1
|
Shi X, Xu J, Zhong X, Qian Y, Lin L, Fang Z, Ye B, Lyu Y, Zhang R, Zheng Z, Han J. Deubiquitinase MYSM1 promotes doxorubicin-induced cardiotoxicity by mediating TRIM21-ferroptosis axis in cardiomyocytes. Cell Commun Signal 2024; 22:593. [PMID: 39695708 DOI: 10.1186/s12964-024-01955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Anthracycline antitumor drug doxorubicin (DOX) induces severe cardiotoxicity. Deubiquitinating enzymes (DUBs) are crucial for protein stability and function and play a significant role in cardiac pathophysiology. By comparing RNA sequencing datasets and conducting functional screening, we determined that Myb-like, SWIRM, and MPN domains 1 (MYSM1) is a key regulator of DOX-induced cardiotoxicity. In this study, we aimed to explore the function and regulatory mechanisms of MYSM1 in DOX-induced cardiotoxicity. Genetic knockdown of MYSM1 significantly mitigated DOX-induced cardiomyopathy. Correspondingly, cardiomyocyte-specific knockdown of MYSM1 by AAV9 protected the heart from DOX-induced cardiotoxicity. Gain- and loss-of-function analysis verified that MYSM1 mediated DOX-induced cardiomyocyte injury in vitro. Through a Co-IP combined with LC-MS/MS analysis, we discovered that MYSM1 directly interacted with tripartite motif-containing protein 21 (TRIM21). Mechanistic investigations revealed that MYSM1 regulates the deubiquitination and the stability of TRIM21 via its MPN domain. Furthermore, MYSM1 exacerbated DOX-induced cardiotoxicity by enhancing ferroptosis. This study identified MYSM1 as a potential therapeutic target for DOX-induced cardiotoxicity and illustrated a MYSM1-TRIM21-ferroptosis axis in regulating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jianjiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xin Zhong
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanyuan Qian
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liming Lin
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zimin Fang
- Department of Ultrasound, Puer People's Hospital, Puer, Yunnan, China
| | - Bozhi Ye
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiting Lyu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ran Zhang
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhanxiong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
2
|
Qin Q, Ruan H, Zhang H, Xu Z, Pan W, Yan X, Jiang X. Deubiquitinase MYSM1: An Important Tissue Development and Function Regulator. Int J Mol Sci 2024; 25:13051. [PMID: 39684760 DOI: 10.3390/ijms252313051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
MYSM1, a deubiquitinating enzyme, plays a pivotal role in diverse biological processes. Both MYSM1 knockout mice and patients with Mysm1 gene mutations exhibit developmental abnormalities across multiple tissues and organs. Serving as a crucial regulator, MYSM1 influences stem cell function, immune responses, and the pathogenesis of diverse diseases. This review comprehensively details MYSM1's deubiquitinating activities in both the nucleus and cytoplasmic compartments, its effects on stem cell proliferation, differentiation, and immune cell function, and its involvement in cancer, aging, and depression. The high sequence homology between murine and human MYSM1, along with similar phenotypes observed in Mysm1-deficient models, provides valuable insights into the etiology of human Mysm1-deficiency syndromes. This review aims to offer a foundation for future comprehensive research on MYSM1.
Collapse
Affiliation(s)
- Qiaozhen Qin
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Huaqiang Ruan
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
3
|
Xu Z, Qin Q, Wang Y, Zhang H, Liu S, Li X, Chen Y, Wang Y, Ruan H, He W, Zhang T, Yan X, Wang C, Xu D, Jiang X. Deubiquitinase Mysm1 regulates neural stem cell proliferation and differentiation by controlling Id4 expression. Cell Death Dis 2024; 15:129. [PMID: 38342917 PMCID: PMC10859383 DOI: 10.1038/s41419-024-06530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Neural stem cells (NSCs) are critical for brain development and maintenance of neurogenesis. However, the molecular mechanisms that regulate NSC proliferation and differentiation remain unclear. Mysm1 is a deubiquitinase and is essential for the self-renewal and differentiation of several stem cells. It is unknown whether Mysm1 plays an important role in NSCs. Here, we found that Mysm1 was expressed in NSCs and its expression was increased with age in mice. Mice with Mysm1 knockdown by crossing Mysm1 floxed mice with Nestin-Cre mice exhibited abnormal brain development with microcephaly. Mysm1 deletion promoted NSC proliferation and apoptosis, resulting in depletion of the stem cell pool. In addition, Mysm1-deficient NSCs skewed toward neurogenesis instead of astrogliogenesis. Mechanistic investigations with RNA sequencing and genome-wide CUT&Tag analysis revealed that Mysm1 epigenetically regulated Id4 transcription by regulating histone modification at the promoter region. After rescuing the expression of Id4, the hyperproliferation and imbalance differentiation of Mysm1-deficient NSCs was reversed. Additionally, knockdown Mysm1 in aged mice could promote NSC proliferation. Collectively, the present study identified a new factor Mysm1 which is essential for NSC homeostasis and Mysm1-Id4 axis may be an ideal target for proper NSC proliferation and differentiation.
