuroinflammation. Dexmedetomidine (Dex) is known for its neuroprotective properties in clinical settings. In this study, we investigated the potential of Dex in protecting against neuroinflammation in an AD mouse model induced by amyloid-beta (Aβ) injection. First, in the AD mouse model, Aβ injection were administered, and the model was confirmed through behavioral tests, including the Morris water maze and Y-maze. Neuroinflammatory states in Aβ-injected mice were assessed using hematoxylin and eosin staining and enzyme-linked immunosorbent assay. Expression levels of microRNA (miR)-204-3p and F-box/LRR-repeat protein 7 (FBXL7) in mouse tissues were determined through real-time quantitative polymerase chain reaction and Western blot. The binding interaction between miR-204-3p and FBXL7 was elucidated using dual-luciferase analysis. Aβ-injected mice exhibited cognitive impairment, neuroinflammation, and downregulated miR-204-3p. Upregulation of miR-204-3p reduced inflammatory infiltration and mitigated neuroinflammation in Aβ-injected mice. Dex treatment reduced inflammation in hippocampal tissues of Aβ-injected mice. Dex treatment upregulated miR-204-3p, leading to suppressed FBXL7 expression in tissues. Inhibition of miR-204-3p or overexpression of FBXL7 reversed the alleviating effect of Dex on neuroinflammation in Aβ-injected mice. Overall, Dex increased miR-204-3p expression, resulting in the inhibition of FBXL7, and subsequently alleviated neuroinflammation in Aβ-injected mice.
Collapse
Affiliation(s)
- Xia Lian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaomin Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenchao Chen
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fang Xue
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Gaiqing Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, Hainan 572000, China.
| |
Collapse
|
9
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. Toxoplasma gondii F-Box Protein L2 Silences Feline-Restricted Genes Necessary for Sexual Commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572150. [PMID: 38187549 PMCID: PMC10769283 DOI: 10.1101/2023.12.18.572150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages requires substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct nuclear sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNA seq data show that TgFBXL2 conditional depletion induces the expression of genes necessary for sexual commitment. We suggest that TgFBXL2 is a latent guardian of sexual stage development in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of sexual development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| |
Collapse
|
10
|
Yu HQ, Li F, Xiong H, Fang L, Zhang J, Bie P, Xie CM. Elevated FBXL18 promotes RPS15A ubiquitination and SMAD3 activation to drive HCC. Hepatol Commun 2023; 7:e00198. [PMID: 37378633 DOI: 10.1097/hc9.0000000000000198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND F-box and leucine-rich repeat protein 18 (FBXL18) is an E3 ubiquitin ligase that is reported to be involved in the tumorigenesis of various types of cancer. However, it remains unknown whether FBXL18 is correlated with hepatocarcinogenesis. METHODS AND RESULTS In the current study, we found that FBXL18 was highly expressed in HCC tissues and positively associated with poor overall survival of HCC patients. FBXL18 was an independent risk factor for HCC patients. We observed that FBXL18 drove HCC in FBXL18 transgenic mice. Mechanistically, FBXL18 promoted the K63-linked ubiquitination of small-subunit ribosomal protein S15A (RPS15A) and enhanced its stability, increasing SMAD family member 3 (SMAD3) levels and translocation to the nucleus and promoting HCC cell proliferation. Moreover, the knockdown of RPS15A or SMAD3 significantly suppressed FBXL18-mediated HCC proliferation. In clinical samples, elevated FBXL18 expression was positively associated with RPS15A expression. CONCLUSION FBXL18 promotes RPS15A ubiquitination and upregulates SMAD3 expression, leading to hepatocellular carcinogenesis, and this study provides a novel therapeutic strategy for HCC treatment by targeting the FBXL18/RPS15A/SMAD3 pathway.
Collapse
Affiliation(s)
- Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Feng Li
- Department of Hepatobiliary Surgery, The Third Affiliated hospital of Chongqing Medical University, Chongqing, P.R. China
| | - HaoJun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Ping Bie
- Department of Hepatobiliary Surgery, The Third Affiliated hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| |
Collapse
|
11
|
Liu H, Liu S, Yu H, Huang X, Wang Y, Jiang L, Meng X, Liu G, Chen M, Jing Y, Yu F, Wang B, Li J. An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro. MOLECULAR PLANT 2022; 15:1285-1299. [PMID: 35751381 DOI: 10.1016/j.molp.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Multisubunit SKP1/Cullin1/F-box (SCF) E3 ligases play essential roles in regulating the stability of crucial regulatory factors and controlling growth and development in eukaryotes. Detecting E3 ligase activity in vitro is important for exploring the molecular mechanism of protein ubiquitination. However, in vitro ubiquitination assay systems for multisubunit E3 ligases remain difficult to achieve, especially in plants, mainly owing to difficulties in achieving active components of multisubunit E3 ligases with high purity and characterizing specific E2 and E3 pairs. In this study, we characterized components of the rice SCFDWARF3 (SCFD3) E3 ligase, screened the coordinated E2, and reconstituted active SCFD3 E3 ligase in vitro. We further engineered SCFD3 E3 ligase using a fused SKP1-Cullin1-RBX1 (eSCR) protein and found that both the wild-type SCFD3 E3 ligase and the engineered SCFD3 E3 ligase catalyzed ubiquitination of the substrate D53, which is the key transcriptional repressor in strigolactone signaling. Finally, we replaced D3 with other F-box proteins from rice and humans and reconstituted active eSCF E3 ligases, including eSCFGID2, eSCFFBXL18, and eSCFCDC4 E3 ligases. Our work reconstitutes functional SCF E3 ligases in vitro and generates an engineered system with interchangeable F-box proteins, providing a powerful platform for studying the mechanisms of multisubunit SCF E3 ligases in eukaryotes.
