1
|
Dutta Banik D, Medler KF. Nutrient Sensing by Lingual G-Protein-Coupled Taste Receptors. Methods Mol Biol 2025; 2882:317-327. [PMID: 39992517 DOI: 10.1007/978-1-0716-4284-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The isolation of taste receptor cells allows for the physiological characterization of their responses to the chemical stimuli in potential food items. This provides a mechanism to evaluate the different signaling pathways used by these cells to convert external chemical signals into output signals that are sent to the brain for processing. To preserve their physiological response profiles, these cells are freshly isolated for analysis. Here, we describe the procedure for isolating individual taste receptor cells from mouse taste buds and loading them with fluorescent dyes to perform live cell imaging.
Collapse
Affiliation(s)
- Debarghya Dutta Banik
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
2
|
Dutta Banik D, Martin LJ, Tang T, Soboloff J, Tourtellotte WG, Pierchala BA. EGR4 is critical for cell-fate determination and phenotypic maintenance of geniculate ganglion neurons underlying sweet and umami taste. Proc Natl Acad Sci U S A 2023; 120:e2217595120. [PMID: 37216536 PMCID: PMC10235952 DOI: 10.1073/pnas.2217595120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
The sense of taste starts with activation of receptor cells in taste buds by chemical stimuli which then communicate this signal via innervating oral sensory neurons to the CNS. The cell bodies of oral sensory neurons reside in the geniculate ganglion (GG) and nodose/petrosal/jugular ganglion. The geniculate ganglion contains two main neuronal populations: BRN3A+ somatosensory neurons that innervate the pinna and PHOX2B+ sensory neurons that innervate the oral cavity. While much is known about the different taste bud cell subtypes, considerably less is known about the molecular identities of PHOX2B+ sensory subpopulations. In the GG, as many as 12 different subpopulations have been predicted from electrophysiological studies, while transcriptional identities exist for only 3 to 6. Importantly, the cell fate pathways that diversify PHOX2B+ oral sensory neurons into these subpopulations are unknown. The transcription factor EGR4 was identified as being highly expressed in GG neurons. EGR4 deletion causes GG oral sensory neurons to lose their expression of PHOX2B and other oral sensory genes and up-regulate BRN3A. This is followed by a loss of chemosensory innervation of taste buds, a loss of type II taste cells responsive to bitter, sweet, and umami stimuli, and a concomitant increase in type I glial-like taste bud cells. These deficits culminate in a loss of nerve responses to sweet and umami taste qualities. Taken together, we identify a critical role of EGR4 in cell fate specification and maintenance of subpopulations of GG neurons, which in turn maintain the appropriate sweet and umami taste receptor cells.
Collapse
Affiliation(s)
- Debarghya Dutta Banik
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Louis J. Martin
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Tao Tang
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| | - Jonathan Soboloff
- Department of Cancer & Cellular Biology, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140
| | - Warren G. Tourtellotte
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Brian A. Pierchala
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN46202
| |
Collapse
|
3
|
Shikhevich S, Chadaeva I, Khandaev B, Kozhemyakina R, Zolotareva K, Kazachek A, Oshchepkov D, Bogomolov A, Klimova NV, Ivanisenko VA, Demenkov P, Mustafin Z, Markel A, Savinkova L, Kolchanov NA, Kozlov V, Ponomarenko M. Differentially Expressed Genes and Molecular Susceptibility to Human Age-Related Diseases. Int J Mol Sci 2023; 24:ijms24043996. [PMID: 36835409 PMCID: PMC9966505 DOI: 10.3390/ijms24043996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Mainstream transcriptome profiling of susceptibility versus resistance to age-related diseases (ARDs) is focused on differentially expressed genes (DEGs) specific to gender, age, and pathogeneses. This approach fits in well with predictive, preventive, personalized, participatory medicine and helps understand how, why, when, and what ARDs one can develop depending on their genetic background. Within this mainstream paradigm, we wanted to find out whether the known ARD-linked DEGs available in PubMed can reveal a molecular marker that will serve the purpose in anyone's any tissue at any time. We sequenced the periaqueductal gray (PAG) transcriptome of tame versus aggressive rats, identified rat-behavior-related DEGs, and compared them with their known homologous animal ARD-linked DEGs. This analysis yielded statistically significant correlations between behavior-related and ARD-susceptibility-related fold changes (log2 values) in the expression of these DEG homologs. We found principal components, PC1 and PC2, corresponding to the half-sum and the half-difference of these log2 values, respectively. With the DEGs linked to ARD susceptibility and ARD resistance in humans used as controls, we verified these principal components. This yielded only one statistically significant common molecular marker for ARDs: an excess of Fcγ receptor IIb suppressing immune cell hyperactivation.