Collapse
Affiliation(s)
- Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
- Anhui Medical University, Hefei, 230032, Anhui, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiaotong Li
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yue Chen
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yuqing Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Huaqiang Ruan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Tao Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
- Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Cao H, Naik SH, Amann-Zalcenstein D, Hickey P, Salim A, Cao B, Nilsson SK, Keightley MC, Lieschke GJ. Late fetal hematopoietic failure results from ZBTB11 deficiency despite abundant HSC specification. Blood Adv 2023; 7:6506-6519. [PMID: 37567157 PMCID: PMC10632610 DOI: 10.1182/bloodadvances.2022009580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Hematopoiesis produces diverse blood cell lineages to meet the basal needs and sudden demands of injury or infection. A rapid response to such challenges requires the expansion of specific lineages and a prompt return to balanced steady-state levels, necessitating tightly coordinated regulation. Previously we identified a requirement for the zinc finger and broad complex, tramtrak, bric-a-brac domain-containing 11 (ZBTB11) transcription factor in definitive hematopoiesis using a forward genetic screen for zebrafish myeloid mutants. To understand its relevance to mammalian systems, we extended these studies to mice. When Zbtb11 was deleted in the hematopoietic compartment, embryos died at embryonic day (E) 18.5 with hematopoietic failure. Zbtb11 hematopoietic knockout (Zbtb11hKO) hematopoietic stem cells (HSCs) were overabundantly specified from E14.5 to E17.5 compared with those in controls. Overspecification was accompanied by loss of stemness, inability to differentiate into committed progenitors and mature lineages in the fetal liver, failure to seed fetal bone marrow, and total hematopoietic failure. The Zbtb11hKO HSCs did not proliferate in vitro and were constrained in cell cycle progression, demonstrating the cell-intrinsic role of Zbtb11 in proliferation and cell cycle regulation in mammalian HSCs. Single-cell RNA sequencing analysis identified that Zbtb11-deficient HSCs were underrepresented in an erythroid-primed subpopulation and showed downregulation of oxidative phosphorylation pathways and dysregulation of genes associated with the hematopoietic niche. We identified a cell-intrinsic requirement for Zbtb11-mediated gene regulatory networks in sustaining a pool of maturation-capable HSCs and progenitor cells.
Collapse
Affiliation(s)
- Huimin Cao
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Shalin H. Naik
- Department of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniela Amann-Zalcenstein
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Peter Hickey
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Agus Salim
- Mathematics and Statistics, La Trobe University, Bundoora, VIC, Australia
- Melbourne School of Population and Global Health, School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Benjamin Cao
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Susan K. Nilsson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - M. Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Imi T, Mizumaki H, Hosomichi K, Nannya Y, Zaimoku Y, Yoroidaka T, Katagiri T, Ishiyama K, Yamazaki H, Ogawa R, Kuroiwa M, Tajima A, Ogawa S, Nakao S. Familial immune-mediated aplastic anaemia in six different families. EJHAEM 2023; 4:714-718. [PMID: 37601868 PMCID: PMC10435714 DOI: 10.1002/jha2.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/16/2023] [Accepted: 05/15/2023] [Indexed: 08/22/2023]
Abstract
We studied the pathophysiology of aplastic anaemia (AA) in six different pairs of relatives without a family history of hematologic disorders or congenital AA. Five and four of the six pairs shared the HLA-DRB1*15:01 and B*40:02 alleles, respectively. Glycosylphosphatidylinositol-anchored protein-deficient blood cells were detected in eight of the 10 patients evaluated. In a mother-daughter pair from one family, flow cytometry detected leukocytes lacking HLA-A2 due to loss of heterogeneity in chromosome 6p. Whole-exome sequencing of the family pair revealed a missense mutation in MYSM1. These results suggest that genetic inheritance of immune traits might underlie familial AA in some patients.