Collapse
Affiliation(s)
- Huihui Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Simiao Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Jiang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Functional characterization of FBXL7 as a novel player in human cancers. Cell Death Dis 2022; 8:342. [PMID: 35906197 PMCID: PMC9338262 DOI: 10.1038/s41420-022-01143-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
F-box and leucine-rich repeat protein 7 (FBXL7), an F-box protein responsible for substrate recognition by the SKP1-Cullin-1-F-box (SCF) ubiquitin ligases, plays an emerging role in the regulation of tumorigenesis and tumor progression. FBXL7 promotes polyubiquitylation and degradation of diverse substrates and is involved in many biological processes, including apoptosis, cell proliferation, cell migration and invasion, tumor metastasis, DNA damage, glucose metabolism, planar cell polarity, and drug resistance. In this review, we summarize the downstream substrates and upstream regulators of FBXL7. We then discuss its role in tumorigenesis and tumor progression as either an oncoprotein or a tumor suppressor, and further describe its aberrant expression and association with patient survival in human cancers. Finally, we provide future perspectives on validating FBXL7 as a cancer biomarker for diagnosis and prognosis and/or as a potential therapeutic target for anticancer treatment.
Collapse
|
13
|
Huang W, Lu Y, Wang F, Huang X, Yu Z. Circular RNA circRNA_103809 Accelerates Bladder Cancer Progression and Enhances Chemo-Resistance by Activation of miR-516a-5p/FBXL18 Axis. Cancer Manag Res 2020; 12:7561-7568. [PMID: 32922071 PMCID: PMC7457878 DOI: 10.2147/cmar.s263083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/29/2020] [Indexed: 01/06/2023] Open
Abstract
Background Numerous researches have suggested that circular RNAs (circRNAs) play critical functions in bladder cancer (BC) progression. This study aims to investigate the potential roles of circRNA_103809 in regulating BC development. Methods qRT-PCR was used to analyze gene expression. CCK8 and colony formation were used to analyze cell proliferation. Transwell was utilized to examine cell migration and invasion. Gemcitabine was used to analyze the effect of circRNA_103809 on the chemo-resistance of BC cells. Luciferase reporter assay was performed to detect the RNA interactions. Results circRNA_103809 was highly expressed in BC tissues and cell lines. CircRNA_103809 high expression was associated with a poor progression in BC patients. CircRNA_103809 knockdown impaired the growth and metastasis of BC cells. Furthermore, circRNA_103809 silencing increased the sensitivity of BC cells to Gemcitabine treatment. CircRNA_103809 was the sponge for miR-516a-5p and promoted FBXL18 expression via restraining miR-516a-5p activity. Conclusion circRNA_103809 promotes proliferation, migration, invasion and chemo-resistance of BC cells through regulating miR-516a-5p/FBXL18 axis.
Collapse
Affiliation(s)
- Weiping Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Yongyong Lu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Feng Wang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Xixi Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
14
|
Kong S, Fang Y, Wang B, Cao Y, He R, Zhao Z. miR-152-5p suppresses glioma progression and tumorigenesis and potentiates temozolomide sensitivity by targeting FBXL7. J Cell Mol Med 2020; 24:4569-4579. [PMID: 32150671 PMCID: PMC7176889 DOI: 10.1111/jcmm.15114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
A generally used chemotherapeutic drug for glioma, a frequently diagnosed brain tumour, is temozolomide (TMZ). Our study investigated the activity of FBXL7 and miR-152-5p in glioma. Levels of microRNA-152-5p (miR-152-5p) and the transcript and protein of FBXL7 were assessed by real-time PCR and Western blotting, respectively. The migratory and invasive properties of cells were measured by Transwell migration and invasion assay and their viability were examined using CCK-8 assay. Further, the putative interaction between FBXL7 and miR-152-5p were analysed bioinformatically and by luciferase assay. The activities of FBXL7, TMZ and miR-152-5p were analysed in vivo singly or in combination, on mouse xenografts, in glioma tumorigenesis. The expression of FBXL7 in glioma tissue is significantly up-regulated, which is related to the poor prognosis and the grade of glioma. TMZ-induced cytotoxicity, proliferation, migration and invasion in glioma cells were impeded by the knock-down of FBXL7 or overexpressed miR-152-5p. Furthermore, the expression of miR-152-5p reduced remarkably in glioma cells and it exerted its activity through targeted FBXL7. Overexpression of miR-152-5p and knock-down of FBXL7 in glioma xenograft models enhanced TMZ-mediated anti-tumour effect and impeded tumour growth. Thus, the miR-152-5p suppressed the progression of glioma and associated tumorigenesis, targeted FBXL7 and increased the effect of TMZ-induced cytotoxicity in glioma cells, further enhancing our knowledge of FBXL7 activity in glioma.
Collapse
Affiliation(s)
- Shiqi Kong
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yanwei Fang
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Bingqian Wang
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Runzhi He
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Zongmao Zhao
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
15
|
Tekcham DS, Chen D, Liu Y, Ling T, Zhang Y, Chen H, Wang W, Otkur W, Qi H, Xia T, Liu X, Piao HL, Liu H. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Am J Cancer Res 2020; 10:4150-4167. [PMID: 32226545 PMCID: PMC7086354 DOI: 10.7150/thno.42735] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
E3 ubiquitin ligases play a critical role in cellular mechanisms and cancer progression. F-box protein is the core component of the SKP1-cullin 1-F-box (SCF)-type E3 ubiquitin ligase and directly binds to substrates by various specific domains. According to the specific domains, F-box proteins are further classified into three sub-families: 1) F-box with leucine rich amino acid repeats (FBXL); 2) F-box with WD 40 amino acid repeats (FBXW); 3) F-box only with uncharacterized domains (FBXO). Here, we summarize the substrates of F-box proteins, discuss the important molecular mechanism and emerging role of F-box proteins especially from the perspective of cancer development and progression. These findings will shed new light on malignant tumor progression mechanisms, and suggest the potential role of F-box proteins as cancer biomarkers and therapeutic targets for future cancer treatment.