Collapse
Affiliation(s)
- Svetlana Shikhevich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Rimma Kozhemyakina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Natalya V. Klimova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Arcady Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology (RIFCI) SB RAS, Novosibirsk 630099, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(383)-363-4963 (ext. 1311)
| |
Collapse
|
4
|
Medapati MR, Singh N, Bhagirath AY, Duan K, Triggs-Raine B, Batista EL, Chelikani P. Bitter taste receptor T2R14 detects quorum sensing molecules from cariogenic Streptococcus mutans and mediates innate immune responses in gingival epithelial cells. FASEB J 2021; 35:e21375. [PMID: 33559200 DOI: 10.1096/fj.202000208r] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
Host-pathogen interactions play an important role in defining the outcome of a disease. Recent studies have shown that the bacterial quorum sensing molecules (QSM) can interact with host cell membrane proteins, mainly G protein-coupled receptors (GPCRs), and induce innate immune responses. However, few studies have examined QSM-GPCR interactions and their influence on oral innate immune responses. In this study, we examined the role of bitter taste receptor T2R14 in sensing competence stimulating peptides (CSPs) secreted by cariogenic bacterium Streptococcus mutans and in mediating innate immune responses in gingival epithelial cells (GECs). Transcriptomic and western blot analyses identify T2R14 to be highly expressed in GECs. Our data show that only CSP-1 from S. mutans induces robust intracellular calcium mobilization compared to CSP-2 and CSP-3. By using CRISPR-Cas9, we demonstrate that CSP-1 induced calcium signaling and secretion of cytokines CXCL-8/IL-8, TNF-α, and IL-6 is mediated through T2R14 in GECs. Interestingly, the NF-kB signaling activated by CSP-1 in GECs was independent of T2R14. CSP-1-primed GECs attracted differentiated HL-60 immune cells (dHL-60) and this effect was abolished in T2R14 knock down GECs and also in cells primed with T2R14 antagonist 6-Methoxyflavone (6-MF). Our findings identify S. mutans CSP-1 as a peptide ligand for the T2R family. Our study establishes a novel host-pathogen interaction between cariogenic S. mutans CSP-1 and T2R14 in GECs leading to an innate immune response. Collectively, these findings suggest T2Rs as potential therapeutic targets to modulate innate immune responses upon oral bacterial infections.