Collapse
Affiliation(s)
- Tatsuya Imi
- Department of HematologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Hiroki Mizumaki
- Department of HematologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and GenomicsGraduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaJapan
| | - Yasuhito Nannya
- Pathology and Tumor BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
- Division of Hematopoietic Disease ControlInstitute of Medical SciecenThe University of TokyoTokyoJapan
| | - Yoshitaka Zaimoku
- Department of HematologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Takeshi Yoroidaka
- Department of HematologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Takamasa Katagiri
- Department of Clinical Laboratory SciencesGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Ken Ishiyama
- Department of HematologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Hirohito Yamazaki
- Department of HematologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Ryosuke Ogawa
- Department of Hematology and OncologyJapan Community Health Care Organization Kyushu HospitalFukuokaJapan
| | - Mika Kuroiwa
- Department of Hematology and OncologyNational Hospital Organization Fukuoka Higashi Medical CenterFukuokaJapan
| | - Atsushi Tajima
- Department of Bioinformatics and GenomicsGraduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaJapan
| | - Seishi Ogawa
- Pathology and Tumor BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Shinji Nakao
- Department of HematologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| |
Collapse
|
6
|
Zhao J, Jia Y, Mahmut D, Deik AA, Jeanfavre S, Clish CB, Sankaran VG. Human hematopoietic stem cell vulnerability to ferroptosis. Cell 2023; 186:732-747.e16. [PMID: 36803603 PMCID: PMC9978939 DOI: 10.1016/j.cell.2023.01.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/20/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023]
Abstract
Hematopoietic stem cells (HSCs) have a number of unique physiologic adaptations that enable lifelong maintenance of blood cell production, including a highly regulated rate of protein synthesis. Yet, the precise vulnerabilities that arise from such adaptations have not been fully characterized. Here, inspired by a bone marrow failure disorder due to the loss of the histone deubiquitinase MYSM1, characterized by selectively disadvantaged HSCs, we show how reduced protein synthesis in HSCs results in increased ferroptosis. HSC maintenance can be fully rescued by blocking ferroptosis, despite no alteration in protein synthesis rates. Importantly, this selective vulnerability to ferroptosis not only underlies HSC loss in MYSM1 deficiency but also characterizes a broader liability of human HSCs. Increasing protein synthesis rates via MYSM1 overexpression makes HSCs less susceptible to ferroptosis, more broadly illustrating the selective vulnerabilities that arise in somatic stem cell populations as a result of physiologic adaptations.
Collapse
Affiliation(s)
- Jiawei Zhao
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuemeng Jia
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dilnar Mahmut
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Jeanfavre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Liang Y, Bhatt G, Tung LT, Wang H, Kim JE, Mousa M, Plackoska V, Illes K, Georges AA, Gros P, Henneman L, Huijbers IJ, Nagar B, Nijnik A. Deubiquitinase catalytic activity of MYSM1 is essential in vivo for hematopoiesis and immune cell development. Sci Rep 2023; 13:338. [PMID: 36611064 PMCID: PMC9825392 DOI: 10.1038/s41598-023-27486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Myb-like SWIRM and MPN domains 1 (MYSM1) is a chromatin binding protein with deubiquitinase (DUB) catalytic activity. Rare MYSM1 mutations in human patients result in an inherited bone marrow failure syndrome, highlighting the biomedical significance of MYSM1 in the hematopoietic system. We and others characterized Mysm1-knockout mice as a model of this disorder and established that MYSM1 regulates hematopoietic function and leukocyte development in such models through different mechanisms. It is, however, unknown whether the DUB catalytic activity of MYSM1 is universally required for its many functions and for the maintenance of hematopoiesis in vivo. To test this, here we generated a new mouse strain carrying a Mysm1D660N point mutation (Mysm1DN) and demonstrated that the mutation renders MYSM1 protein catalytically inactive. We characterized Mysm1DN/DN and Mysm1fl/DN CreERT2 mice, against appropriate controls, for constitutive and inducible loss of MYSM1 catalytic function. We report a profound similarity in the developmental, hematopoietic, and immune phenotypes resulting from the loss of MYSM1 catalytic function and the full loss of MYSM1 protein. Overall, our work for the first time establishes the critical role of MYSM1 DUB catalytic activity in vivo in hematopoiesis, leukocyte development, and other aspects of mammalian physiology.