Collapse
|
16
|
The Biology of F-box Proteins: The SCF Family of E3 Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:111-122. [PMID: 31898225 DOI: 10.1007/978-981-15-1025-0_8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
F-box proteins function as substrate adaptors for the S-phase kinase-associated protein 1 (SKP1)-cullin 1 (CUL1)-F-box protein (SCF) ubiquitin ligase complexes, which mediate the proteasomal degradation of a diverse range of regulatory proteins. 20 years since the F-box protein family has been discovered, our understanding of substrate-recognition regulation and the roles F-box proteins play in cellular processes has continued to expand. Here, we provide an introduction to the discovery and classification of F-box proteins, the overall structural assembly of SCF complexes, the varied mechanisms by which F-box proteins recognize their substrates, and the role F-box proteins play in diseases and their potentials in targeted therapies.
Collapse
|
17
|
Long C, Lai Y, Li T, Nyunoya T, Zou C. Cigarette smoke extract modulates Pseudomonas aeruginosa bacterial load via USP25/HDAC11 axis in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L252-L263. [PMID: 31746627 DOI: 10.1152/ajplung.00142.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cigarette smoking increases susceptibility for microbial infection in respiratory system. However, the underlying molecular mechanism(s) is not fully elucidated. Here we report that cigarette smoking extract (CSE) increases bacterial load in lung epithelial cells via downregulation of the ubiquitin-specific protease 25 (USP25)/histone deacetylase 11 (HDAC11) axis. CSE treatment decreases HDAC11 at protein level in lung epithelial cells without significant changes of its transcription. Concomitantly, CSE treatment accelerates a ubiquitin-specific protease USP25 ubiquitination and degradation. Coimmunoprecipitation studies showed that USP25 associated with HDAC11. USP25 catalyzes deubiquitination of HDAC11, which regulates HDAC11 protein stability. CSE-mediated degradation of USP25 thereafter reduces HDAC11 at the protein level. Interestingly, CSE-downregulated USP25/HDAC11 axis increases the bacterial load of Pseudomonas aeruginosa in lung epithelial cells. These findings suggest that CSE-downregulated USP25 and HDAC11 may contribute to high susceptibility of bacterial infection in the cigarette smoking population.
Collapse
Affiliation(s)
- Chen Long
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yandong Lai
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tiao Li
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Toru Nyunoya
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Chunbin Zou
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Nayeri S, Schenkel F, Fleming A, Kroezen V, Sargolzaei M, Baes C, Cánovas A, Squires J, Miglior F. Genome-wide association analysis for β-hydroxybutyrate concentration in Milk in Holstein dairy cattle. BMC Genet 2019; 20:58. [PMID: 31311492 PMCID: PMC6636026 DOI: 10.1186/s12863-019-0761-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/28/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ketosis in dairy cattle has been shown to cause a high morbidity in the farm and substantial financial losses to dairy farmers. Ketosis symptoms, however, are difficult to identify, therefore, the amount of ketone bodies (mainly β-hydroxybutyric acid, BHB) is used as an indicator of subclinical ketosis in cows. It has also been shown that milk BHB concentrations have a strong correlation with ketosis in dairy cattle. Mid-infrared spectroscopy (MIR) has recently became a fast, cheap and high-throughput method for analyzing milk components. The aim of this study was to perform a genome-wide association study (GWAS) on the MIR-predicted milk BHB to identify genomic regions, genes and pathways potentially affecting subclinical ketosis in North American Holstein dairy cattle. RESULTS Several significant regions were identified associated with MIR-predicted milk BHB concentrations (indicator of subclinical ketosis) in the first lactation (SCK1) and second and later lactations (SCK2) in Holstein dairy cows. The strongest association was located on BTA6 for SCK1 and BTA14 on SCK2. Several SNPs on BTA6 were identified in regions and variants reported previously to be associated with susceptibility to ketosis and clinical mastitis in Jersey and Holstein dairy cattle, respectively. One highly significant SNP on BTA14 was found within the DGAT1 gene with known functions on fat metabolism and inflammatory response in dairy cattle. A region on BTA6 and three SNPs on BTA20 were found to overlap between SCK1 and SCK2. However, a novel region on BTA20 (55-63 Mb) for SCK2 was also identified, which was not reported in previous association studies. Enrichment analysis of the list of candidate genes within the identified regions for MIR-predicted milk BHB concentrations yielded molecular functions and biological processes that may be involved in the inflammatory response and lipid metabolism in dairy cattle. CONCLUSIONS The results of this study confirmed several SNPs and genes identified in previous studies as associated with ketosis susceptibility and immune response, and also found a novel region that can be used for further analysis to identify causal variations and key regulatory genes that affect clinical/ subclinical ketosis.
Collapse
Affiliation(s)
- S. Nayeri
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - F. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - A. Fleming
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
- Canadian Dairy Network, Guelph, ON N1K 1E5 Canada
| | - V. Kroezen
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - M. Sargolzaei
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
- Select Sires Inc., Plain City, OH 43064 USA
| | - C. Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - A. Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - J. Squires
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - F. Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
19
|
Ueda M, Matsuura K, Kawai H, Wakasugi M, Matsunaga T. Spironolactone-induced XPB degradation depends on CDK7 kinase and SCF FBXL18 E3 ligase. Genes Cells 2019; 24:284-296. [PMID: 30762924 DOI: 10.1111/gtc.12674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 12/27/2022]
Abstract
The multisubunit complex transcription factor IIH (TFIIH) has dual functions in transcriptional initiation and nucleotide excision repair (NER). TFIIH is comprised of two subcomplexes, the core subcomplex (seven subunits) including XPB and XPD helicases and the cyclin-dependent kinase (CDK)-activating kinase (CAK) subcomplex (three subunits) containing CDK7 kinase. Recently, it has been reported that spironolactone, an anti-aldosterone drug, inhibits cellular NER by inducing proteasomal degradation of XPB and potentiates the cytotoxicity of platinum-based drugs in cancer cells, suggesting possible drug repositioning. In this study, we have tried to uncover the mechanism underlying the chemical-induced XPB destabilization. Based on siRNA library screening and subsequent analyses, we identified SCFFBXL18 E3 ligase consisting of Skp1, Cul1, F-box protein FBXL18 and Rbx1 responsible for spironolactone-induced XPB polyubiquitination and degradation. In addition, we showed that CDK7 kinase activity is required for this process. Finally, we found that the Ser90 residue of XPB is essential for the chemical-induced destabilization. These results led us to propose a model that spironolactone may trigger the phosphorylation of XPB at Ser90 by CDK7, which promotes the recognition and polyubiquitination of XPB by SCFFBXL18 for proteasomal degradation.