Collapse
Affiliation(s)
- Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Anjali Yadav Bhagirath
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada
| | - Barbara Triggs-Raine
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Eraldo L Batista
- Department of Dental Diagnostic and Clinical Sciences, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, Canada
| |
Collapse
|
5
|
Schroer AB, Branyan KW, Gross JD, Chantler PD, Kimple AJ, Vandenbeuch A, Siderovski DP. The stability of tastant detection by mouse lingual chemosensory tissue requires Regulator of G protein Signaling-21 (RGS21). Chem Senses 2021; 46:6414340. [PMID: 34718440 DOI: 10.1093/chemse/bjab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The T1R and T2R families of G protein-coupled receptors (GPCRs) initiate tastant perception by signaling via guanine nucleotide exchange and hydrolysis performed by associated heterotrimeric G proteins (Gαβγ). Heterotrimeric G protein signal termination is sped up by Gα-directed GTPase-accelerating proteins (GAPs) known as the Regulators of G protein Signaling (RGS proteins). Of this family, RGS21 is highly expressed in lingual epithelial cells and we have shown it acting in vitro to decrease the potency of bitterants on cultured cells. However, constitutive RGS21 loss in mice reduces organismal response to GPCR-mediated tastants-opposite to expectations arising from observed in vitro activity of RGS21 as a GAP and inhibitor of T2R signaling. Here, we show reduced quinine aversion and reduced sucrose preference by mice lacking RGS21 does not result from post-ingestive effects, as taste-salient brief-access tests confirm the reduced bitterant aversion and reduced sweetener preference seen using two-bottle choice testing. Eliminating Rgs21 expression after chemosensory system development, via tamoxifen-induced Cre recombination in eight week-old mice, led to a reduction in quinine aversive behavior that advanced over time, suggesting that RGS21 functions as a negative regulator to sustain stable bitter tastant reception. Consistent with this notion, we observed downregulation of multiple T2R proteins in the lingual tissue of Rgs21-deficient mice. Reduced tastant-mediated responses exhibited by mice lacking Rgs21 expression either since birth or in adulthood has highlighted the potential requirement for a GPCR GAP to maintain the full character of tastant signaling, likely at the level of mitigating receptor downregulation.
Collapse
Affiliation(s)
- Adam B Schroer
- Department of Neuroscience, West Virginia University School of Medicine, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, West Virginia University School of Medicine, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Joshua D Gross
- Department of Cell Biology, Duke University Medical Center, 307 Research Drive, Durham, NC 27710, USA
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Adam J Kimple
- Department of Otolaryngology and Marsico Lung Institute, UNC School of Medicine , 170 Manning Drive, Chapel Hill, NC 27599-7070, USA
| | - Aurelie Vandenbeuch
- Department of Otolaryngology, University of Colorado-Denver, Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| | - David P Siderovski
- Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|
6
|
Dutta Banik D, Benfey ED, Martin LE, Kay KE, Loney GC, Nelson AR, Ahart ZC, Kemp BT, Kemp BR, Torregrossa AM, Medler KF. A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLoS Genet 2020; 16:e1008925. [PMID: 32790785 PMCID: PMC7425866 DOI: 10.1371/journal.pgen.1008925] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Taste receptor cells use multiple signaling pathways to detect chemicals in potential food items. These cells are functionally grouped into different types: Type I cells act as support cells and have glial-like properties; Type II cells detect bitter, sweet, and umami taste stimuli; and Type III cells detect sour and salty stimuli. We have identified a new population of taste cells that are broadly tuned to multiple taste stimuli including bitter, sweet, sour, and umami. The goal of this study was to characterize these broadly responsive (BR) taste cells. We used an IP3R3-KO mouse (does not release calcium (Ca2+) from internal stores in Type II cells when stimulated with bitter, sweet, or umami stimuli) to characterize the BR cells without any potentially confounding input from Type II cells. Using live cell Ca2+ imaging in isolated taste cells from the IP3R3-KO mouse, we found that BR cells are a subset of Type III cells that respond to sour stimuli but also use a PLCβ signaling pathway to respond to bitter, sweet, and umami stimuli. Unlike Type II cells, individual BR cells are broadly tuned and respond to multiple stimuli across different taste modalities. Live cell imaging in a PLCβ3-KO mouse confirmed that BR cells use this signaling pathway to respond to bitter, sweet, and umami stimuli. Short term behavioral assays revealed that BR cells make significant contributions to taste driven behaviors and found that loss of either PLCβ3 in BR cells or IP3R3 in Type II cells caused similar behavioral deficits to bitter, sweet, and umami stimuli. Analysis of c-Fos activity in the nucleus of the solitary tract (NTS) also demonstrated that functional Type II and BR cells are required for normal stimulus induced expression. We use our taste system to decide if we are going to consume or reject a potential food item. This is critical for survival, as we need energy to live but also need to avoid potentially toxic compounds. Therefore, it is important to understand how the taste cells in our mouth detect the chemicals in food and send a message to our brain. Signals from the taste cells form a code that conveys information about the nature of the potential food item to the brain. How this taste coding works is not well understood. Currently, it is thought that taste cells are primarily selective for each taste stimuli and only detect either bitter, sweet, sour, salt, or umami (amino acids) compounds. Our study describes a new population of taste cells that can detect multiple types of stimuli, including chemicals from different taste qualities. Thus, taste cells can be either selective or generally responsive to stimuli which is similar to the cells in the brain that process taste information. The presence of these broadly responsive taste cells provides new insight into how taste information is sent to the brain for processing.