Collapse
Affiliation(s)
- Yue Liang
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Garvit Bhatt
- grid.14709.3b0000 0004 1936 8649Department of Pharmacology, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC Canada
| | - Lin Tze Tung
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - HanChen Wang
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Joo Eun Kim
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Marwah Mousa
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Viktoria Plackoska
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1 Canada ,grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada
| | - Katalin Illes
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC Canada
| | - Anna A. Georges
- grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada
| | - Philippe Gros
- grid.14709.3b0000 0004 1936 8649McGill University Research Centre on Complex Traits, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada
| | - Linda Henneman
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Ziekenhuis, Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Ziekenhuis, Amsterdam, The Netherlands
| | - Bhushan Nagar
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada. .,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells. Mol Cell Biochem 2022; 478:1361-1382. [PMID: 36309884 DOI: 10.1007/s11010-022-04594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Hematopoiesis is a highly complex process, regulated by both intrinsic and extrinsic factors. Often, these two regulatory arms work in tandem to maintain the steady-state condition of hematopoiesis. However, at times, certain intrinsic attributes of hematopoietic stem cells (HSCs) override the external stimuli and dominate the outcome. These could be genetic events like mutations or environmentally induced epigenetic or transcriptomic changes. Since leukemic stem cells (LSCs) share molecular pathways that also regulate normal HSCs, identifying specific, dominantly acting intrinsic factors could help in the development of novel therapeutic approaches. Here we have reviewed such dominantly acting intrinsic factors governing quiescence vis-à-vis activation of the HSCs in the face of external forces acting on them. For brevity, we have restricted our review to the articles dealing with adult HSCs of human and mouse origin that have been published in the last 10 years. Hematopoietic stem cells (HSCs) are closely associated with various stromal cells in their microenvironment and, thus, constantly receive signaling cues from them. The illustration depicts some dominantly acting intrinsic or cell-autonomous factors operative in the HSCs. These fall into various categories, such as epigenetic regulators, transcription factors, cell cycle regulators, tumor suppressor genes, signaling pathways, and metabolic regulators, which counteract the outcome of extrinsic signaling exerted by the HSC niche.
Collapse
|
9
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
10
|
Becker-Herman S, Rozenberg M, Hillel-Karniel C, Gil-Yarom N, Kramer MP, Barak A, Sever L, David K, Radomir L, Lewinsky H, Levi M, Friedlander G, Bucala R, Peled A, Shachar I. CD74 is a regulator of hematopoietic stem cell maintenance. PLoS Biol 2021; 19:e3001121. [PMID: 33661886 PMCID: PMC7963458 DOI: 10.1371/journal.pbio.3001121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/16/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are a small population of undifferentiated cells that have the capacity for self-renewal and differentiate into all blood cell lineages. These cells are the most useful cells for clinical transplantations and for regenerative medicine. So far, it has not been possible to expand adult hematopoietic stem cells (HSCs) without losing their self-renewal properties. CD74 is a cell surface receptor for the cytokine macrophage migration inhibitory factor (MIF), and its mRNA is known to be expressed in HSCs. Here, we demonstrate that mice lacking CD74 exhibit an accumulation of HSCs in the bone marrow (BM) due to their increased potential to repopulate and compete for BM niches. Our results suggest that CD74 regulates the maintenance of the HSCs and CD18 expression. Its absence leads to induced survival of these cells and accumulation of quiescent and proliferating cells. Furthermore, in in vitro experiments, blocking of CD74 elevated the numbers of HSPCs. Thus, we suggest that blocking CD74 could lead to improved clinical insight into BM transplant protocols, enabling improved engraftment. Hematopoietic stem and progenitor cells (HSPCs) can self-renew and differentiate into all blood cell lineages, making them useful for clinical transplantations and regenerative medicine. This study shows that blocking the MIF receptor CD74 increases the accumulation of HSPCs and could improve the efficacy of bone marrow transplantation protocols.