Collapse
Affiliation(s)
- Masanobu Ueda
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenkyo Matsuura
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidehiko Kawai
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Mitsuo Wakasugi
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsukasa Matsunaga
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
20
|
Vriend J, Tate RB. Differential Expression of Genes for Ubiquitin Ligases in Medulloblastoma Subtypes. THE CEREBELLUM 2019; 18:469-488. [PMID: 30810905 DOI: 10.1007/s12311-019-1009-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using publically available datasets on gene expression in medulloblastoma (MB) subtypes, we selected genes for ubiquitin ligases and identified statistically those that best predicted each of the four major MB subgroups as separate disease entities. We identify a gene coding for an ubiquitin ligase, ZNRF3, whose overexpression alone can predict the WNT subgroup for 100% in the Pfister dataset. For the SHH subgroup, we identify a gene for a regulatory subunit of the protein phosphatase 2A (PP2A), PPP2R2C, as the major predictor among the E3 ligases genes. The ubiquitin and ubiquitin-like conjugation database (UUCD) lists PPP2R2C as coding for a Cullin Ring ubiquitin ligase adaptor. For group 3 MBs, the best ubiquitin ligase predictor was PPP2R2B, a gene which codes for another regulatory subunit of the PP2A holoenzyme. For group 4, the best E3 gene predictors were MID2, ZBTB18, and PPP2R2A, which codes for a third PP2A regulatory subunit. Heatmap analysis of the E3 gene data shows that expression of ten genes for ubiquitin ligases can be used to classify MBs into the four major consensus subgroups. This was illustrated by analysis of gene expression of ubiquitin ligases of the Pfister dataset and confirmed in the dataset of Cavalli. We conclude that genes for ubiquitin ligases can be used as genetic markers for MB subtypes and that the proteins coded for by these genes should be investigated as subtype specific therapeutic targets for MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Robert B Tate
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Keskin O, Farzan N, Birben E, Akel H, Karaaslan C, Maitland-van der Zee AH, Wechsler ME, Vijverberg SJ, Kalayci O. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy 2019; 9:2. [PMID: 30647901 PMCID: PMC6327448 DOI: 10.1186/s13601-018-0239-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
There is wide variability in the response to inhaled corticosteroids (ICS) in asthma. While some of this heterogeneity of response is due to adherence and environmental causes, genetic variation also influences response to treatment and genetic markers may help guide treatment. Over the past years, researchers have investigated the relationship between a large number of genetic variations and response to ICS by performing pharmacogenomic studies. In this systematic review we will provide a summary of recent pharmacogenomic studies on ICS and discuss the latest insight into the potential functional role of identified genetic variants. To date, seven genome wide association studies (GWAS) examining ICS response have been published. There is little overlap between identified variants and methodologies vary largely. However, in vitro and/or in silico analyses provide additional evidence that genes discovered in these GWAS (e.g. GLCCI1, FBXL7, T gene, ALLC, CMTR1) might play a direct or indirect role in asthma/treatment response pathways. Furthermore, more than 30 candidate-gene studies have been performed, mainly attempting to replicate variants discovered in GWAS or candidate genes likely involved in the corticosteroid drug pathway. Single nucleotide polymorphisms located in GLCCI1, NR3C1 and the 17q21 locus were positively replicated in independent populations. Although none of the genetic markers has currently reached clinical practise, these studies might provide novel insights in the complex pathways underlying corticosteroids response in asthmatic patients.
Collapse
Affiliation(s)
- Ozlem Keskin
- 1Paediatric Allergy and Immunology Department, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Niloufar Farzan
- 2Department of Respiratory Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands
| | - Esra Birben
- 3Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, 06100 Ankara, Turkey
| | - Hayriye Akel
- 4Department of Molecular Biology, Faculty of Sciences, Hacettepe University, Ankara, Turkey
| | - Cagatay Karaaslan
- 4Department of Molecular Biology, Faculty of Sciences, Hacettepe University, Ankara, Turkey
| | - Anke H Maitland-van der Zee
- 2Department of Respiratory Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands.,5Department of Pediatric Respiratory Medicine and Allergy, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands
| | | | - Susanne J Vijverberg
- 2Department of Respiratory Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands
| | - Omer Kalayci
- 3Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, 06100 Ankara, Turkey
| |
Collapse
|
22
|
Gündert M, Edelmann D, Benner A, Jansen L, Jia M, Walter V, Knebel P, Herpel E, Chang-Claude J, Hoffmeister M, Brenner H, Burwinkel B. Genome-wide DNA methylation analysis reveals a prognostic classifier for non-metastatic colorectal cancer (ProMCol classifier). Gut 2019; 68:101-110. [PMID: 29101262 DOI: 10.1136/gutjnl-2017-314711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/21/2017] [Accepted: 09/30/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pathological staging used for the prediction of patient survival in colorectal cancer (CRC) provides only limited information. DESIGN Here, a genome-wide study of DNA methylation was conducted for two cohorts of patients with non-metastatic CRC (screening cohort (n=572) and validation cohort (n=274)). A variable screening for prognostic CpG sites was performed in the screening cohort using marginal testing based on a Cox model and subsequent adjustment of the p-values via independent hypothesis weighting using the methylation difference between 34 pairs of tumour and normal mucosa tissue as auxiliary covariate. From the 1000 CpG sites with the smallest adjusted p-value, 20 CpG sites with the smallest Brier score for overall survival (OS) were selected. Applying principal component analysis, we derived a prognostic methylation-based classifier for patients with non-metastatic CRC (ProMCol classifier). RESULTS This classifier was associated with OS in the screening (HR 0.51, 95% CI 0.41 to 0.63, p=6.2E-10) and the validation cohort (HR 0.61, 95% CI 0.45 to 0.82, p=0.001). The independent validation of the ProMCol classifier revealed a reduction of the prediction error for 3-year OS from 0.127, calculated only with standard clinical variables, to 0.120 combining the clinical variables with the classifier and for 4-year OS from 0.153 to 0.140. All results were confirmed for disease-specific survival. CONCLUSION The ProMCol classifier could improve the prognostic accuracy for patients with non-metastatic CRC.