Collapse
Affiliation(s)
- Debarghya Dutta Banik
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Eric D. Benfey
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Laura E. Martin
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Kristen E. Kay
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Gregory C. Loney
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Amy R. Nelson
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Zachary C. Ahart
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Barrett T. Kemp
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Bailey R. Kemp
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Ann-Marie Torregrossa
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, New York, United States of America
| | - Kathryn F. Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Dutta Banik D, Martin LE, Freichel M, Torregrossa AM, Medler KF. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc Natl Acad Sci U S A 2018; 115:E772-E781. [PMID: 29311301 PMCID: PMC5789955 DOI: 10.1073/pnas.1718802115] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. Transient receptor potential melastatin 5 (TRPM5), a sodium-selective TRP channel, functions as a common downstream component in sweet, bitter, and umami signaling pathways. In the absence of TRPM5, mice have a reduced, but not abolished, ability to detect stimuli, suggesting that a TRPM5-independent pathway also contributes to these signals. Here, we identify a critical role for the sodium-selective TRP channel TRPM4 in taste transduction. Using live cell imaging and behavioral studies in KO mice, we show that TRPM4 and TRPM5 are both involved in taste-evoked signaling. Loss of either channel significantly impairs taste, and loss of both channels completely abolishes the ability to detect bitter, sweet, or umami stimuli. Thus, both TRPM4 and TRPM5 are required for transduction of taste stimuli.
Collapse
Affiliation(s)
| | - Laura E Martin
- Department of Psychology, University at Buffalo, Buffalo, NY 14260
| | - Marc Freichel
- Pharmakologisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260;
| |
Collapse
|
8
|
Song H, Zheng Y, Cai F, Ma Y, Yang J, Wu Y. c-Fos downregulation positively regulates EphA5 expression in a congenital hypothyroidism rat model. J Mol Histol 2018; 49:147-155. [PMID: 29330744 DOI: 10.1007/s10735-018-9754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
The EphA5 receptor is well established as an axon guidance molecule during neural system development and plays an important role in dendritic spine formation and synaptogenesis. Our previous study has showed that EphA5 is decreased in the developing brain of congenital hypothyroidism (CH) and the EphA5 promoter methylation modification participates in its decrease. c-Fos, a well-kown transcription factor, has been considered in association with brain development. Bioinformatics analysis showed that the EphA5 promoter region contained five putative c-fos binding sites. The chromatin immunoprecipitation (ChIP) assays were used to assess the direct binding of c-fos to the EphA5 promoter. Furthermore, dual-luciferase assays showed that these three c-fos protein binding sites were positive regulatory elements for EphA5 expression in PC12 cells. Moreover, We verified c-fos positively regulation for EphA5 expression in CH model. Q-PCR and Western blot showed that c-fos overexpression could upregulate EphA5 expression in hippocampal neurons of rats with CH. Our results suggest that c-fos positively regulates EphA5 expression in CH rat model.
Collapse
Affiliation(s)
- Honghua Song
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Fuying Cai
- Department of Pediatrics, Yin Shan Lake Hospital of Wuzhong District, Suzhou, 215100, Jiangsu Province, China
| | - Yanyan Ma
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Jingyue Yang
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|