Collapse
Affiliation(s)
| | - Milena Rozenberg
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Naama Gil-Yarom
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mattias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Avital Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Sever
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Keren David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Lewinsky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Levi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gilgi Friedlander
- Ilana and Pascal Mantoux Institute for Bioinformatics and Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Richard Bucala
- Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amnon Peled
- Hadassah Hebrew University Hospital, Goldyne Savad Institute of Gene Therapy, Jerusalem, Israel
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Belle JI, Wang H, Fiore A, Petrov JC, Lin YH, Feng CH, Nguyen TTM, Tung J, Campeau PM, Behrends U, Brunet T, Leszinski GS, Gros P, Langlais D, Nijnik A. MYSM1 maintains ribosomal protein gene expression in hematopoietic stem cells to prevent hematopoietic dysfunction. JCI Insight 2020; 5:125690. [PMID: 32641579 DOI: 10.1172/jci.insight.125690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Ribosomopathies are congenital disorders caused by mutations in the genes encoding ribosomal and other functionally related proteins. They are characterized by anemia, other hematopoietic and developmental abnormalities, and p53 activation. Ribosome assembly requires coordinated expression of many ribosomal protein (RP) genes; however, the regulation of RP gene expression, especially in hematopoietic stem cells (HSCs), remains poorly understood. MYSM1 is a transcriptional regulator essential for HSC function and hematopoiesis. We established that HSC dysfunction in Mysm1 deficiency is driven by p53; however, the mechanisms of p53 activation remained unclear. Here, we describe the transcriptome of Mysm1-deficient mouse HSCs and identify MYSM1 genome-wide DNA binding sites. We establish a direct role for MYSM1 in RP gene expression and show a reduction in protein synthesis in Mysm1-/- HSCs. Loss of p53 in mice fully rescues Mysm1-/- anemia phenotype but not RP gene expression, indicating that RP gene dysregulation is a direct outcome of Mysm1 deficiency and an upstream mediator of Mysm1-/- phenotypes through p53 activation. We characterize a patient with a homozygous nonsense MYSM1 gene variant, and we demonstrate reduced protein synthesis and increased p53 levels in patient hematopoietic cells. Our work provides insights into the specialized mechanisms regulating RP gene expression in HSCs and establishes a common etiology of MYSM1 deficiency and ribosomopathy syndromes.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - HanChen Wang
- Department of Physiology.,McGill University Research Centre on Complex Traits, and.,Department of Human Genetics, McGill University, Quebec, Canada
| | - Amanda Fiore
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Jessica C Petrov
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Yun Hsiao Lin
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Chu-Han Feng
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Thi Tuyet Mai Nguyen
- Centre Hospitalier Universitaire St. Justine Research Center, University of Montreal, Quebec, Canada
| | - Jacky Tung
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Philippe M Campeau
- Centre Hospitalier Universitaire St. Justine Research Center, University of Montreal, Quebec, Canada
| | | | - Theresa Brunet
- Institute of Human Genetics, Technische Universität München (TUM), Munich, Germany
| | - Gloria Sarah Leszinski
- Institute of Human Genetics, Technische Universität München (TUM), Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philippe Gros
- McGill University Research Centre on Complex Traits, and.,Department of Biochemistry and.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Quebec, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, and.,Department of Human Genetics, McGill University, Quebec, Canada.,McGill University Genome Centre, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| |
Collapse
|
12
|
Fiore A, Liang Y, Lin YH, Tung J, Wang H, Langlais D, Nijnik A. Deubiquitinase MYSM1 in the Hematopoietic System and beyond: A Current Review. Int J Mol Sci 2020; 21:ijms21083007. [PMID: 32344625 PMCID: PMC7216186 DOI: 10.3390/ijms21083007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023] Open
Abstract
MYSM1 has emerged as an important regulator of hematopoietic stem cell function, blood cell production, immune response, and other aspects of mammalian physiology. It is a metalloprotease family protein with deubiquitinase catalytic activity, as well as SANT and SWIRM domains. MYSM1 normally localizes to the nucleus, where it can interact with chromatin and regulate gene expression, through deubiquitination of histone H2A and non-catalytic contacts with other transcriptional regulators. A cytosolic form of MYSM1 protein was also recently described and demonstrated to regulate signal transduction pathways of innate immunity, by promoting the deubiquitination of TRAF3, TRAF6, and RIP2. In this work we review the current knowledge on the molecular mechanisms of action of MYSM1 protein in transcriptional regulation, signal transduction, and potentially other cellular processes. The functions of MYSM1 in different cell types and aspects of mammalian physiology are also reviewed, highlighting the key checkpoints in hematopoiesis, immunity, and beyond regulated by MYSM1. Importantly, mutations in MYSM1 in human were recently linked to a rare hereditary disorder characterized by leukopenia, anemia, and other hematopoietic and developmental abnormalities. Our growing knowledge of MYSM1 functions and mechanisms of actions sheds important insights into its role in mammalian physiology and the etiology of the MYSM1-deficiency disorder in human.