Collapse
Affiliation(s)
- Melanie Gündert
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Min Jia
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viola Walter
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Phillip Knebel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, Unit of Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Genetic Tumour Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
FBXL7 Upregulation Predicts a Poor Prognosis and Associates with a Possible Mechanism for Paclitaxel Resistance in Ovarian Cancer. J Clin Med 2018; 7:jcm7100330. [PMID: 30301218 PMCID: PMC6209951 DOI: 10.3390/jcm7100330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Paclitaxel (PTX) is a common regimen used to treat patients with ovarian cancer. Although approximately 60% of ovarian cancer patients exhibit a pathologic complete response (pCR), approximately 40% of patients appear to be insensitive to PTX adjuvant therapy. Thus, identifying a useful biomarker to predict pCR would be of great help to ovarian cancer patients who decide to receive PTX treatment. We found that FBXL7 was downregulated in OVSAHO (PTX-sensitive) but upregulated in KURAMOCHI (PTX-resistant) cells after PTX treatment at cytotoxic concentrations. Moreover, our data showed that the fold change of FBXL7 expression post-treatment with PTX was causally correlated with the 50% inhibitory concentrations (IC50) of PTX in a panel of ovarian cancer cell lines. In assessments of progression-free survival probability, high levels of FBXL7 transcript strongly predicted a poor prognosis and unfavorable response to PTX-based chemotherapy in patients with ovarian cancer. The knockdown of FBXL7 predominantly enhanced the cytotoxic effectiveness of PTX on the PTX-resistant KURAMOCHI cells. FBXL7 may be a useful biomarker for predicting complete pathologic response in ovarian cancer patients who decide to receive post-operative PTX therapy.
Collapse
|
24
|
Choppara S, Ganga S, Manne R, Dutta P, Singh S, Santra MK. The SCF FBXO46 ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. J Biol Chem 2018; 293:16291-16306. [PMID: 30171069 DOI: 10.1074/jbc.ra118.005354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor F-box protein 31 (FBXO31) is indispensable for maintaining genomic stability. Its levels drastically increase following DNA damage, leading to cyclin D1 and MDM2 degradation and G1 and G2/M arrest. Prolonged arrest in these phases leads to cellular senescence. Accordingly, FBXO31 needs to be kept at low basal levels in unstressed conditions for normal cell cycle progression during growth and development. However, the molecular mechanism maintaining these basal FBXO31 levels has remained unclear. Here, we identified the F-box family SCF-E3 ubiquitin ligase FBXO46 (SCFFBXO46) as an important proteasomal regulator of FBXO31 and found that FBXO46 helps maintain basal FBXO31 levels under unstressed conditions and thereby prevents premature senescence. Using molecular docking and mutational studies, we showed that FBXO46 recognizes an RXXR motif located at the FBXO31 C terminus to direct its polyubiquitination and thereby proteasomal degradation. Furthermore, FBXO46 depletion enhanced the basal levels of FBXO31, resulting in senescence induction. In response to genotoxic stress, ATM (ataxia telangiectasia-mutated) Ser/Thr kinase-mediated phosphorylation of FBXO31 at Ser-278 maintained FBXO31 levels. In contrast, activated ATM phosphorylated FBXO46 at Ser-21/Ser-67, leading to its degradation via FBXO31. Thus, ATM-catalyzed phosphorylation after DNA damage governs FBXO31 levels and FBXO46 degradation via a negative feedback loop. Collectively, our findings reveal that FBXO46 is a crucial proteasomal regulator of FBXO31 and thereby prevents senescence in normal growth conditions. They further indicate that FBXO46-mediated regulation of FBXO31 is abrogated following genotoxic stress to promote increased FBXO31 levels for maintenance of genomic stability.
Collapse
Affiliation(s)
- Srinadh Choppara
- From the National Centre for Cell Science, NCCS Complex and.,the Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Sankaran Ganga
- From the National Centre for Cell Science, NCCS Complex and
| | - Rajeshkumar Manne
- From the National Centre for Cell Science, NCCS Complex and.,the Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Parul Dutta
- From the National Centre for Cell Science, NCCS Complex and.,the Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Shailza Singh
- From the National Centre for Cell Science, NCCS Complex and
| | | |
Collapse
|
25
|
Long C, Lai Y, Li J, Huang J, Zou C. LPS promotes HBO1 stability via USP25 to modulate inflammatory gene transcription in THP-1 cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:773-782. [PMID: 30745998 DOI: 10.1016/j.bbagrm.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The histone acetyltransferase HBO1 (Histone acetyltransferase binding to origin recognition complex 1, Myst2/Kat7) participates in a range of life processes including DNA replication and tumorigenesis. Recent studies revealed that HBO1 is involved in gene transcriptional activation. However, the molecular behavior of HBO1 in inflammation is yet to be studied. Here we report that endotoxin lipopolysaccharide (LPS) elevates HBO1 protein level via up-regulating UPS25 (ubiquitin specific peptidase 25) and alters inflammatory gene transcription in THP-1 monocytes and in human primary macrophages. LPS protects HBO1 from ubiquitin proteasomal degradation without significantly altering its transcription. By immunoprecipitation, we identified that HBO1 associates with a deubiquitinating enzyme USP25 in THP-1 cells. LPS increases protein level of USP25 resulting in accumulation of HBO1 by suppression of HBO1 ubiquitination. Stabilized-HBO1 modulates inflammatory gene transcription in THP-1 cells. These findings indicate that USP25 promotes stability of HBO1 in bacterial infection thereby enhances HBO1-mediated inflammatory gene transcription.