Collapse
Affiliation(s)
- Amanda Fiore
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - Jacky Tung
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
- Department of Human Genetics, McGill University, Montreal, QC 3640, Canada
| | - David Langlais
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
- Department of Human Genetics, McGill University, Montreal, QC 3640, Canada
- McGill University Genome Centre, Montreal, QC 740, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC 3655, Canada; (A.F.); (Y.L.); (Y.H.L.); (J.T.); (H.W.)
- Research Centre on Complex Traits, McGill University, Montreal, QC 3649, Canada;
- Correspondence: ; Tel.: +1-514-398-5567
| |
Collapse
|
13
|
Abstract
T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.
Collapse
Affiliation(s)
- Michael J Shapiro
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA; ,
| | | |
Collapse
|
14
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
15
|
Zhao X, Huang XH, Dong XH, Wang YH, Yang HX, Wang Y, He Y, Liu S, Zhou J, Wang C, Jiang XX. Deubiquitinase Mysm1 regulates macrophage survival and polarization. Mol Biol Rep 2018; 45:2393-2401. [PMID: 30386973 DOI: 10.1007/s11033-018-4405-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022]
Abstract
Macrophages play pivotal roles in innate and adaptive immune response, tissue homeostasis and cancer development. Their development and heterogeneity are tightly controlled by epigenetic program and transcription factors. Deubiquitinase Mysm1 plays crucial roles in regulating stem cell maintenance and immune cell development. Here we show that Mysm1 expression is up regulated during bone marrow macrophage development. Mysm1 deficient cells exhibit accelerating proliferation with more cells going to S phase and higher cyclin D1, cyclin D2 and c-Myc expression. However, compared to WT counterparts, more cell death is also detected in Mysm1 deficient cells no matter M-CSF deprived or not. In LPS-condition medium, Mysm1-/- macrophages show more pro-inflammatory factors IL-1β, TNFα and iNOS production. In addition, much higher expression of surface marker CD86 is detected in Mysm1-/- macrophages. In vivo tumor model data demonstrate that in contrast to WT macrophages promoting tumor growth, Mysm1-/- macrophages inhibit tumor growth, showing the properties of M1 macrophages. Collectively, these data indicate that Mysm1 is essential for macrophage survival and plays an important role in macrophage polarization and might be a target for cell therapy.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.,Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Xiao-Hui Huang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Xiao-Hui Dong
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yu-Han Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.,Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Hui-Xin Yang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yan Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Youdi He
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Shuang Liu
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Jin Zhou
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Changyong Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.
| | - Xiao-Xia Jiang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.
| |
Collapse
|
16
|
Cheng B, Tang S, Zhe N, Ma D, Yu K, Wei D, Zhou Z, Lu T, Wang J, Fang Q. Low expression of GFI-1 Gene is associated with Panobinostat-resistance in acute myeloid leukemia through influencing the level of HO-1. Biomed Pharmacother 2018; 100:509-520. [DOI: 10.1016/j.biopha.2018.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
|
17
|
Förster M, Boora RK, Petrov JC, Fodil N, Albanese I, Kim J, Gros P, Nijnik A. A role for the histone H2A deubiquitinase MYSM1 in maintenance of CD8 + T cells. Immunology 2017; 151:110-121. [PMID: 28066899 DOI: 10.1111/imm.12710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Several previous studies outlined the importance of the histone H2A deubiquitinase MYSM1 in the regulation of stem cell quiescence and haematopoiesis. In this study we investigated the role of MYSM1 in T-cell development. Using mouse models that allow conditional Mysm1 ablation at late stages of thymic development, we found that MYSM1 is intricately involved in the maintenance, activation and survival of CD8+ T cells. Mysm1 ablation resulted in a twofold reduction in CD8+ T-cell numbers, and also led to a hyperactivated CD8+ T-cell state accompanied by impaired proliferation and increased pro-inflammatory cytokine production after ex vivo stimulation. These phenotypes coincided with an increased apoptosis and preferential up-regulation of p53 tumour suppressor protein in CD8+ T cells. Lastly, we examined a model of experimental cerebral malaria, in which pathology is critically dependent on CD8+ T cells. In the mice conditionally deleted for Mysm1 in the T-cell compartment, CD8+ T-cell numbers remained reduced following infection, both in the periphery and in the brain, and the mice displayed improved survival after parasite challenge. Collectively, our data identify MYSM1 as a novel factor for CD8+ T cells in the immune system, increasing our understanding of the role of histone H2A deubiquitinases in cytotoxic T-cell biology.
Collapse
Affiliation(s)
- Michael Förster
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Rupinder K Boora
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jessica C Petrov
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nassima Fodil
- Department of Biochemistry and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Isabella Albanese
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jamie Kim
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Bahrami E, Witzel M, Racek T, Puchałka J, Hollizeck S, Greif-Kohistani N, Kotlarz D, Horny HP, Feederle R, Schmidt H, Sherkat R, Steinemann D, Göhring G, Schlegelbeger B, Albert MH, Al-Herz W, Klein C. Myb-like, SWIRM, and MPN domains 1 (MYSM1) deficiency: Genotoxic stress-associated bone marrow failure and developmental aberrations. J Allergy Clin Immunol 2017; 140:1112-1119. [PMID: 28115216 DOI: 10.1016/j.jaci.2016.10.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/22/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Myb-like, SWIRM, and MPN domains 1 (MYSM1) is a transcriptional regulator mediating histone deubiquitination. Its role in human immunity and hematopoiesis is poorly understood. OBJECTIVES We sought to investigate the clinical, cellular, and molecular features in 2 siblings presenting with progressive bone marrow failure (BMF), immunodeficiency, and developmental aberrations. METHODS We performed genome-wide homozygosity mapping, whole-exome and Sanger sequencing, immunophenotyping studies, and analysis of genotoxic stress responses. p38 activation, reactive oxygen species levels, rate of apoptosis and clonogenic survival, and growth in immune and nonimmune cells were assessed. The outcome of allogeneic hematopoietic stem cell transplantation (HSCT) was monitored. RESULTS We report 2 patients with progressive BMF associated with myelodysplastic features, immunodeficiency affecting B cells and neutrophil granulocytes, and complex developmental aberrations, including mild skeletal anomalies, neurocognitive developmental delay, and cataracts. Whole-exome sequencing revealed a homozygous premature stop codon mutation in the gene encoding MYSM1. MYSM1-deficient cells are characterized by increased sensitivity to genotoxic stress associated with sustained induction of phosphorylated p38 protein, increased reactive oxygen species production, and decreased survival following UV light-induced DNA damage. Both patients were successfully treated with allogeneic HSCT with sustained reconstitution of hematopoietic defects. CONCLUSIONS Here we show that MYSM1 deficiency is associated with developmental aberrations, progressive BMF with myelodysplastic features, and increased susceptibility to genotoxic stress. HSCT represents a curative therapy for patients with MYSM1 deficiency.
Collapse
Affiliation(s)
- Ehsan Bahrami
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Maximilian Witzel
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tomas Racek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sebastian Hollizeck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Naschla Greif-Kohistani
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hans-Peter Horny
- Institute for Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Regina Feederle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Core Facility Monoclonal Antibody Development, Munich, Germany
| | - Heinrich Schmidt
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, and Department of Pediatrics, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|