Collapse
Affiliation(s)
- Chen Long
- Department of Minimally Invasive Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China 410011.,Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Yandong Lai
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Jin Li
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Jiangsheng Huang
- Department of Minimally Invasive Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China 410011
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| |
Collapse
|
26
|
Videlock EJ, Mahurkar-Joshi S, Hoffman JM, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. Sigmoid colon mucosal gene expression supports alterations of neuronal signaling in irritable bowel syndrome with constipation. Am J Physiol Gastrointest Liver Physiol 2018; 315:G140-G157. [PMID: 29565640 PMCID: PMC6109711 DOI: 10.1152/ajpgi.00288.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/31/2023]
Abstract
Peripheral factors likely play a role in at least a subset of irritable bowel syndrome (IBS) patients. Few studies have investigated mucosal gene expression using an unbiased approach. Here, we performed mucosal gene profiling in a sex-balanced sample to identify relevant signaling pathways and gene networks and compare with publicly available profiling data from additional cohorts. Twenty Rome III+ IBS patients [10 IBS with constipation (IBS-C), 10 IBS with diarrhea (IBS-D), 5 men/women each), and 10 age-/sex-matched healthy controls (HCs)] underwent sigmoidoscopy with biopsy for gene microarray analysis, including differential expression, weighted gene coexpression network analysis (WGCNA), gene set enrichment analysis, and comparison with publicly available data. Expression levels of 67 genes were validated in an expanded cohort, including the above samples and 18 additional participants (6 each of IBS-C, IBS-D, HCs) using NanoString nCounter technology. There were 1,270 differentially expressed genes (FDR < 0.05) in IBS-C vs. HCs but none in IBS or IBS-D vs. HCs. WGNCA analysis identified activation of the cAMP/protein kinase A signaling pathway. Nine of 67 genes were validated by the NanoString nCounter technology (FDR < 0.05) in the expanded sample. Comparison with publicly available microarray data from the Mayo Clinic and University of Nottingham supports the reproducibility of 17 genes from the microarray analysis and three of nine genes validated by nCounter in IBS-C vs. HCs. This study supports the involvement of peripheral mechanisms in IBS-C, particularly pathways mediating neuronal signaling. NEW & NOTEWORTHY Peripheral factors play a role in the pathophysiology of irritable bowel syndrome (IBS), which, to date, has been mostly evident in IBS with diarrhea. Here, we show that sigmoid colon mucosal gene expression profiles differentiate IBS with constipation from healthy controls. These profiling data and analysis of additional cohorts also support the concept that peripheral neuronal pathways contribute to IBS pathophysiology.
Collapse
Affiliation(s)
- Elizabeth J Videlock
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Jill M Hoffman
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| |
Collapse
|
27
|
Wei J, Dong S, Yao K, Martinez MFYM, Fleisher PR, Zhao Y, Ma H, Zhao J. Histone acetyltransferase CBP promotes function of SCF FBXL19 ubiquitin E3 ligase by acetylation and stabilization of its F-box protein subunit. FASEB J 2018. [PMID: 29522376 DOI: 10.1096/fj.201701069r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ubiquitin E3 ligases mediate ubiquitination and degradation of intracellular proteins. We have shown that a relatively new Skp, Cullin, F-box (SCF) protein E3 ligase, SCF FBXL19, has an anti-inflammatory effect and controls actin cytoskeleton dynamics via targeting cell membrane receptor and small GTPases for their ubiquitination and degradation, but the molecular regulation of its subunit FBXL19 stability remains unclear. Here we show that FBXL19 degradation is controlled by the balance between its ubiquitination and acetylation. FBXL19 is an unstable protein with a half-life of ∼3 h. FBXL19 can be polyubiquitinated, and the proteasome inhibitor MG-132 prolongs FBXL19 half-life, suggesting that FBXL19 degradation is mediated in the ubiquitin-proteasome system. FBXL19 can also be acetylated, and enhancing acetylation of FBXL19 by a deacetylase inhibitor reduces FBXL19 ubiquitination levels. Acetylation-mimic FBXL19 mutant exhibits a longer half-life than wild type. An acetyltransferase CBP catalyzes acetylation of FBXL19. Inhibition or down-regulation of CBP reduces FBXL19 stability, whereas it is increased in CBP-overexpressing cells. Taken together, the data indicate that CBP-mediated acetylation reduces ubiquitination and stabilizes FBXL19. Further, we demonstrate that FBXL19 targets small GTPase Cdc42 for its ubiquitination and degradation, whereas this effect is reversed by inhibition of CBP, suggesting that CBP increases the effect of SCF FBXL19 E3 ligase through acetylation and stabilization of FBXL19. Our study reveals a new molecular model for regulation of SCF E3 ligase function by acetylation and stabilization of its subunit F-box protein.-Wei, J., Dong, S., Yao, K., Martinez, M. F. Y. M., Fleisher, P. R., Zhao, Y., Ma, H., Zhao, J. Histone acetyltransferase CBP promotes function of SCF FBXL19 ubiquitin E3 ligase by acetylation and stabilization of its F-box protein subunit.
Collapse
Affiliation(s)
- Jianxin Wei
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Su Dong
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Kangning Yao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Paine R Fleisher
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haichun Ma
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Raghavan N, Tosto G. Genetics of Alzheimer's Disease: the Importance of Polygenic and Epistatic Components. Curr Neurol Neurosci Rep 2017; 17:78. [PMID: 28825204 PMCID: PMC5699909 DOI: 10.1007/s11910-017-0787-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW We aimed to summarize the recent advances in genetic findings of Alzheimer's disease (AD), focusing on traditional single-marker and gene approaches and non-traditional ones, i.e., polygenic and epistatic components. RECENT FINDINGS Genetic studies have progressed over the last few decades from linkage to genome-wide association studies (GWAS), and most recently studies utilizing high-throughput sequencing. So far, GWASs have identified several common variants characterized by small effect sizes (besides APOE-ε4). Sequencing has facilitated the study of rare variants with larger effects. Nevertheless, missing heritability for AD remains extensive; a possible explanation might lie in the existence of polygenic and epistatic components. We review findings achieved by single-marker approaches, but also polygenic and epistatic associations. The latter two are critical, yet-underexplored mechanisms. Genes involved in complex diseases are likely regulated by mechanisms and pathways involving many other genes, an aspect potentially missed by traditional approaches.
Collapse
Affiliation(s)
- Neha Raghavan
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 622 W. 168th Street PH 19-314, New York, NY, 10032, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, 10032, USA
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | - Giuseppe Tosto
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 622 W. 168th Street PH 19-314, New York, NY, 10032, USA.
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, 10032, USA.
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 622 W. 168th Street PH 19-314, New York, NY, 10032, USA.
| |
Collapse
|
29
|
Evankovich J, Lear T, Mckelvey A, Dunn S, Londino J, Liu Y, Chen BB, Mallampalli RK. Receptor for advanced glycation end products is targeted by FBXO10 for ubiquitination and degradation. FASEB J 2017; 31:3894-3903. [PMID: 28515150 DOI: 10.1096/fj.201700031r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is a highly expressed cell membrane receptor serving to anchor lung epithelia to matrix components, and it also amplifies inflammatory signaling during acute lung injury. However, mechanisms that regulate its protein concentrations in cells remain largely unknown. Here we show that RAGE exhibits an extended life span in lung epithelia (t½ 6 h), is monoubiquitinated at K374, and is degraded in lysosomes. The RAGE ligand ODN2006, a synthetic oligodeoxynucleotide resembling pathogenic hypomethylated CpG DNA, promotes rapid lysosomal RAGE degradation through activation of protein kinase Cζ (PKCζ), which phosphorylates RAGE. PKCζ overexpression enhances RAGE degradation, while PKCζ knockdown stabilizes RAGE protein levels and prevents ODN2006-mediated degradation. We identify that RAGE is targeted by the ubiquitin E3 ligase subunit F-box protein O10 (FBXO10), which associates with RAGE to mediate its ubiquitination and degradation. FBXO10 depletion in cells stabilizes RAGE and is required for ODN2006-mediated degradation. These data suggest that modulation of regulators involved in ubiquitin-mediated disposal of RAGE might serve as unique molecular inputs directing RAGE cellular concentrations and downstream responses, which are critical in an array of inflammatory disorders, including acute lung injury.-Evankovich, J., Lear, T., Mckelvey, A., Dunn, S., Londino, J., Liu, Y., Chen, B. B., Mallampalli, R. K. Receptor for advanced glycation end products is targeted by FBXO10 for ubiquitination and degradation.
Collapse
Affiliation(s)
- John Evankovich
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis Lear
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; and
| | - Alison Mckelvey
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; and
| | - Sarah Dunn
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; and
| | - James Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Liu
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bill B Chen
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rama K Mallampalli
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Liu C, Zhang YH, Huang T, Cai Y. Identification of transcription factors that may reprogram lung adenocarcinoma. Artif Intell Med 2017; 83:52-57. [PMID: 28377053 DOI: 10.1016/j.artmed.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 03/22/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Lung adenocarcinoma is one of most threatening disease to human health. Although many efforts have been devoted to its genetic study, few researches have been focused on the transcription factors which regulate tumor initiation and progression by affecting multiple downstream gene transcription. It is proved that proper transcription factors may mediate the direct reprogramming of cancer cells, and reverse the tumorigenesis on the epigenetic and transcription levels. METHODS In this paper, a computational method is proposed to identify the core transcription factors that can regulate as many as possible lung adenocarcinoma associated genes with as little as possible redundancy. A greedy strategy is applied to find the smallest collection of transcription factors that can cover the differentially expressed genes by its downstream targets. The optimal subset which is mostly enriched in the differentially expressed genes is then selected. RESULTS Seven core transcription factors (MCM4, VWF, ECT2, RBMS3, LIMCH1, MYBL2 and FBXL7) are detected, and have been reported to contribute to tumorigenesis of lung adenocarcinoma. The identification of the transcription factors provides a new insight into its oncogenic role in tumor initiation and progression, and benefits the discovery of functional core set that may reverse malignant transformation and reprogram cancer cells.
Collapse
Affiliation(s)
- Chenglin Liu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
31
|
Zhang J, Yang Z, Ou J, Xia X, Zhi F, Cui J. The F-box protein FBXL18 promotes glioma progression by promoting K63-linked ubiquitination of Akt. FEBS Lett 2016; 591:145-154. [DOI: 10.1002/1873-3468.12521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Jindong Zhang
- Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University; Guangzhou China
- Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Sun Yat-sen University; Guangzhou China
| | - Zhifen Yang
- Clinical laboratory; Changsha Blood Center; Changsha China
| | - Jiayu Ou
- Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Xiaojun Xia
- Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University; Guangzhou China
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Sun Yat-sen University; Guangzhou China
| | - Feng Zhi
- Modern Medical Research Center; Third Affiliated Hospital of Soochow University; Changzhou Jiangsu China
| | - Jun Cui
- Collaborative Innovation Center of Cancer Medicine; Sun Yat-sen University; Guangzhou China
- Key Laboratory of Gene Engineering of the Ministry of Education; State Key Laboratory of Biocontrol; School of Life Sciences; Sun Yat-sen University; Guangzhou China
| |
Collapse
|
32
|
Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int J Biochem Cell Biol 2016; 73:99-110. [PMID: 26860958 PMCID: PMC4798898 DOI: 10.1016/j.biocel.2016.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|
33
|
Liu Y, Mallampalli RK. Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 2015; 36:105-19. [PMID: 26427329 DOI: 10.1016/j.semcancer.2015.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury, Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
34
|
Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol 2015; 36:3-17. [PMID: 26416465 DOI: 10.1016/j.semcancer.2015.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022]
Abstract
F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Suzanne J Randle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
35
|
Tosto G, Fu H, Vardarajan BN, Lee JH, Cheng R, Reyes-Dumeyer D, Lantigua R, Medrano M, Jimenez-Velazquez IZ, Elkind MSV, Wright CB, Sacco RL, Pericak-Vance M, Farrer L, Rogaeva E, St George-Hyslop P, Reitz C, Mayeux R. F-box/LRR-repeat protein 7 is genetically associated with Alzheimer's disease. Ann Clin Transl Neurol 2015; 2:810-20. [PMID: 26339675 PMCID: PMC4554442 DOI: 10.1002/acn3.223] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023] Open
Abstract
Objective In the context of late-onset Alzheimer’s disease (LOAD) over 20 genes have been identified but, aside APOE, all show small effect sizes, leaving a large part of the genetic component unexplained. Admixed populations, such as Caribbean Hispanics, can provide a valuable contribution because of their unique genetic profile and higher incidence of the disease. We aimed to identify novel loci associated with LOAD. Methods About 4514 unrelated Caribbean Hispanics (2451 cases and 2063 controls) were selected for genome-wide association analysis. Significant loci were further tested in the expanded cohort that also included related family members (n = 5300). Two AD-like transgenic mice models (J20 and rTg4510) were used to study gene expression. Independent data sets of non-Hispanic Whites and African Americans were used to further validate findings, along with publicly available brain expression data sets. Results A novel locus, rs75002042 in FBXL7 (5p15.1), was found genome-wide significant in the case–control cohort (odd ratio [OR] = 0.61, P = 6.19E-09) and confirmed in the related members cohorts (OR = 0.63, P = 4.7E-08). Fbxl7 protein was overexpressed in both AD-like transgenic mice compared to wild-type littermates. Publicly available microarray studies also showed significant overexpression of Fbxl7 in LOAD brains compared to nondemented controls. single-nucleotide polymorphism (SNP) rs75002042 was in complete linkage disequilibrium with other variants in two independent non-Hispanic White and African American data sets (0.0005 < P < 0.02) used for replication. Interpretation FBXL7, encodes a subcellular protein involved in phosphorylation-dependent ubiquitination processes and displays proapoptotic activity. F-box proteins also modulate inflammation and innate immunity, which may be important in LOAD pathogenesis. Further investigations are needed to validate and understand its role in this and other populations.
Collapse
Affiliation(s)
- Giuseppe Tosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Hongjun Fu
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York
| | - Badri N Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Joseph H Lee
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Rong Cheng
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Rafael Lantigua
- Department of Medicine College of Physicians and Surgeons, School of Public Health, Columbia University New York, New York
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra Santiago, Dominican Republic
| | - Ivonne Z Jimenez-Velazquez
- Department of Medicine, Geriatrics Program, School of Medicine, University of Puerto Rico San Juan, Puerto Rico
| | - Mitchell S V Elkind
- The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York ; Department of Neurology, Columbia University New York, New York
| | - Clinton B Wright
- Evelyn F. McKnight Brain Institute and Departments of Neurology, Public Health Sciences, John T. McDonald Department of Human Genetics, University of Miami Miami, Florida, 33136
| | - Ralph L Sacco
- Evelyn F. McKnight Brain Institute and Departments of Neurology, Public Health Sciences, John T. McDonald Department of Human Genetics, University of Miami Miami, Florida, 33136 ; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami Miami, Florida, 33136
| | - Margaret Pericak-Vance
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami Miami, Florida, 33136 ; The John P. Hussman Institute for Human Genomics, University of Miami Miami, Florida, 33136
| | - Lindsay Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Biostatistics and Epidemiology, Boston University Schools of Medicine and Public Health Boston, Massachusetts
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, Canada, M5T 2S8
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, Canada, M5T 2S8 ; Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge Cambridge, CB2 0XY, United Kingdom
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York ; Department of Neurology, Columbia University New York, New York
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York ; Department of Neurology, Columbia University New York, New York ; Department of Psychiatry, School of Public Health, Columbia University New York, New York ; Department of Epidemiology, School of Public Health, Columbia University New York, New York
| |
Collapse
|
36
|
Liu Y, Lear T, Iannone O, Shiva S, Corey C, Rajbhandari S, Jerome J, Chen BB, Mallampalli RK. The Proapoptotic F-box Protein Fbxl7 Regulates Mitochondrial Function by Mediating the Ubiquitylation and Proteasomal Degradation of Survivin. J Biol Chem 2015; 290:11843-52. [PMID: 25778398 DOI: 10.1074/jbc.m114.629931] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 11/06/2022] Open
Abstract
Fbxl7, a component of the Skp1·Cul1·F-box protein type ubiquitin E3 ligase, regulates mitotic cell cycle progression. Here we demonstrate that overexpression of Fbxl7 in lung epithelia decreases the protein abundance of survivin, a member of the inhibitor of apoptosis family. Fbxl7 mediates polyubiquitylation and proteasomal degradation of survivin by interacting with Glu-126 within its carboxyl-terminal α helix. Furthermore, both Lys-90 and Lys-91 within survivin serve as ubiquitin acceptor sites. Ectopically expressed Fbxl7 impairs mitochondrial function, whereas depletion of Fbxl7 protects mitochondria from actions of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of oxidative phosphorylation. Compared with wild-type survivin, cellular expression of a survivin mutant protein deficient in its ability to interact with Fbxl7 (E126A) and a ubiquitylation-resistant double point mutant (KK90RR/KK91RR) rescued mitochondria to a larger extent from damage induced by overexpression of Fbxl7. Therefore, these data suggest that the Skp1·Cul1·F-box protein complex subunit Fbxl7 modulates mitochondrial function by controlling the cellular abundance of survivin. The results raise opportunities for F-box protein targeting to preserve mitochondrial function.
Collapse
Affiliation(s)
- Yuan Liu
- From the Department of Medicine, Acute Lung Injury Center of Excellence and
| | - Travis Lear
- From the Department of Medicine, Acute Lung Injury Center of Excellence and
| | - Olivia Iannone
- From the Department of Medicine, Acute Lung Injury Center of Excellence and
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 and
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 and
| | | | - Jacob Jerome
- From the Department of Medicine, Acute Lung Injury Center of Excellence and
| | - Bill B Chen
- From the Department of Medicine, Acute Lung Injury Center of Excellence and
| | - Rama K Mallampalli
- From the Department of Medicine, Acute Lung Injury Center of Excellence and the Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| |
Collapse
|